From 4782082b3a56e42c853efa62f6af9acf8b310c0a Mon Sep 17 00:00:00 2001 From: Tiago Freitas Pereira <tiagofrepereira@gmail.com> Date: Tue, 10 Feb 2015 18:35:33 +0100 Subject: [PATCH] Documentation issues --- bob/learn/em/gmm_machine.cpp | 4 +-- bob/learn/em/isv_base.cpp | 8 +++--- bob/learn/em/isv_machine.cpp | 14 +++++----- bob/learn/em/ivector_machine.cpp | 8 +++--- bob/learn/em/jfa_base.cpp | 24 ++++++++-------- bob/learn/em/jfa_machine.cpp | 14 +++++----- bob/learn/em/plda_base.cpp | 47 ++++++++++++++++---------------- bob/learn/em/plda_machine.cpp | 27 +++++++++--------- 8 files changed, 74 insertions(+), 72 deletions(-) diff --git a/bob/learn/em/gmm_machine.cpp b/bob/learn/em/gmm_machine.cpp index efa9c5a..8e17e1e 100644 --- a/bob/learn/em/gmm_machine.cpp +++ b/bob/learn/em/gmm_machine.cpp @@ -539,7 +539,7 @@ static PyObject* PyBobLearnEMGMMMachine_resize(PyBobLearnEMGMMMachineObject* sel /*** log_likelihood ***/ static auto log_likelihood = bob::extension::FunctionDoc( "log_likelihood", - "Output the log likelihood of the sample, x, i.e. log(p(x|GMM)). Inputs are checked.", + "Output the log likelihood of the sample, x, i.e. :math:`log(p(x|GMM))`. Inputs are checked.", ".. note:: The :py:meth:`__call__` function is an alias for this.", true ) @@ -567,7 +567,7 @@ static PyObject* PyBobLearnEMGMMMachine_loglikelihood(PyBobLearnEMGMMMachineObje /*** log_likelihood_ ***/ static auto log_likelihood_ = bob::extension::FunctionDoc( "log_likelihood_", - "Output the log likelihood of the sample, x, i.e. log(p(x|GMM)). Inputs are NOT checked.", + "Output the log likelihood of the sample, x, i.e. :math:`log(p(x|GMM))`. Inputs are NOT checked.", "", true ) diff --git a/bob/learn/em/isv_base.cpp b/bob/learn/em/isv_base.cpp index 9567295..6ff9510 100644 --- a/bob/learn/em/isv_base.cpp +++ b/bob/learn/em/isv_base.cpp @@ -16,8 +16,8 @@ static auto ISVBase_doc = bob::extension::ClassDoc( BOB_EXT_MODULE_PREFIX ".ISVBase", - "A ISVBase instance can be seen as a container for U and D when performing Joint Factor Analysis (JFA)." - "References: [Vogt2008,McCool2013]", + "A ISVBase instance can be seen as a container for U and D when performing Joint Factor Analysis (JFA).\n\n" + "References: [Vogt2008]_ [McCool2013]_", "" ).add_constructor( bob::extension::FunctionDoc( @@ -26,12 +26,12 @@ static auto ISVBase_doc = bob::extension::ClassDoc( "", true ) - .add_prototype("gmm,ru","") + .add_prototype("ubm,ru","") .add_prototype("other","") .add_prototype("hdf5","") .add_prototype("","") - .add_parameter("gmm", ":py:class:`bob.learn.em.GMMMachine`", "The Universal Background Model.") + .add_parameter("ubm", ":py:class:`bob.learn.em.GMMMachine`", "The Universal Background Model.") .add_parameter("ru", "int", "Size of U (Within client variation matrix). In the end the U matrix will have (number_of_gaussians * feature_dimension x ru)") .add_parameter("other", ":py:class:`bob.learn.em.ISVBase`", "A ISVBase object to be copied.") .add_parameter("hdf5", ":py:class:`bob.io.base.HDF5File`", "An HDF5 file open for reading") diff --git a/bob/learn/em/isv_machine.cpp b/bob/learn/em/isv_machine.cpp index 9b56ad7..a7772c3 100644 --- a/bob/learn/em/isv_machine.cpp +++ b/bob/learn/em/isv_machine.cpp @@ -15,8 +15,8 @@ static auto ISVMachine_doc = bob::extension::ClassDoc( BOB_EXT_MODULE_PREFIX ".ISVMachine", - "A ISVMachine. An attached :py:class:`bob.learn.em.ISVBase` should be provided for Joint Factor Analysis. The :py:class:`bob.learn.em.ISVMachine` carries information about the speaker factors y and z, whereas a :py:class:`bob.learn.em.JFABase` carries information about the matrices U, V and D." - "References: [Vogt2008,McCool2013]", + "A ISVMachine. An attached :py:class:`bob.learn.em.ISVBase` should be provided for Joint Factor Analysis. The :py:class:`bob.learn.em.ISVMachine` carries information about the speaker factors :math:`y` and :math:`z`, whereas a :py:class:`bob.learn.em.JFABase` carries information about the matrices :math:`U` and :math:`D`.