diff --git a/doc/guide.rst b/doc/guide.rst index 998ae5419aa224b39af113a2be401399e5b89366..d0d6b018754b50c96364ea2143e5f2fd53f76be0 100644 --- a/doc/guide.rst +++ b/doc/guide.rst @@ -346,8 +346,8 @@ The snippet bellow shows how to: >>> # Probing >>> probe_data = np.array([[1.2, 0.1, 1.4], [0.5, 0.2, 0.3]]) >>> score = isv_machine.score_using_array(model, probe_data) - >>> print(score) - [2.754] + >>> print(round(score, 3)) + 2.754 @@ -407,8 +407,8 @@ such session variability model. >>> probe_data = np.array([[1.2, 0.1, 1.4], [0.5, 0.2, 0.3]]) >>> score = jfa_machine.score_using_array(model, probe_data) - >>> print(score) - [0.471] + >>> print(round(score, 3)) + 0.471 diff --git a/src/bob/learn/em/factor_analysis.py b/src/bob/learn/em/factor_analysis.py index d31ba5304f34511d768392f2eb6c4088d9fd9118..e8566204ed44929b1903c6c95776c38c36933142 100644 --- a/src/bob/learn/em/factor_analysis.py +++ b/src/bob/learn/em/factor_analysis.py @@ -1632,7 +1632,7 @@ class ISVMachine(FactorAnalysisBase): data_sum, Ux.reshape((self.ubm.n_gaussians, self.feature_dimension)), frame_length_normalization=True, - )[0] + )[0][0] class JFAMachine(FactorAnalysisBase): @@ -2293,4 +2293,4 @@ class JFAMachine(FactorAnalysisBase): data_sum, Ux.reshape((self.ubm.n_gaussians, self.feature_dimension)), frame_length_normalization=True, - )[0] + )[0][0]