diff --git a/bob/learn/misc/main.cpp b/bob/learn/misc/main.cpp
index 0627cfb8cba5fcecd5f92ada95af4a8dad094cb2..0bb13e2a03cbc7b732276536657074763806ba5b 100644
--- a/bob/learn/misc/main.cpp
+++ b/bob/learn/misc/main.cpp
@@ -10,7 +10,27 @@
 #endif
 #include "main.h"
 
-static PyMethodDef module_methods[] = {};
+static PyMethodDef module_methods[] = {
+  {
+    zt_norm.name(),
+    (PyCFunction)PyBobLearnMisc_ztNorm,
+    METH_VARARGS|METH_KEYWORDS,
+    zt_norm.doc()
+  },
+  {
+    t_norm.name(),
+    (PyCFunction)PyBobLearnMisc_tNorm,
+    METH_VARARGS|METH_KEYWORDS,
+    t_norm.doc()
+  },
+  {
+    z_norm.name(),
+    (PyCFunction)PyBobLearnMisc_zNorm,
+    METH_VARARGS|METH_KEYWORDS,
+    z_norm.doc()
+  },
+  {0}//Sentinel
+};
 
 
 PyDoc_STRVAR(module_docstr, "Bob EM based Machine Learning Routines");
diff --git a/bob/learn/misc/main.h b/bob/learn/misc/main.h
index 45759fa765565b044489625da3811b192d000c44..a500855b07d8c2a0a68963c41a0adf2ad391e6d5 100644
--- a/bob/learn/misc/main.h
+++ b/bob/learn/misc/main.h
@@ -34,6 +34,9 @@
 #include <bob.learn.misc/ISVMachine.h>
 #include <bob.learn.misc/IVectorMachine.h>
 #include <bob.learn.misc/PLDAMachine.h>
+#include <bob.learn.misc/ZTNorm.h>
+
+#include "ztnorm.cpp"
 
 
 #if PY_VERSION_HEX >= 0x03000000
diff --git a/bob/learn/misc/test_ztnorm.py b/bob/learn/misc/test_ztnorm.py
index 40d7efa630ffe05ffd3305df8df4a5420b87c10d..ee74a446998feded7ff624c5645db1eb4c240675 100644
--- a/bob/learn/misc/test_ztnorm.py
+++ b/bob/learn/misc/test_ztnorm.py
@@ -14,7 +14,8 @@ import numpy
 from bob.io.base.test_utils import datafile
 import bob.io.base
 
-from . import znorm, tnorm, ztnorm
+#from . import znorm, tnorm, ztnorm
+import bob.learn.misc
 
 def sameValue(vect_A, vect_B):
   sameMatrix = numpy.zeros((vect_A.shape[0], vect_B.shape[0]), 'bool')
@@ -59,8 +60,8 @@ def test_ztnorm_simple():
   znorm_id = numpy.array([1, 2, 3, 4],'uint32')
   # 2x1
   tnorm_id = numpy.array([1, 5],'uint32')
-
-  scores = ztnorm(my_A, my_B, my_C, my_D,
+  
+  scores = bob.learn.misc.ztnorm(my_A, my_B, my_C, my_D,
       sameValue(tnorm_id, znorm_id))
 
   ref_scores = numpy.array([[-4.45473107e+00, -3.29289322e+00, -1.50519101e+01, -8.42086557e-01, 6.46544511e-03], [-8.27619927e-01,  7.07106781e-01,  1.13757710e+01,  2.01641412e+00, 7.63765080e-01], [ 2.52913570e+00,  2.70710678e+00,  1.24400233e+01,  7.07106781e-01, 6.46544511e-03]], 'float64')
@@ -75,7 +76,7 @@ def test_ztnorm_big():
 
   # ZT-Norm
   ref_scores = bob.io.base.load(datafile("ztnorm_result.hdf5", __name__))
-  scores = ztnorm(my_A, my_B, my_C, my_D)
+  scores = bob.learn.misc.ztnorm(my_A, my_B, my_C, my_D)
   assert (abs(scores - ref_scores) < 1e-7).all()
 
