diff --git a/bob/learn/misc/main.cpp b/bob/learn/misc/main.cpp index 0627cfb8cba5fcecd5f92ada95af4a8dad094cb2..0bb13e2a03cbc7b732276536657074763806ba5b 100644 --- a/bob/learn/misc/main.cpp +++ b/bob/learn/misc/main.cpp @@ -10,7 +10,27 @@ #endif #include "main.h" -static PyMethodDef module_methods[] = {}; +static PyMethodDef module_methods[] = { + { + zt_norm.name(), + (PyCFunction)PyBobLearnMisc_ztNorm, + METH_VARARGS|METH_KEYWORDS, + zt_norm.doc() + }, + { + t_norm.name(), + (PyCFunction)PyBobLearnMisc_tNorm, + METH_VARARGS|METH_KEYWORDS, + t_norm.doc() + }, + { + z_norm.name(), + (PyCFunction)PyBobLearnMisc_zNorm, + METH_VARARGS|METH_KEYWORDS, + z_norm.doc() + }, + {0}//Sentinel +}; PyDoc_STRVAR(module_docstr, "Bob EM based Machine Learning Routines"); diff --git a/bob/learn/misc/main.h b/bob/learn/misc/main.h index 45759fa765565b044489625da3811b192d000c44..a500855b07d8c2a0a68963c41a0adf2ad391e6d5 100644 --- a/bob/learn/misc/main.h +++ b/bob/learn/misc/main.h @@ -34,6 +34,9 @@ #include <bob.learn.misc/ISVMachine.h> #include <bob.learn.misc/IVectorMachine.h> #include <bob.learn.misc/PLDAMachine.h> +#include <bob.learn.misc/ZTNorm.h> + +#include "ztnorm.cpp" #if PY_VERSION_HEX >= 0x03000000 diff --git a/bob/learn/misc/test_ztnorm.py b/bob/learn/misc/test_ztnorm.py index 40d7efa630ffe05ffd3305df8df4a5420b87c10d..ee74a446998feded7ff624c5645db1eb4c240675 100644 --- a/bob/learn/misc/test_ztnorm.py +++ b/bob/learn/misc/test_ztnorm.py @@ -14,7 +14,8 @@ import numpy from bob.io.base.test_utils import datafile import bob.io.base -from . import znorm, tnorm, ztnorm +#from . import znorm, tnorm, ztnorm +import bob.learn.misc def sameValue(vect_A, vect_B): sameMatrix = numpy.zeros((vect_A.shape[0], vect_B.shape[0]), 'bool') @@ -59,8 +60,8 @@ def test_ztnorm_simple(): znorm_id = numpy.array([1, 2, 3, 4],'uint32') # 2x1 tnorm_id = numpy.array([1, 5],'uint32') - - scores = ztnorm(my_A, my_B, my_C, my_D, + + scores = bob.learn.misc.ztnorm(my_A, my_B, my_C, my_D, sameValue(tnorm_id, znorm_id)) ref_scores = numpy.array([[-4.45473107e+00, -3.29289322e+00, -1.50519101e+01, -8.42086557e-01, 6.46544511e-03], [-8.27619927e-01, 7.07106781e-01, 1.13757710e+01, 2.01641412e+00, 7.63765080e-01], [ 2.52913570e+00, 2.70710678e+00, 1.24400233e+01, 7.07106781e-01, 6.46544511e-03]], 'float64') @@ -75,7 +76,7 @@ def test_ztnorm_big(): # ZT-Norm ref_scores = bob.io.base.load(datafile("ztnorm_result.hdf5", __name__)) - scores = ztnorm(my_A, my_B, my_C, my_D) + scores = bob.learn.misc.ztnorm(my_A, my_B, my_C, my_D) assert (abs(scores - ref_scores) < 1e-7).all() # T-Norm @@ -101,7 +102,7 @@ def test_tnorm_simple(): assert (abs(zC - zC_py) < 1e-7).all() empty = numpy.zeros(shape=(0,0), dtype=numpy.float64) - zC = ztnorm(my_A, empty, my_C, empty) + zC = bob.learn.misc.ztnorm(my_A, empty, my_C, empty) assert (abs(zC - zC_py) < 1e-7).all() def test_znorm_simple(): @@ -117,5 +118,5 @@ def test_znorm_simple(): assert (abs(zA - zA_py) < 1e-7).all() empty = numpy.zeros(shape=(0,0), dtype=numpy.float64) - zA = ztnorm(my_A, my_B, empty, empty) + zA = bob.learn.misc.ztnorm(my_A, my_B, empty, empty) assert (abs(zA - zA_py) < 1e-7).all() diff --git a/bob/learn/misc/ztnorm.cpp b/bob/learn/misc/ztnorm.cpp new file mode 100644 index 0000000000000000000000000000000000000000..fa8ec364bbd431436f07bd79ec6783ea8344012c --- /dev/null +++ b/bob/learn/misc/ztnorm.cpp @@ -0,0 +1,151 @@ +/** + * @author Tiago de Freitas Pereira <tiago.pereira@idiap.ch> + * @date Sat 31 Jan 02:46:48 2015 + * + * @brief