\n\n" + "References: [Vogt2008_ [McCool2013]_", "" ).add_constructor( bob::extension::FunctionDoc( @@ -29,7 +29,7 @@ static auto ISVMachine_doc = bob::extension::ClassDoc( .add_prototype("other","") .add_prototype("hdf5","") - .add_parameter("isv", ":py:class:`bob.learn.em.ISVBase`", "The ISVBase associated with this machine") + .add_parameter("isv_base", ":py:class:`bob.learn.em.ISVBase`", "The ISVBase associated with this machine") .add_parameter("other", ":py:class:`bob.learn.em.ISVMachine`", "A ISVMachine object to be copied.") .add_parameter("hdf5", ":py:class:`bob.io.base.HDF5File`", "An HDF5 file open for reading") @@ -187,7 +187,7 @@ PyObject* PyBobLearnEMISVMachine_getSupervectorLength(PyBobLearnEMISVMachineObje static auto Z = bob::extension::VariableDoc( "z", "array_like <float, 1D>", - "Returns the z speaker factor. Eq (31) from [McCool2013]", + "Returns the :math:`z` speaker factor. Eq (31) from [McCool2013]_", "" ); PyObject* PyBobLearnEMISVMachine_getZ(PyBobLearnEMISVMachineObject* self, void*){ @@ -215,8 +215,8 @@ int PyBobLearnEMISVMachine_setZ(PyBobLearnEMISVMachineObject* self, PyObject* va static auto X = bob::extension::VariableDoc( "x", "array_like <float, 1D>", - "Returns the X session factor. Eq (29) from [McCool2013]", - "The latent variable x (last one computed). This is a feature provided for convenience, but this attribute is not 'part' of the machine. The session latent variable x is indeed not class-specific, but depends on the sample considered. Furthermore, it is not saved into the machine or used when comparing machines." + "Returns the :math:`X` session factor. Eq (29) from [McCool2013]_", + "The latent variable x (last one computed). This is a feature provided for convenience, but this attribute is not 'part' of the machine. The session latent variable :math:`x` is indeed not class-specific, but depends on the sample considered. Furthermore, it is not saved into the machine or used when comparing machines." ); PyObject* PyBobLearnEMISVMachine_getX(PyBobLearnEMISVMachineObject* self, void*){ BOB_TRY @@ -404,7 +404,7 @@ static PyObject* PyBobLearnEMISVMachine_IsSimilarTo(PyBobLearnEMISVMachineObject static auto estimate_x = bob::extension::FunctionDoc( "estimate_x", "Estimates the session offset x (LPT assumption) given GMM statistics.", - "Estimates x from the GMM statistics considering the LPT assumption, that is the latent session variable x is approximated using the UBM", + "Estimates :math:`x` from the GMM statistics considering the LPT assumption, that is the latent session variable :math:`x` is approximated using the UBM", true ) .add_prototype("stats,input") diff --git a/bob/learn/em/ivector_machine.cpp b/bob/learn/em/ivector_machine.cpp index 95badbc..504ab15 100644 --- a/bob/learn/em/ivector_machine.cpp +++ b/bob/learn/em/ivector_machine.cpp @@ -15,8 +15,8 @@ static auto IVectorMachine_doc = bob::extension::ClassDoc( BOB_EXT_MODULE_PREFIX ".IVectorMachine", - "An IVectorMachine