   # T-Norm
@@ -101,7 +102,7 @@ def test_tnorm_simple():
   assert (abs(zC - zC_py) < 1e-7).all()
 
   empty = numpy.zeros(shape=(0,0), dtype=numpy.float64)
-  zC = ztnorm(my_A, empty, my_C, empty)
+  zC = bob.learn.misc.ztnorm(my_A, empty, my_C, empty)
   assert (abs(zC - zC_py) < 1e-7).all()
 
 def test_znorm_simple():
@@ -117,5 +118,5 @@ def test_znorm_simple():
   assert (abs(zA - zA_py) < 1e-7).all()
 
   empty = numpy.zeros(shape=(0,0), dtype=numpy.float64)
-  zA = ztnorm(my_A, my_B, empty, empty)
+  zA = bob.learn.misc.ztnorm(my_A, my_B, empty, empty)
   assert (abs(zA - zA_py) < 1e-7).all()
diff --git a/bob/learn/misc/ztnorm.cpp b/bob/learn/misc/ztnorm.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..fa8ec364bbd431436f07bd79ec6783ea8344012c
--- /dev/null
+++ b/bob/learn/misc/ztnorm.cpp
@@ -0,0 +1,151 @@
+/**
+ * @author Tiago de Freitas Pereira <tiago.pereira@idiap.ch>
+ * @date Sat 31 Jan 02:46:48 2015
+ *
+ * @brief Python API for bob::learn::em
+ *
+ * Copyright (C) 2011-2014 Idiap Research Institute, Martigny, Switzerland
+ */
+
+#include "main.h"
+
+#ifndef BOB_LEARN_MISC_ZTNORM_BIND
+#define BOB_LEARN_MISC_ZTNORM_BIND
+
+/*** zt_norm ***/
+static auto zt_norm = bob::extension::FunctionDoc(
+  "ztnorm",
+  "",
+  0,
+  true
+)
+.add_prototype("rawscores_probes_vs_models,rawscores_zprobes_vs_models,rawscores_probes_vs_tmodels,rawscores_zprobes_vs_tmodels,mask_zprobes_vs_tmodels_istruetrial", "output")
+.add_parameter("rawscores_probes_vs_models", "array_like <float, 2D>", "")
+.add_parameter("rawscores_zprobes_vs_models", "array_like <float, 2D>", "")
+.add_parameter("rawscores_probes_vs_tmodels", "array_like <float, 2D>", "")
+.add_parameter("rawscores_zprobes_vs_tmodels", "array_like <float, 2D>", "")
+.add_parameter("mask_zprobes_vs_tmodels_istruetrial", "array_like <float, 2D>", "")
+.add_return("output","array_like <float, 2D>","");
+static PyObject* PyBobLearnMisc_ztNorm(PyObject*, PyObject* args, PyObject* kwargs) {
+
+  char** kwlist = zt_norm.kwlist(0);
+  
+  PyBlitzArrayObject *rawscores_probes_vs_models_o, *rawscores_zprobes_vs_models_o, *rawscores_probes_vs_tmodels_o, 
+  *rawscores_zprobes_vs_tmodels_o, *mask_zprobes_vs_tmodels_istruetrial_o;
+
+  if (!PyArg_ParseTupleAndKeywords(args, kwargs, "O&O&O&O&|O&", kwlist, &PyBlitzArray_Converter, &rawscores_probes_vs_models_o,
+                                                                       &PyBlitzArray_Converter, &rawscores_zprobes_vs_models_o,
+                                                                       &PyBlitzArray_Converter, &rawscores_probes_vs_tmodels_o,
+                                                                       &PyBlitzArray_Converter, &rawscores_zprobes_vs_tmodels_o,
+                                                                       &PyBlitzArray_Converter, &mask_zprobes_vs_tmodels_istruetrial_o)){
+    zt_norm.print_usage();
+    Py_RETURN_NONE;
+  }
+
+  // get the number of command line arguments
+  auto rawscores_probes_vs_models_          = make_safe(rawscores_probes_vs_models_o);
