test.py 3.97 KB
Newer Older
Sushil BHATTACHARJEE's avatar
Sushil BHATTACHARJEE committed
1
#!/usr/bin/env python
André Anjos's avatar
André Anjos committed
2
3
# vim: set fileencoding=utf-8 :

Sushil BHATTACHARJEE's avatar
Sushil BHATTACHARJEE committed
4
5
6
7
8
9
10
11
12
13
14
15
16

'''Unit-tests for bob.ip.qualitymeasure'''

import os
import numpy as np
import nose.tools
import pkg_resources

import bob.io.base
import bob.io.base.test_utils
import bob.io.video
import bob.ip.color

17
18
from . import galbally_iqm_features as iqm
from . import msu_iqa_features as iqa
Sushil BHATTACHARJEE's avatar
Sushil BHATTACHARJEE committed
19

20
from bob.io import image
David GEISSBUHLER's avatar
David GEISSBUHLER committed
21
from . import remove_highlights
22

Sushil BHATTACHARJEE's avatar
Sushil BHATTACHARJEE committed
23
24
25
26

REF_VIDEO_FILE = 'real_client001_android_SD_scene01.mp4'
REF_FEATURE_FILE = 'real_client001_android_SD_scene01_ref_feats.h5'

Amir Mohammadi's avatar
Amir Mohammadi committed
27
28
29
30
31

def F(n):
  return pkg_resources.resource_filename(
      __name__, os.path.join('data', n))

Sushil BHATTACHARJEE's avatar
Sushil BHATTACHARJEE committed
32
33

input_video_file = F(REF_VIDEO_FILE)
Amir Mohammadi's avatar
Amir Mohammadi committed
34
35
assert os.path.isfile(
    input_video_file), "File: not found: %s" % input_video_file
Sushil BHATTACHARJEE's avatar
Sushil BHATTACHARJEE committed
36
37
inputVideo = bob.io.video.reader(input_video_file)
video_data = inputVideo.load()
Amir Mohammadi's avatar
Amir Mohammadi committed
38
39
numframes = 3

Sushil BHATTACHARJEE's avatar
Sushil BHATTACHARJEE committed
40
41

def load_reference_features():
Amir Mohammadi's avatar
Amir Mohammadi committed
42
43
44
45
46
47
48
49
50
51
52
53
  ref_feat_file = F(REF_FEATURE_FILE)
  assert os.path.isfile(ref_feat_file), "File: not found: %s" % ref_feat_file
  rf = bob.io.base.HDF5File(ref_feat_file)
  assert rf.has_key('/bobiqm'), "Key: /bobiqm not found in file %s" % ref_feat_file
  assert rf.has_key('/msuiqa'), "Key: /msuiqa not found in file %s" % ref_feat_file
  galbally_ref_features = rf.read('/bobiqm')
  msu_ref_features = rf.read('/msuiqa')
  del rf
  return (galbally_ref_features, msu_ref_features)


# load reference-features into global vars.
Sushil BHATTACHARJEE's avatar
Sushil BHATTACHARJEE committed
54
55
56
57
galbally_ref_features, msu_ref_features = load_reference_features()


def test_galbally_feat_extr():
Amir Mohammadi's avatar
Amir Mohammadi committed
58
59
60
61
62
  # change this, if you add more features to galbally_iqm_features module.
  iqm_len = 18
  # feature-array to hold features for several frames
  bobfset = np.zeros([numframes, iqm_len])
  f = 0
Sushil BHATTACHARJEE's avatar
Sushil BHATTACHARJEE committed
63

Amir Mohammadi's avatar
Amir Mohammadi committed
64
  # process first frame separately, to get the no. of iqm features
Sushil BHATTACHARJEE's avatar
Sushil BHATTACHARJEE committed
65
66
67
68
  rgbFrame = video_data[f]
  iqmSet = iqm.compute_quality_features(rgbFrame)
  numIQM = len(iqmSet)

