diff --git a/bob/learn/em/__init__.py b/bob/learn/em/__init__.py index 6d67218a8049049a3e44c11076f6f8a61a1e09dc..6c50a0a6c1a429550f2e377665a21b5d13431ce3 100644 --- a/bob/learn/em/__init__.py +++ b/bob/learn/em/__init__.py @@ -1,7 +1,7 @@ import bob.extension from .gmm import GMMMachine, GMMStats -from .k_means import KMeansMachine +from .kmeans import KMeansMachine from .linear_scoring import linear_scoring # noqa: F401 from .wccn import WCCN from .whitening import Whitening diff --git a/bob/learn/em/gmm.py b/bob/learn/em/gmm.py index 88efe81af0e7a5918cfc3f604adf3fc906aec83d..78ab69fe2de3f1506529c220c89c5bc57f1fa805 100644 --- a/bob/learn/em/gmm.py +++ b/bob/learn/em/gmm.py @@ -18,7 +18,7 @@ import numpy as np from h5py import File as HDF5File from sklearn.base import BaseEstimator -from .k_means import ( +from .kmeans import ( KMeansMachine, array_to_delayed_list, check_and_persist_dask_input, diff --git a/bob/learn/em/k_means.py b/bob/learn/em/kmeans.py similarity index 100% rename from bob/learn/em/k_means.py rename to bob/learn/em/kmeans.py diff --git a/bob/learn/em/test/test_kmeans.py b/bob/learn/em/test/test_kmeans.py index 1400b469e909973e3a7911c7e7439a55b7d87a47..8edc205ab9ecf2f6f15a8c9e4213f57cb219f804 100644 --- a/bob/learn/em/test/test_kmeans.py +++ b/bob/learn/em/test/test_kmeans.py @@ -16,7 +16,7 @@ import dask.array as da import numpy as np import scipy.spatial.distance -from bob.learn.em import KMeansMachine, k_means +from bob.learn.em import KMeansMachine, kmeans def to_numpy(*args): @@ -187,6 +187,6 @@ def test_get_centroids_distance(): oracle = scipy.spatial.distance.cdist(means, data, metric="sqeuclidean") for transform in (to_numpy,): data, means = transform(data, means) - dist = k_means.get_centroids_distance(data, means) + dist = kmeans.get_centroids_distance(data, means) np.testing.assert_allclose(dist, oracle) assert type(data) is type(dist), (type(data), type(dist))