+  auto rawscores_zprobes_vs_models_         = make_safe(rawscores_zprobes_vs_models_o);
+  auto rawscores_probes_vs_tmodels_         = make_safe(rawscores_probes_vs_tmodels_o);
+  auto rawscores_zprobes_vs_tmodels_        = make_safe(rawscores_zprobes_vs_tmodels_o);
+  //auto mask_zprobes_vs_tmodels_istruetrial_ = make_safe(mask_zprobes_vs_tmodels_istruetrial_o);
+
+  blitz::Array<double,2>  rawscores_probes_vs_models = *PyBlitzArrayCxx_AsBlitz<double,2>(rawscores_probes_vs_models_o);
+  blitz::Array<double,2> normalized_scores = blitz::Array<double,2>(rawscores_probes_vs_models.extent(0), rawscores_probes_vs_models.extent(1));
+
+  int nargs = (args?PyTuple_Size(args):0) + (kwargs?PyDict_Size(kwargs):0);
+
+  if(nargs==4)
+    bob::learn::misc::ztNorm(*PyBlitzArrayCxx_AsBlitz<double,2>(rawscores_probes_vs_models_o),
+                             *PyBlitzArrayCxx_AsBlitz<double,2>(rawscores_zprobes_vs_models_o),
+                             *PyBlitzArrayCxx_AsBlitz<double,2>(rawscores_probes_vs_tmodels_o),
+                             *PyBlitzArrayCxx_AsBlitz<double,2>(rawscores_zprobes_vs_tmodels_o),
+                             normalized_scores);
+  else
+    bob::learn::misc::ztNorm(*PyBlitzArrayCxx_AsBlitz<double,2>(rawscores_probes_vs_models_o), 
+                             *PyBlitzArrayCxx_AsBlitz<double,2>(rawscores_zprobes_vs_models_o), 
+                             *PyBlitzArrayCxx_AsBlitz<double,2>(rawscores_probes_vs_tmodels_o), 
+                             *PyBlitzArrayCxx_AsBlitz<double,2>(rawscores_zprobes_vs_tmodels_o), 
+                             *PyBlitzArrayCxx_AsBlitz<bool,2>(mask_zprobes_vs_tmodels_istruetrial_o),
+                             normalized_scores);
+
+  return PyBlitzArrayCxx_AsConstNumpy(normalized_scores);
+}
+
+
+
+/*** t_norm ***/
+static auto t_norm = bob::extension::FunctionDoc(
+  "tnorm",
+  "",
+  0,
+  true
+)
+.add_prototype("rawscores_probes_vs_models,rawscores_probes_vs_tmodels", "output")
+.add_parameter("rawscores_probes_vs_models", "array_like <float, 2D>", "")
+.add_parameter("rawscores_probes_vs_tmodels", "array_like <float, 2D>", "")
+.add_return("output","array_like <float, 2D>","");
+static PyObject* PyBobLearnMisc_tNorm(PyObject*, PyObject* args, PyObject* kwargs) {
+
+  char** kwlist = zt_norm.kwlist(0);
+  
+  PyBlitzArrayObject *rawscores_probes_vs_models_o, *rawscores_probes_vs_tmodels_o;
+
+  if (!PyArg_ParseTupleAndKeywords(args, kwargs, "O&O&", kwlist, &PyBlitzArray_Converter, &rawscores_probes_vs_models_o,
+                                                                       &PyBlitzArray_Converter, &rawscores_probes_vs_tmodels_o)){
+    zt_norm.print_usage();
+    Py_RETURN_NONE;
+  }
+  
+  auto rawscores_probes_vs_models_          = make_safe(rawscores_probes_vs_models_o);
+  auto rawscores_probes_vs_tmodels_         = make_safe(rawscores_probes_vs_tmodels_o);
+
+  blitz::Array<double,2>  rawscores_probes_vs_models = *PyBlitzArrayCxx_AsBlitz<double,2>(rawscores_probes_vs_models_o);