consists of a Total Variability subspace \f$T\f$ and allows the extraction of IVector" - "References: [Dehak2010]", + "An IVectorMachine consists of a Total Variability subspace :math:`T` and allows the extraction of IVector" + "References: [Dehak2010]_", "" ).add_constructor( bob::extension::FunctionDoc( @@ -202,7 +202,7 @@ PyObject* PyBobLearnEMIVectorMachine_getSupervectorLength(PyBobLearnEMIVectorMac static auto T = bob::extension::VariableDoc( "t", "array_like <float, 2D>", - "Returns the Total Variability matrix", + "Returns the Total Variability matrix, :math:`T`", "" ); PyObject* PyBobLearnEMIVectorMachine_getT(PyBobLearnEMIVectorMachineObject* self, void*){ @@ -289,7 +289,7 @@ int PyBobLearnEMIVectorMachine_setVarianceThreshold(PyBobLearnEMIVectorMachineOb static auto ubm = bob::extension::VariableDoc( "ubm", ":py:class:`bob.learn.em.GMMMachine`", - "Returns the UBM (Universal Background Model", + "Returns the UBM (Universal Background Model)", "" ); PyObject* PyBobLearnEMIVectorMachine_getUBM(PyBobLearnEMIVectorMachineObject* self, void*){ diff --git a/bob/learn/em/jfa_base.cpp b/bob/learn/em/jfa_base.cpp index d5c3d9b..54eaa78 100644 --- a/bob/learn/em/jfa_base.cpp +++ b/bob/learn/em/jfa_base.cpp @@ -15,8 +15,8 @@ static auto JFABase_doc = bob::extension::ClassDoc( BOB_EXT_MODULE_PREFIX ".JFABase", - "A JFABase instance can be seen as a container for U, V and D when performing Joint Factor Analysis (JFA)." - "References: [Vogt2008,McCool2013]", + "A JFABase instance can be seen as a container for :math:`U`, :math:`V` and :math:`D` when performing Joint Factor Analysis (JFA).\n\n" + "References: [Vogt2008]_ [McCool2013]_", "" ).add_constructor( bob::extension::FunctionDoc( @@ -25,14 +25,14 @@ static auto JFABase_doc = bob::extension::ClassDoc( "", true ) - .add_prototype("gmm,ru,rv","") + .add_prototype("ubm,ru,rv","") .add_prototype("other","") .add_prototype("hdf5","") .add_prototype("","") - .add_parameter("gmm", ":py:class:`bob.learn.em.GMMMachine`", "The Universal Background Model.") - .add_parameter("ru", "int", "Size of U (Within client variation matrix). In the end the U matrix will have (number_of_gaussians * feature_dimension x ru)") - .add_parameter("rv", "int", "Size of V (Between client variation matrix). In the end the U matrix will have (number_of_gaussians * feature_dimension x rv)") + .add_parameter("ubm", ":py:class:`bob.learn.em.GMMMachine`", "The Universal Background Model.") + .add_parameter("ru", "int", "Size of :math:`U` (Within client variation matrix). In the end the U matrix will have (#gaussians * #feature_dimension x ru)") + .add_parameter("rv", "int", "Size of :math:`V` (Between client variation matrix). In the end the U matrix will have (#gaussians * #feature_dimension x rv)") .add_parameter("other", ":py:class:`bob.learn.em.JFABase`", "A JFABase object to be copied.") .add_parameter("hdf5", ":py:class:`bob.io.base.HDF5File`", "An HDF5 file open for reading") @@ -176,7 +176,7 @@ int PyBobLearnEMJFABase_Check(PyObject* o) { static auto shape = bob::extension::VariableDoc( "shape", "(int,int, int, int)", - "A tuple that represents the number of gaussians, dimensionality of each Gaussian, dimensionality of the rU (within client variability matrix) and dimensionality of the rV (between client variability matrix) ``(#Gaussians, #Inputs, #rU, #rV)``.", + "A tuple that represents the number of gaussians, dimensionality of each Gaussian, dimensionality of the :math:`rU` (within client variability