diff --git a/bob/learn/misc/MAP_gmm_trainer.cpp b/bob/learn/misc/MAP_gmm_trainer.cpp index e9b0fde0b2a70f0a9c3d4ac347930b72a73cafaf..66b3f04eee3ad02261476d13bc9e61316fa32574 100644 --- a/bob/learn/misc/MAP_gmm_trainer.cpp +++ b/bob/learn/misc/MAP_gmm_trainer.cpp @@ -34,8 +34,8 @@ static auto MAP_GMMTrainer_doc = bob::extension::ClassDoc( .add_parameter("gmm_base_trainer", ":py:class:`bob.learn.misc.GMMBaseTrainer`", "A GMMBaseTrainer object.") .add_parameter("prior_gmm", ":py:class:`bob.learn.misc.GMMMachine`", "The prior GMM to be adapted (Universal Backgroud Model UBM).") - .add_parameter("reynolds_adaptation", "bool", "Will use the Reynolds adaptation factor? See Eq (14) from [Reynolds2000]_") - .add_parameter("relevance_factor", "double", "If set the reynolds_adaptation parameters, will apply the Reynolds Adaptation Factor. See Eq (14) from [Reynolds2000]_") + .add_parameter("reynolds_adaptation", "bool", "Will use the Reynolds adaptation procedure? See Eq (14) from [Reynolds2000]_") + .add_parameter("relevance_factor", "double", "If set the reynolds_adaptation parameters, will apply the Reynolds Adaptation procedure. See Eq (14) from [Reynolds2000]_") .add_parameter("alpha", "double", "Set directly the alpha parameter (Eq (14) from [Reynolds2000]_), ignoring zeroth order statistics as a weighting factor.") .add_parameter("other", ":py:class:`bob.learn.misc.MAP_GMMTrainer`", "A MAP_GMMTrainer object to be copied.") ); diff --git a/bob/learn/misc/ML_gmm_trainer.cpp b/bob/learn/misc/ML_gmm_trainer.cpp index bddc9dee3749e9d09d0d0511bd3b06b343714ae6..b0b2379fe9cc85692c69f701b7eb56700b30b93a 100644 --- a/bob/learn/misc/ML_gmm_trainer.cpp +++ b/bob/learn/misc/ML_gmm_trainer.cpp @@ -221,7 +221,7 @@ static PyObject* PyBobLearnMiscMLGMMTrainer_initialize(PyBobLearnMiscMLGMMTraine /*** mStep ***/ static auto mStep = bob::extension::FunctionDoc( "mStep", - "Performs a maximum likelihood (ML) update of the GMM parameters" + "Performs a maximum likelihood (ML) update of the GMM parameters " "using the accumulated statistics in :py:class:`bob.learn.misc.GMMBaseTrainer.m_ss`", "See Section 9.2.2 of Bishop, \"Pattern recognition and machine learning\", 2006", diff --git a/bob/learn/misc/__MAP_gmm_trainer__.py b/bob/learn/misc/__MAP_gmm_trainer__.py index d20efb52311623425d4ff408444b2acfbf744c29..a41855bcf5650012ab60ea11ae79393c5d541b4b 100644 --- a/bob/learn/misc/__MAP_gmm_trainer__.py +++ b/bob/learn/misc/__MAP_gmm_trainer__.py @@ -13,30 +13,28 @@ class MAP_GMMTrainer(_MAP_GMMTrainer): def __init__(self, gmm_base_trainer, prior_gmm, convergence_threshold=0.001, max_iterations=10, converge_by_likelihood=True, reynolds_adaptation=False, relevance_factor=4., alpha=0.5): """ - :py:class:bob.learn.misc.MAP_GMMTrainer constructor + :py:class:`bob.learn.misc.MAP_GMMTrainer` constructor Keyword Parameters: gmm_base_trainer - The base trainer (:py:class:`bob.learn.misc.GMMBaseTrainer` + The base trainer (:py:class:`bob.learn.misc.GMMBaseTrainer`) prior_gmm - + A :py:class:`bob.learn.misc.GMMMachine` to be adapted convergence_threshold Convergence threshold max_iterations Number of maximum iterations converge_by_likelihood Tells whether we compute log_likelihood as a convergence criteria, or not - reynolds_adaptation - + Will use the Reynolds adaptation procedure? See Eq (14) from [Reynolds2000]_ relevance_factor - + If set the :py:class:`bob.learn.misc.MAP_GMMTrainer.reynolds_adaptation` parameters, will apply the Reynolds Adaptation procedure. See Eq (14) from [Reynolds2000]_ alpha - + Set directly the alpha parameter (Eq (14) from [Reynolds2000]_), ignoring zeroth order statistics as a weighting factor. """ - #_MAP_GMMTrainer.__init__(self, gmm_base_trainer, prior_gmm, reynolds_adaptation=reynolds_adaptation, relevance_factor=relevance_factor, alpha=alpha) - _MAP_GMMTrainer.__init__(self, gmm_base_trainer, prior_gmm, reynolds_adaptation, relevance_factor=relevance_factor, alpha=alpha) + _MAP_GMMTrainer.__init__(self, gmm_base_trainer, prior_gmm, reynolds_adaptation=reynolds_adaptation, relevance_factor=relevance_factor, alpha=alpha) self.convergence_threshold = convergence_threshold self.max_iterations = max_iterations diff --git a/bob/learn/misc/gmm_stats.cpp b/bob/learn/misc/gmm_stats.cpp index f7f38019506dfb3ef5b7a4fb2f6d93b4fc427baf..9f859ffbebe56bd0e367082d9e4a47fdbd074056 100644 --- a/bob/learn/misc/gmm_stats.cpp +++ b/bob/learn/misc/gmm_stats.cpp @@ -177,7 +177,7 @@ int PyBobLearnMiscGMMStats_Check(PyObject* o) { /***** n *****/ static auto n = bob::extension::VariableDoc( "n", - "array_like <double, 1D>", + "array_like <float, 1D>", "For each Gaussian, the accumulated sum of responsibilities, i.e. the sum of :math:`P(gaussian_i|x)`" ); PyObject* PyBobLearnMiscGMMStats_getN(PyBobLearnMiscGMMStatsObject* self, void*){ @@ -204,7 +204,7 @@ int PyBobLearnMiscGMMStats_setN(PyBobLearnMiscGMMStatsObject* self, PyObject* va /***** sum_px *****/ static auto sum_px = bob::extension::VariableDoc( "sum_px", - "array_like <double, 2D> ", + "array_like <float, 2D>", "For each Gaussian, the accumulated sum of responsibility times the sample" ); PyObject* PyBobLearnMiscGMMStats_getSum_px(PyBobLearnMiscGMMStatsObject* self, void*){ @@ -231,7 +231,7 @@ int PyBobLearnMiscGMMStats_setSum_px(PyBobLearnMiscGMMStatsObject* self, PyObjec /***** sum_pxx *****/ static auto sum_pxx = bob::extension::VariableDoc( "sum_pxx", - "array_like <double, 2D> ", + "array_like <float, 2D>", "For each Gaussian, the accumulated sum of responsibility times the sample squared" ); PyObject* PyBobLearnMiscGMMStats_getSum_pxx(PyBobLearnMiscGMMStatsObject* self, void*){ @@ -288,7 +288,7 @@ int PyBobLearnMiscGMMStats_setT(PyBobLearnMiscGMMStatsObject* self, PyObject* va /***** log_likelihood *****/ static auto log_likelihood = bob::extension::VariableDoc( "log_likelihood", - "double ", + "double", "The accumulated log likelihood of all samples" ); PyObject* PyBobLearnMiscGMMStats_getLog_likelihood(PyBobLearnMiscGMMStatsObject* self, void*){