+  blitz::Array<double,2> normalized_scores = blitz::Array<double,2>(rawscores_probes_vs_models.extent(0), rawscores_probes_vs_models.extent(1));
+
+  bob::learn::misc::tNorm(*PyBlitzArrayCxx_AsBlitz<double,2>(rawscores_probes_vs_models_o), 
+                           *PyBlitzArrayCxx_AsBlitz<double,2>(rawscores_probes_vs_tmodels_o),
+                           normalized_scores);
+
+  return PyBlitzArrayCxx_AsConstNumpy(normalized_scores);
+}
+
+
+/*** z_norm ***/
+static auto z_norm = bob::extension::FunctionDoc(
+  "znorm",
+  "",
+  0,
+  true
+)
+.add_prototype("rawscores_probes_vs_models,rawscores_zprobes_vs_models", "output")
+.add_parameter("rawscores_probes_vs_models", "array_like <float, 2D>", "")
+.add_parameter("rawscores_zprobes_vs_models", "array_like <float, 2D>", "")
+.add_return("output","array_like <float, 2D>","");
+static PyObject* PyBobLearnMisc_zNorm(PyObject*, PyObject* args, PyObject* kwargs) {
+
+  char** kwlist = zt_norm.kwlist(0);
+  
+  PyBlitzArrayObject *rawscores_probes_vs_models_o, *rawscores_zprobes_vs_models_o;
+
+  if (!PyArg_ParseTupleAndKeywords(args, kwargs, "O&O&", kwlist, &PyBlitzArray_Converter, &rawscores_probes_vs_models_o,
+                                                                       &PyBlitzArray_Converter, &rawscores_zprobes_vs_models_o)){
+    zt_norm.print_usage();
+    Py_RETURN_NONE;
+  }
+  
+  auto rawscores_probes_vs_models_          = make_safe(rawscores_probes_vs_models_o);
+  auto rawscores_zprobes_vs_models_         = make_safe(rawscores_zprobes_vs_models_o);
+
+  blitz::Array<double,2> rawscores_probes_vs_models = *PyBlitzArrayCxx_AsBlitz<double,2>(rawscores_probes_vs_models_o);
+  blitz::Array<double,2> normalized_scores          = blitz::Array<double,2>(rawscores_probes_vs_models.extent(0), rawscores_probes_vs_models.extent(1));
+
+
+  bob::learn::misc::zNorm(*PyBlitzArrayCxx_AsBlitz<double,2>(rawscores_probes_vs_models_o), 
+                           *PyBlitzArrayCxx_AsBlitz<double,2>(rawscores_zprobes_vs_models_o),
+                           normalized_scores);
+
+  return PyBlitzArrayCxx_AsConstNumpy(normalized_scores);
+}
+
+#endif
+
diff --git a/setup.py b/setup.py
index 5fe11fe0703fb87dcaaf24eb2ffe8e31e766aad6..903a69ca9f4488c7d13025509cd334e4d4a75029 100644
--- a/setup.py
+++ b/setup.py
@@ -61,7 +61,7 @@ setup(
           "bob/learn/misc/cpp/KMeansMachine.cpp",
           "bob/learn/misc/cpp/LinearScoring.cpp",
           "bob/learn/misc/cpp/PLDAMachine.cpp",
-          #"bob/learn/misc/cpp/ZTNorm.cpp",
+          "bob/learn/misc/cpp/ZTNorm.cpp",
 
           "bob/learn/misc/cpp/FABase.cpp",
           "bob/learn/misc/cpp/JFABase.cpp",
@@ -120,7 +120,8 @@ setup(
           
           "bob/learn/misc/ivector_machine.cpp",
           "bob/learn/misc/plda_base.cpp",
-          "bob/learn/misc/plda_machine.cpp",          
+          "bob/learn/misc/plda_machine.cpp",
+          "bob/learn/misc/ztnorm.cpp",
 
           "bob/learn/misc/main.cpp",
         ],