matrix) and dimensionality of the :math:`rV` (between client variability matrix) ``(#Gaussians, #Inputs, #rU, #rV)``.", "" ); PyObject* PyBobLearnEMJFABase_getShape(PyBobLearnEMJFABaseObject* self, void*) { @@ -206,7 +206,7 @@ PyObject* PyBobLearnEMJFABase_getSupervectorLength(PyBobLearnEMJFABaseObject* se static auto U = bob::extension::VariableDoc( "u", "array_like <float, 2D>", - "Returns the U matrix (within client variability matrix)", + "Returns the :math:`U` matrix (within client variability matrix)", "" ); PyObject* PyBobLearnEMJFABase_getU(PyBobLearnEMJFABaseObject* self, void*){ @@ -233,7 +233,7 @@ int PyBobLearnEMJFABase_setU(PyBobLearnEMJFABaseObject* self, PyObject* value, v static auto V = bob::extension::VariableDoc( "v", "array_like <float, 2D>", - "Returns the V matrix (between client variability matrix)", + "Returns the :math:`V` matrix (between client variability matrix)", "" ); PyObject* PyBobLearnEMJFABase_getV(PyBobLearnEMJFABaseObject* self, void*){ @@ -261,7 +261,7 @@ int PyBobLearnEMJFABase_setV(PyBobLearnEMJFABaseObject* self, PyObject* value, v static auto D = bob::extension::VariableDoc( "d", "array_like <float, 1D>", - "Returns the diagonal matrix diag(d) (as a 1D vector)", + "Returns the diagonal matrix :math:`diag(d)` (as a 1D vector)", "" ); PyObject* PyBobLearnEMJFABase_getD(PyBobLearnEMJFABaseObject* self, void*){ @@ -477,8 +477,8 @@ static auto resize = bob::extension::FunctionDoc( true ) .add_prototype("rU,rV") -.add_parameter("rU", "int", "Size of U (Within client variation matrix)") -.add_parameter("rV", "int", "Size of V (Between client variation matrix)"); +.add_parameter("rU", "int", "Size of :math:`U` (Within client variation matrix)") +.add_parameter("rV", "int", "Size of :math:`V` (Between client variation matrix)"); static PyObject* PyBobLearnEMJFABase_resize(PyBobLearnEMJFABaseObject* self, PyObject* args, PyObject* kwargs) { BOB_TRY diff --git a/bob/learn/em/jfa_machine.cpp b/bob/learn/em/jfa_machine.cpp index 5c78b6b..48ffe3a 100644 --- a/bob/learn/em/jfa_machine.cpp +++ b/bob/learn/em/jfa_machine.cpp @@ -15,8 +15,8 @@ static auto JFAMachine_doc = bob::extension::ClassDoc( BOB_EXT_MODULE_PREFIX ".JFAMachine", - "A JFAMachine. An attached :py:class:`bob.learn.em.JFABase` should be provided for Joint Factor Analysis. The :py:class:`bob.learn.em.JFAMachine` carries information about the speaker factors y and z, whereas a :py:class:`bob.learn.em.JFABase` carries information about the matrices U, V and D." - "References: [Vogt2008,McCool2013]", + "A JFAMachine. An attached :py:class:`bob.learn.em.JFABase` should be provided for Joint Factor Analysis. The :py:class:`bob.learn.em.JFAMachine` carries information about the speaker factors :math:`y` and :math:`z`, whereas a :py:class:`bob.learn.em.JFABase` carries information about the matrices :math:`U`, :math:`V` and :math:`D`.\n\n" + "References: [Vogt2008]_ [McCool2013]_", "" ).add_constructor( bob::extension::FunctionDoc( @@ -29,7 +29,7 @@ static auto JFAMachine_doc = bob::extension::ClassDoc( .add_prototype("other","") .add_prototype("hdf5","") - .add_parameter("jfa", ":py:class:`bob.learn.em.JFABase`", "The JFABase associated with this machine") + .add_parameter("jfa_base", ":py:class:`bob.learn.em.JFABase`", "The JFABase associated with this machine") .add_parameter("other", ":py:class:`bob.learn.em.JFAMachine`", "A JFAMachine object to be copied.") .add_parameter("hdf5", ":py:class:`bob.io.base.HDF5File`", "An HDF5 file open