parser=argparse.ArgumentParser(description=" The arguments for the boosting. ")
parser.add_argument('-t',default='StumpTrainer',dest="trainer_type",type=string,choices={'StumpTrainer','LutTrainer'},help="This is the type of trainer used for the boosting.")
parser.add_argument('-r',default=20,dest="num_rnds",type=string,help="The number of round for the boosting")
parser.add_argument('-l',default='exp',dest="loss_type",type=string,choices={'log','exp'}help="The type of the loss function. Logit and Exponential functions are the avaliable options")
parser.add_argument('-s',default='indep',dest="selection_type",choices={'indep','shared'},type=string,help="The feature selection type for the LUT based trainer. For multivarite case the features can be selected by sharing or independently ")
parser.add_argument('-t',default='LutTrainer',dest="trainer_type",type=str,choices={'StumpTrainer','LutTrainer'},help="This is the type of trainer used for the boosting.")
parser.add_argument('-r',default=20,dest="num_rnds",type=int,help="The number of round for the boosting")
parser.add_argument('-l',default='exp',dest="loss_type",type=str,choices={'log','exp'},help="The type of the loss function. Logit and Exponential functions are the avaliable options")
parser.add_argument('-s',default='indep',dest="selection_type",choices={'indep','shared'},type=str,help="The feature selection type for the LUT based trainer. For multivarite case the features can be selected by sharing or independently ")
parser.add_argument('-n',default=256,dest="num_entries",type=int,help="The number of entries in the LookUp table. It is the range of the feature values, e.g. if LBP features are used this values is 256.")
args=parser.parse_args()
# download the dataset
db_object=xbob.db.mnist.Database()
# Hardcode the number of digits
num_digits=10
# get the data (features and labels) for the selected digits from the xbob_db_mnist class functions