diff --git a/bob/learn/em/gmm.py b/bob/learn/em/gmm.py index cc1c77a8e728627b7cfa8185573e639f677e7b6b..ddf985321c3bffbe298218e23512d962a5d2d98a 100644 --- a/bob/learn/em/gmm.py +++ b/bob/learn/em/gmm.py @@ -58,7 +58,7 @@ def log_weighted_likelihood(data, means, variances, g_norms, log_weights): """ # Compute the likelihood for each data point on each Gaussian n_gaussians, n_samples = len(means), len(data) - z = np.empty_like(data, shape=(n_gaussians, n_samples)) + z = np.empty(shape=(n_gaussians, n_samples), like=data) for i in range(n_gaussians): z[i] = np.sum((data - means[i]) ** 2 / variances[i], axis=-1) ll = -0.5 * (g_norms[:, None] + z)