for reading") @@ -188,7 +188,7 @@ PyObject* PyBobLearnEMJFAMachine_getSupervectorLength(PyBobLearnEMJFAMachineObje static auto Y = bob::extension::VariableDoc( "y", "array_like <float, 1D>", - "Returns the y speaker factor. Eq (30) from [McCool2013]", + "Returns the :math:`y` speaker factor. Eq (30) from [McCool2013]_", "" ); PyObject* PyBobLearnEMJFAMachine_getY(PyBobLearnEMJFAMachineObject* self, void*){ @@ -216,7 +216,7 @@ int PyBobLearnEMJFAMachine_setY(PyBobLearnEMJFAMachineObject* self, PyObject* va static auto Z = bob::extension::VariableDoc( "z", "array_like <float, 1D>", - "Returns the z speaker factor. Eq (31) from [McCool2013]", + "Returns the :math:`z` speaker factor. Eq (31) from [McCool2013]_", "" ); PyObject* PyBobLearnEMJFAMachine_getZ(PyBobLearnEMJFAMachineObject* self, void*){ @@ -244,8 +244,8 @@ int PyBobLearnEMJFAMachine_setZ(PyBobLearnEMJFAMachineObject* self, PyObject* va static auto X = bob::extension::VariableDoc( "x", "array_like <float, 1D>", - "Returns the X session factor. Eq (29) from [McCool2013]", - "The latent variable x (last one computed). This is a feature provided for convenience, but this attribute is not 'part' of the machine. The session latent variable x is indeed not class-specific, but depends on the sample considered. Furthermore, it is not saved into the machine or used when comparing machines." + "Returns the :math:`X` session factor. Eq (29) from [McCool2013]_", + "The latent variable :math:`x` (last one computed). This is a feature provided for convenience, but this attribute is not 'part' of the machine. The session latent variable :math:`x` is indeed not class-specific, but depends on the sample considered. Furthermore, it is not saved into the machine or used when comparing machines." ); PyObject* PyBobLearnEMJFAMachine_getX(PyBobLearnEMJFAMachineObject* self, void*){ BOB_TRY diff --git a/bob/learn/em/plda_base.cpp b/bob/learn/em/plda_base.cpp index c30cab6..2c7bafb 100644 --- a/bob/learn/em/plda_base.cpp +++ b/bob/learn/em/plda_base.cpp @@ -36,9 +36,9 @@ static auto PLDABase_doc = bob::extension::ClassDoc( .add_prototype("other","") .add_prototype("hdf5","") - .add_parameter("dim_D", "int", "Dimensionality of the feature vector.") - .add_parameter("dim_F", "int", "Size of :math:`F`(between class variantion matrix).") - .add_parameter("dim_G", "int", "Size of :math:`G`(within class variantion matrix).") + .add_parameter("dim_d", "int", "Dimensionality of the feature vector.") + .add_parameter("dim_f", "int", "Size of :math:`F` (between class variantion matrix).") + .add_parameter("dim_g", "int", "Size of :math:`G` (within class variantion matrix).") .add_parameter("variance_threshold", "double", "The smallest possible value of the variance (Ignored if set to 0.)") .add_parameter("other", ":py:class:`bob.learn.em.PLDABase`", "A PLDABase object to be copied.") @@ -190,7 +190,7 @@ int PyBobLearnEMPLDABase_Check(PyObject* o) { static auto shape = bob::extension::VariableDoc( "shape", "(int,int, int)", - "A tuple that represents the dimensionality of the feature vector :math:`dim_d`, the :math:`F` matrix and the :math:`G` matrix.", + "A tuple that represents the dimensionality of the feature vector dim_d, the :math:`F` matrix and the :math:`G` matrix.", "" ); PyObject* PyBobLearnEMPLDABase_getShape(PyBobLearnEMPLDABaseObject* self, void*) { @@ -259,7 +259,7 @@ int PyBobLearnEMPLDABase_setG(PyBobLearnEMPLDABaseObject* self, PyObject* value, static auto mu = bob::extension::VariableDoc( "mu", "array_like <float, 1D>", - "Gets the :math:`mu` mean vector of the PLDA model", + "Gets the :math:`\\mu` mean vector of the PLDA model", "" ); PyObject* PyBobLearnEMPLDABase_getMu(PyBobLearnEMPLDABaseObject* self, void*){ @@ -626,14 +626,14 @@ static PyObject* PyBobLearnEMPLDABase_IsSimilarTo(PyBobLearnEMPLDABaseObject* se /*** resize ***/ static auto resize = bob::extension::FunctionDoc( "resize", - "Resizes the dimensionality of the PLDA model. Paramaters :math:`\\mu`, :math:`\\F`, :math:`\\G` and :math:`\\Sigma` are reinitialized.", + "Resizes the dimensionality of the PLDA model. Paramaters :math:`\\mu`, :math:`F`, :math:`G` and :math:`\\Sigma` are reinitialized.", 0, true ) -.add_prototype("dim_D,dim_F,dim_G") -.add_parameter("dim_D", "int", "Dimensionality of the feature vector.") -.add_parameter("dim_F", "int", "Size of :math:`F`(between class variantion matrix).") -.add_parameter("dim_G", "int", "Size of :math:`F`(within class variantion matrix)."); +.add_prototype("dim_d,dim_f,dim_g") +.add_parameter("dim_d", "int", "Dimensionality of the feature vector.") +.add_parameter("dim_f", "int", "Size of :math:`F` (between class variantion matrix).") +.add_parameter("dim_g", "int", "Size of :math:`G` (within class variantion matrix)."); static PyObject* PyBobLearnEMPLDABase_resize(PyBobLearnEMPLDABaseObject* self, PyObject* args, PyObject* kwargs) { BOB_TRY @@ -645,17 +645,17 @@ static PyObject* PyBobLearnEMPLDABase_resize(PyBobLearnEMPLDABaseObject* self, P if (!PyArg_ParseTupleAndKeywords(args, kwargs, "iii", kwlist, &dim_D, &dim_F, &dim_G)) Py_RETURN_NONE; if(dim_D <= 0){ - PyErr_Format(PyExc_TypeError, "dim_D argument must be greater than or equal to one"); + PyErr_Format(PyExc_TypeError, "dim_d argument must be greater than or equal to one"); Py_RETURN_NONE; } if(dim_F <= 0){ - PyErr_Format(PyExc_TypeError, "dim_F argument must be greater than or equal to one"); + PyErr_Format(PyExc_TypeError, "dim_f argument must be greater than or equal to one"); Py_RETURN_NONE; } if(dim_G <= 0){ - PyErr_Format(PyExc_TypeError, "dim_G argument must be greater than or equal to one"); + PyErr_Format(PyExc_TypeError, "dim_g argument must be greater than or equal to one"); Py_RETURN_NONE; } @@ -671,7 +671,7 @@ static PyObject* PyBobLearnEMPLDABase_resize(PyBobLearnEMPLDABaseObject* self, P static auto get_gamma = bob::extension::FunctionDoc( "get_gamma", "Gets the :math:`\\gamma_a` matrix for a given :math:`a` (number of samples). " - ":math:`gamma_{a} = (Id + a F^T \beta F)^{-1} = \\mathcal{F}_{a}`", + ":math:`\\gamma_{a}=(Id + a F^T \\beta F)^{-1} = \\mathcal{F}_{a}`", 0, true ) @@ -694,8 +694,8 @@ static PyObject* PyBobLearnEMPLDABase_getGamma(PyBobLearnEMPLDABaseObject* self, /***** has_gamma *****/ static auto has_gamma = bob::extension::FunctionDoc( "has_gamma", - "Tells if the :math:`gamma_a` matrix for a given a (number of samples) exists. " - ":math:`gamma_a=(Id + a F^T \\beta F)^{-1}`", + "Tells if the :math:`\\gamma_a` matrix for a given a (number of samples) exists. " + ":math:`\\gamma_a=(Id + aF^T \\beta F)^{-1}`", 0, true ) @@ -720,8 +720,8 @@ static PyObject* PyBobLearnEMPLDABase_hasGamma(PyBobLearnEMPLDABaseObject* self, /***** compute_gamma *****/ static auto compute_gamma = bob::extension::FunctionDoc( "compute_gamma", - "Tells if the :math:`gamma_a` matrix for a given a (number of samples) exists." - ":math:`gamma_a = (Id + a F^T \\beta F)^{-1}`", + "Tells if the :math:`\\gamma_a` matrix for a given a (number of samples) exists." + " :math:`\\gamma_a=(Id + a F^T \\beta F)^{-1}`", 0, true ) @@ -747,7 +747,7 @@ static PyObject* PyBobLearnEMPLDABase_computeGamma(PyBobLearnEMPLDABaseObject* s static auto get_add_gamma = bob::extension::FunctionDoc( "get_add_gamma", "Gets the :math:`gamma_a` matrix for a given :math:`f_a` (number of samples)." - ":math:`gamma_a = (Id + a F^T \\beta F)^{-1} = \\mathcal{F}_{a}`." + " :math:`\\gamma_a=(Id + a F^T \\beta F)^{-1} =\\mathcal{F}_{a}`." "Tries to find it from the base machine and then from this machine.", 0, true @@ -797,7 +797,7 @@ static PyObject* PyBobLearnEMPLDABase_hasLogLikeConstTerm(PyBobLearnEMPLDABaseOb /***** compute_log_like_const_term" *****/ static auto compute_log_like_const_term = bob::extension::FunctionDoc( "compute_log_like_const_term", - "Computes the log likelihood constant term for a given :math:`a` (number of samples), given the provided :math:`gamma_a` matrix. " + "Computes the log likelihood constant term for a given :math:`a` (number of samples), given the provided :math:`\\gamma_a` matrix. " ":math:`l_{a} = \\frac{a}{2} ( -D log(2\\pi) -log|\\Sigma| +log|\\alpha| +log|\\gamma_a|)`", 0, @@ -851,7 +851,7 @@ static PyObject* PyBobLearnEMPLDABase_getAddLogLikeConstTerm(PyBobLearnEMPLDABas static auto get_log_like_const_term = bob::extension::FunctionDoc( "get_log_like_const_term", "Gets the log likelihood constant term for a given :math:`a` (number of samples). " - ":math:`l_{a} = \\frac{a}{2} ( -D log(2\\pi) -log|\\Sigma| +log|\\alpha| +log|\\gamma_a|)", + ":math:`l_{a}=\\frac{a}{2} ( -D log(2\\pi) -log|\\Sigma| +log|\\alpha| +log|\\gamma_a|)`", 0, true ) @@ -873,10 +873,11 @@ static PyObject* PyBobLearnEMPLDABase_getLogLikeConstTerm(PyBobLearnEMPLDABaseOb /***** clear_maps *****/ static auto clear_maps = bob::extension::FunctionDoc( "clear_maps", - "Clears the maps (:math:`gamma_a` and loglike_constterm_a).", + "Clears the maps (:math:`\\gamma_a` and loglike_constterm_a).", 0, true -); +) +.add_prototype("",""); static PyObject* PyBobLearnEMPLDABase_clearMaps(PyBobLearnEMPLDABaseObject* self, PyObject* args, PyObject* kwargs) { BOB_TRY diff --git a/bob/learn/em/plda_machine.cpp b/bob/learn/em/plda_machine.cpp index ec72f56..dc14d35 100644 --- a/bob/learn/em/plda_machine.cpp +++ b/bob/learn/em/plda_machine.cpp @@ -19,8 +19,8 @@ static auto PLDAMachine_doc = bob::extension::ClassDoc( BOB_EXT_MODULE_PREFIX ".PLDAMachine", "This class is a container for an enrolled identity/class. It contains information extracted from the enrollment samples. " - "It should be used in combination with a PLDABase instance." - "References: [ElShafey2014,PrinceElder2007,LiFu2012]", + "It should be used in combination with a PLDABase instance.\n\n" + "References: [ElShafey2014]_, [PrinceElder2007]_, [LiFu2012]_", "" ).add_constructor( bob::extension::FunctionDoc( @@ -35,7 +35,7 @@ static auto PLDAMachine_doc = bob::extension::ClassDoc( .add_prototype("other","") .add_prototype("hdf5,plda_base","") - .add_parameter("plda_base", "`bob.learn.em.PLDABase`", "") + .add_parameter("plda_base", ":py:class:`bob.learn.em.PLDABase`", "") .add_parameter("other", ":py:class:`bob.learn.em.PLDAMachine`", "A PLDAMachine object to be copied.") .add_parameter("hdf5", ":py:class:`bob.io.base.HDF5File`", "An HDF5 file open for reading") @@ -164,7 +164,7 @@ int PyBobLearnEMPLDAMachine_Check(PyObject* o) { static auto shape = bob::extension::VariableDoc( "shape", "(int,int, int)", - "A tuple that represents