Python API for bob::learn::em + * + * Copyright (C) 2011-2014 Idiap Research Institute, Martigny, Switzerland + */ + +#include "main.h" + +#ifndef BOB_LEARN_MISC_ZTNORM_BIND +#define BOB_LEARN_MISC_ZTNORM_BIND + +/*** zt_norm ***/ +static auto zt_norm = bob::extension::FunctionDoc( + "ztnorm", + "", + 0, + true +) +.add_prototype("rawscores_probes_vs_models,rawscores_zprobes_vs_models,rawscores_probes_vs_tmodels,rawscores_zprobes_vs_tmodels,mask_zprobes_vs_tmodels_istruetrial", "output") +.add_parameter("rawscores_probes_vs_models", "array_like <float, 2D>", "") +.add_parameter("rawscores_zprobes_vs_models", "array_like <float, 2D>", "") +.add_parameter("rawscores_probes_vs_tmodels", "array_like <float, 2D>", "") +.add_parameter("rawscores_zprobes_vs_tmodels", "array_like <float, 2D>", "") +.add_parameter("mask_zprobes_vs_tmodels_istruetrial", "array_like <float, 2D>", "") +.add_return("output","array_like <float, 2D>",""); +static PyObject* PyBobLearnMisc_ztNorm(PyObject*, PyObject* args, PyObject* kwargs) { + + char** kwlist = zt_norm.kwlist(0); + + PyBlitzArrayObject *rawscores_probes_vs_models_o, *rawscores_zprobes_vs_models_o, *rawscores_probes_vs_tmodels_o, + *rawscores_zprobes_vs_tmodels_o, *mask_zprobes_vs_tmodels_istruetrial_o; + + if (!PyArg_ParseTupleAndKeywords(args, kwargs, "O&O&O&O&|O&", kwlist, &PyBlitzArray_Converter, &rawscores_probes_vs_models_o, + &PyBlitzArray_Converter, &rawscores_zprobes_vs_models_o, + &PyBlitzArray_Converter, &rawscores_probes_vs_tmodels_o, + &PyBlitzArray_Converter, &rawscores_zprobes_vs_tmodels_o, + &PyBlitzArray_Converter, &mask_zprobes_vs_tmodels_istruetrial_o)){ + zt_norm.print_usage(); + Py_RETURN_NONE; + } + + // get the number of command line arguments + auto rawscores_probes_vs_models_ = make_safe(rawscores_probes_vs_models_o); + auto rawscores_zprobes_vs_models_ = make_safe(rawscores_zprobes_vs_models_o); + auto rawscores_probes_vs_tmodels_ = make_safe(rawscores_probes_vs_tmodels_o); + auto rawscores_zprobes_vs_tmodels_ = make_safe(rawscores_zprobes_vs_tmodels_o); + //auto mask_zprobes_vs_tmodels_istruetrial_ = make_safe(mask_zprobes_vs_tmodels_istruetrial_o); + + blitz::Array<double,2> rawscores_probes_vs_models = *PyBlitzArrayCxx_AsBlitz<double,2>(rawscores_probes_vs_models_o); + blitz::Array<double,2> normalized_scores = blitz::Array<double,2>(rawscores_probes_vs_models.extent(0), rawscores_probes_vs_models.extent(1)); + + int nargs = (args?PyTuple_Size(args):0) + (kwargs?PyDict_Size(kwargs):0); + + if(nargs==4) + bob::learn::misc::ztNorm(*PyBlitzArrayCxx_AsBlitz<double,2>(rawscores_probes_vs_models_o), + *PyBlitzArrayCxx_AsBlitz<double,2>(rawscores_zprobes_vs_models_o), + *PyBlitzArrayCxx_AsBlitz<double,2>(rawscores_probes_vs_tmodels_o), + *PyBlitzArrayCxx_AsBlitz<double,2>(rawscores_zprobes_vs_tmodels_o), + normalized_scores); + else + bob::learn::misc::ztNorm(*PyBlitzArrayCxx_AsBlitz<double,2>(rawscores_probes_vs_models_o), + *PyBlitzArrayCxx_AsBlitz<double,2>(rawscores_zprobes_vs_models_o), + *PyBlitzArrayCxx_AsBlitz<double,2>(rawscores_probes_vs_tmodels_o), + *PyBlitzArrayCxx_AsBlitz<double,2>(rawscores_zprobes_vs_tmodels_o), + *PyBlitzArrayCxx_AsBlitz<bool,2>(mask_zprobes_vs_tmodels_istruetrial_o), + normalized_scores); + + return PyBlitzArrayCxx_AsConstNumpy(normalized_scores); +} + + + +/*** t_norm ***/ +static auto t_norm = bob::extension::FunctionDoc( + "tnorm", + "", + 0, + true +) +.add_prototype("rawscores_probes_vs_models,rawscores_probes_vs_tmodels", "output") +.add_parameter("rawscores_probes_vs_models", "array_like <float, 2D>", "") +.add_parameter("rawscores_probes_vs_tmodels", "array_like <float, 2D>", "") +.add_return("output","array_like <float, 2D>",""); +static PyObject* PyBobLearnMisc_tNorm(PyObject*, PyObject* args, PyObject* kwargs) { + + char** kwlist = zt_norm.kwlist(0); + + PyBlitzArrayObject *rawscores_probes_vs_models_o, *rawscores_probes_vs_tmodels_o; + + if (!PyArg_ParseTupleAndKeywords(args, kwargs, "O&O&", kwlist, &PyBlitzArray_Converter, &rawscores_probes_vs_models_o, + &PyBlitzArray_Converter, &rawscores_probes_vs_tmodels_o)){ + zt_norm.print_usage(); + Py_RETURN_NONE; + } + + auto rawscores_probes_vs_models_ = make_safe(rawscores_probes_vs_models_o); + auto rawscores_probes_vs_tmodels_ = make_safe(rawscores_probes_vs_tmodels_o); + + blitz::Array<double,2> rawscores_probes_vs_models = *PyBlitzArrayCxx_AsBlitz<double,2>(rawscores_probes_vs_models_o); + blitz::Array<double,2> normalized_scores = blitz::Array<double,2>(rawscores_probes_vs_models.extent(0), rawscores_probes_vs_models.extent(1)); + + bob::learn::misc::tNorm(*PyBlitzArrayCxx_AsBlitz<double,2>(rawscores_probes_vs_models_o), + *PyBlitzArrayCxx_AsBlitz<double,2>(rawscores_probes_vs_tmodels_o), + normalized_scores); + + return PyBlitzArrayCxx_AsConstNumpy(normalized_scores); +} + + +/*** z_norm ***/ +static auto z_norm = bob::extension::FunctionDoc( + "znorm", + "", + 0, + true +) +.add_prototype("rawscores_probes_vs_models,rawscores_zprobes_vs_models", "output") +.add_parameter("rawscores_probes_vs_models", "array_like <float, 2D>", "") +.add_parameter("rawscores_zprobes_vs_models", "array_like <float, 2D>", "") +.add_return("output","array_like <float, 2D>",""); +static PyObject* PyBobLearnMisc_zNorm(PyObject*, PyObject* args, PyObject* kwargs) { + + char** kwlist = zt_norm.kwlist(0); + + PyBlitzArrayObject *rawscores_probes_vs_models_o, *rawscores_zprobes_vs_models_o; + + if (!PyArg_ParseTupleAndKeywords(args, kwargs, "O&O&", kwlist, &PyBlitzArray_Converter, &rawscores_probes_vs_models_o, + &PyBlitzArray_Converter, &rawscores_zprobes_vs_models_o)){ + zt_norm.print_usage(); + Py_RETURN_NONE; + } + + auto rawscores_probes_vs_models_ = make_safe(rawscores_probes_vs_models_o); + auto rawscores_zprobes_vs_models_ = make_safe(rawscores_zprobes_vs_models_o); + + blitz::Array<double,2> rawscores_probes_vs_models = *PyBlitzArrayCxx_AsBlitz<double,2>(rawscores_probes_vs_models_o); + blitz::Array<double,2> normalized_scores = blitz::Array<double,2>(rawscores_probes_vs_models.extent(0), rawscores_probes_vs_models.extent(1)); + + + bob::learn::misc::zNorm(*PyBlitzArrayCxx_AsBlitz<double,2>(rawscores_probes_vs_models_o), + *PyBlitzArrayCxx_AsBlitz<double,2>(rawscores_zprobes_vs_models_o), + normalized_scores); + + return PyBlitzArrayCxx_AsConstNumpy(normalized_scores); +} + +#endif + diff --git a/setup.py b/setup.py index 5fe11fe0703fb87dcaaf24eb2ffe8e31e766aad6..903a69ca9f4488c7d13025509cd334e4d4a75029 100644 --- a/setup.py +++ b/setup.py @@ -61,7 +61,7 @@ setup( "bob/learn/misc/cpp/KMeansMachine.cpp", "bob/learn/misc/cpp/LinearScoring.cpp", "bob/learn/misc/cpp/PLDAMachine.cpp", - #"bob/learn/misc/cpp/ZTNorm.cpp", + "bob/learn/misc/cpp/ZTNorm.cpp", "bob/learn/misc/cpp/FABase.cpp", "bob/learn/misc/cpp/JFABase.cpp", @@ -120,7 +120,8 @@ setup( "bob/learn/misc/ivector_machine.cpp", "bob/learn/misc/plda_base.cpp", - "bob/learn/misc/plda_machine.cpp", + "bob/learn/misc/plda_machine.cpp", + "bob/learn/misc/ztnorm.cpp", "bob/learn/misc/main.cpp", ],