From 568bb8ca4dd6541c58dfdedc1eae4f8876e1a952 Mon Sep 17 00:00:00 2001 From: Amir MOHAMMADI <amir.mohammadi@idiap.ch> Date: Thu, 3 Mar 2022 14:47:38 +0100 Subject: [PATCH] Drop bob.db.iris --- conda/meta.yaml | 1 - doc/plot/plot_ML.py | 20 ++++++-------------- doc/plot/plot_kmeans.py | 20 ++++++-------------- test-requirements.txt | 1 - 4 files changed, 12 insertions(+), 30 deletions(-) delete mode 100644 test-requirements.txt diff --git a/conda/meta.yaml b/conda/meta.yaml index 319c7e6..159eebb 100644 --- a/conda/meta.yaml +++ b/conda/meta.yaml @@ -56,7 +56,6 @@ test: - sphinx {{ sphinx }} - sphinx_rtd_theme {{ sphinx_rtd_theme }} - matplotlib {{ matplotlib }} - - bob.db.iris about: home: https://www.idiap.ch/software/bob/ diff --git a/doc/plot/plot_ML.py b/doc/plot/plot_ML.py index 4717249..32f6643 100644 --- a/doc/plot/plot_ML.py +++ b/doc/plot/plot_ML.py @@ -5,26 +5,18 @@ import numpy from matplotlib.lines import Line2D from matplotlib.patches import Ellipse - -import bob.db.iris +from sklearn.datasets import load_iris from bob.learn.em import GMMMachine logger = logging.getLogger("bob.learn.em") logger.setLevel("DEBUG") -data_per_class = bob.db.iris.data() -setosa = numpy.column_stack( - (data_per_class["setosa"][:, 0], data_per_class["setosa"][:, 3]) -) -versicolor = numpy.column_stack( - (data_per_class["versicolor"][:, 0], data_per_class["versicolor"][:, 3]) -) -virginica = numpy.column_stack( - (data_per_class["virginica"][:, 0], data_per_class["virginica"][:, 3]) -) - -data = numpy.vstack((setosa, versicolor, virginica)) +iris_data = load_iris() +data = iris_data.data +setosa = data[iris_data.target == 0] +versicolor = data[iris_data.target == 1] +virginica = data[iris_data.target == 2] # Two clusters with a feature dimensionality of 3 machine = GMMMachine( diff --git a/doc/plot/plot_kmeans.py b/doc/plot/plot_kmeans.py index af565c1..1deeb0b 100644 --- a/doc/plot/plot_kmeans.py +++ b/doc/plot/plot_kmeans.py @@ -1,22 +1,14 @@ import matplotlib.pyplot as plt -import numpy -import bob.db.iris +from sklearn.datasets import load_iris from bob.learn.em import KMeansMachine -data_per_class = bob.db.iris.data() -setosa = numpy.column_stack( - (data_per_class["setosa"][:, 0], data_per_class["setosa"][:, 3]) -) -versicolor = numpy.column_stack( - (data_per_class["versicolor"][:, 0], data_per_class["versicolor"][:, 3]) -) -virginica = numpy.column_stack( - (data_per_class["virginica"][:, 0], data_per_class["virginica"][:, 3]) -) - -data = numpy.vstack((setosa, versicolor, virginica)) +iris_data = load_iris() +data = iris_data.data +setosa = data[iris_data.target == 0] +versicolor = data[iris_data.target == 1] +virginica = data[iris_data.target == 2] # Training KMeans # 3 clusters with a feature dimensionality of 2 diff --git a/test-requirements.txt b/test-requirements.txt deleted file mode 100644 index 6f36688..0000000 --- a/test-requirements.txt +++ /dev/null @@ -1 +0,0 @@ -bob.db.iris -- GitLab