the dimensionality of the feature vector :math:`dim_d`, the :math:`F` matrix and the :math:`G` matrix.", + "A tuple that represents the dimensionality of the feature vector dim_d, the :math:`F` matrix and the :math:`G` matrix.", "" ); PyObject* PyBobLearnEMPLDAMachine_getShape(PyBobLearnEMPLDAMachineObject* self, void*) { @@ -273,7 +273,7 @@ int PyBobLearnEMPLDAMachine_setPLDABase(PyBobLearnEMPLDAMachineObject* self, PyO static auto weighted_sum = bob::extension::VariableDoc( "weighted_sum", "array_like <float, 1D>", - "Get/Set :math:``\\sum_{i} F^T \\beta x_{i}` value", + "Get/Set :math:`\\sum_{i} F^T \\beta x_{i}` value", "" ); static PyObject* PyBobLearnEMPLDAMachine_getWeightedSum(PyBobLearnEMPLDAMachineObject* self, PyObject* args, PyObject* kwargs) { @@ -464,7 +464,7 @@ static PyObject* PyBobLearnEMPLDAMachine_IsSimilarTo(PyBobLearnEMPLDAMachineObje static auto get_gamma = bob::extension::FunctionDoc( "get_gamma", "Gets the :math:`\\gamma_a` matrix for a given :math:`a` (number of samples). " - ":math:`gamma_{a} = (Id + a F^T \beta F)^{-1} = \\mathcal{F}_{a}`", + ":math:`\\gamma_{a}=(Id + a F^T \\beta F)^{-1}= \\mathcal{F}_{a}`", 0, true ) @@ -487,8 +487,8 @@ static PyObject* PyBobLearnEMPLDAMachine_getGamma(PyBobLearnEMPLDAMachineObject* /***** has_gamma *****/ static auto has_gamma = bob::extension::FunctionDoc( "has_gamma", - "Tells if the :math:`gamma_a` matrix for a given a (number of samples) exists. " - ":math:`gamma_a=(Id + a F^T \\beta F)^{-1}`", + "Tells if the :math:`\\gamma_a` matrix for a given a (number of samples) exists. " + ":math:`\\gamma_a=(Id + a F^T \\beta F)^{-1}`", 0, true ) @@ -514,7 +514,7 @@ static PyObject* PyBobLearnEMPLDAMachine_hasGamma(PyBobLearnEMPLDAMachineObject* static auto get_add_gamma = bob::extension::FunctionDoc( "get_add_gamma", "Gets the :math:`gamma_a` matrix for a given :math:`f_a` (number of samples)." - ":math:`gamma_a = (Id + a F^T \\beta F)^{-1} = \\mathcal{F}_{a}`." + " :math:`\\gamma_a=(Id + a F^T \\beta F)^{-1} =\\mathcal{F}_{a}`." "Tries to find it from the base machine and then from this machine.", 0, true @@ -566,7 +566,7 @@ static auto get_add_log_like_const_term = bob::extension::FunctionDoc( "get_add_log_like_const_term", "Gets the log likelihood constant term for a given :math:`a` (number of samples). " - ":math:`l_{a} = \\frac{a}{2} ( -D log(2\\pi) -log|\\Sigma| +log|\\alpha| +log|\\gamma_a|)`", + ":math:`l_{a} = \\frac{a}{2} ( -D log(2\\pi) -log|\\Sigma| +log|\\alpha| +log|gamma_a|)`", 0, true ) @@ -590,7 +590,7 @@ static PyObject* PyBobLearnEMPLDAMachine_getAddLogLikeConstTerm(PyBobLearnEMPLDA static auto get_log_like_const_term = bob::extension::FunctionDoc( "get_log_like_const_term", "Gets the log likelihood constant term for a given :math:`a` (number of samples). " - ":math:`l_{a} = \\frac{a}{2} ( -D log(2\\pi) -log|\\Sigma| +log|\\alpha| +log|\\gamma_a|)", + ":math:`l_{a}=\\frac{a}{2}( -D log(2\\pi) -log|\\Sigma| +log|\\alpha| + log|\\gamma_a|)`", 0, true ) @@ -612,10 +612,11 @@ static PyObject* PyBobLearnEMPLDAMachine_getLogLikeConstTerm(PyBobLearnEMPLDAMac /***** clear_maps *****/ static auto clear_maps = bob::extension::FunctionDoc( "clear_maps", - "Clears the maps (:math:`gamma_a` and loglike_constterm_a).", + "Clears the maps (:math:`\\gamma_a` and loglike_constterm_a).", 0, true -); +) +.add_prototype("",""); static PyObject* PyBobLearnEMPLDAMachine_clearMaps(PyBobLearnEMPLDAMachineObject* self, PyObject* args, PyObject* kwargs) { BOB_TRY -- GitLab