Amir Mohammadi's avatar
Amir Mohammadi committed
69
70
71
72
  # test: check that numIQM is the same as expected iqm_len (18)
  nose.tools.eq_(numIQM, iqm_len)

  # store features for first frame in feature-array
Sushil BHATTACHARJEE's avatar
Sushil BHATTACHARJEE committed
73
74
  bobfset[f] = iqmSet

Amir Mohammadi's avatar
Amir Mohammadi committed
75
76
  # now store iqm features for remaining test-frames of input video.
  for f in range(1, numframes):
Sushil BHATTACHARJEE's avatar
Sushil BHATTACHARJEE committed
77
78
79
    rgbFrame = video_data[f]
    bobfset[f] = iqm.compute_quality_features(rgbFrame)

Amir Mohammadi's avatar
Amir Mohammadi committed
80
81
82
  # test: compare feature-values in bobfset[] with those loaded from hdf5 file
  nose.tools.assert_true((bobfset == galbally_ref_features).all())
  # np.allclose(A,B)
Sushil BHATTACHARJEE's avatar
Sushil BHATTACHARJEE committed
83
84
85


def test_msu_feat_extr():
Amir Mohammadi's avatar
Amir Mohammadi committed
86
87
88
89
90
  # change this, if you change the no. of features in msu_iqa_features module.
  iqa_len = 121
  # feature-array to hold features for several frames
  msufset = np.zeros([numframes, iqa_len])
  f = 0
Sushil BHATTACHARJEE's avatar
Sushil BHATTACHARJEE committed
91

Amir Mohammadi's avatar
Amir Mohammadi committed
92
  # process first frame separately, to get the no. of iqa features
Sushil BHATTACHARJEE's avatar
Sushil BHATTACHARJEE committed
93
94
95
96
  rgbFrame = video_data[f]
  iqaSet = iqa.compute_msu_iqa_features(rgbFrame)
  numIQA = len(iqaSet)

Amir Mohammadi's avatar
Amir Mohammadi committed
97
98
99
100
  # test: check that numIQA matches the expected iqa_len(121)
  nose.tools.eq_(numIQA, iqa_len)

  # store features for first frame in feature-array
Sushil BHATTACHARJEE's avatar
Sushil BHATTACHARJEE committed
101
102
  msufset[f] = iqaSet

Amir Mohammadi's avatar
Amir Mohammadi committed
103
104
  # now store iqm features for remaining test-frames of input video.
  for f in range(1, numframes):
Sushil BHATTACHARJEE's avatar
Sushil BHATTACHARJEE committed
105
    rgbFrame = video_data[f]
Amir Mohammadi's avatar
Amir Mohammadi committed
106
    msuQFeats = iqa.compute_msu_iqa_features(rgbFrame)
Sushil BHATTACHARJEE's avatar
Sushil BHATTACHARJEE committed
107
108
    msufset[f] = msuQFeats

Amir Mohammadi's avatar
Amir Mohammadi committed
109
110
  # test: compare feature-values in bobfset[] with those loaded from hdf5 file
  nose.tools.assert_true((msufset == msu_ref_features).all())
111

David GEISSBUHLER's avatar
David GEISSBUHLER committed
112
113
114
# test if the specular highlights algorithm (remove_highlights.cpp::remove_highlights)
# performs exactly like the original code from which it was mostly copied.
def test_remove_highlights_integrity():
115
116
117
118
119
    # open pictures
    img1 = image.load(F('old_man.ppm'))
    img2 = image.load(F('toys.ppm'))

    # compute
120
121
    sfi1, diff1, residue1 = remove_highlights(img1.astype(np.float32), 0.5)
    sfi2, diff2, residue2 = remove_highlights(img2.astype(np.float32), 0.5)
122
123
124
125
126
127
128
129
130

    diff1_u8 = diff1.astype('uint8')
    diff2_u8 = diff2.astype('uint8')

    # reference files
    ref1 = image.load(F('old_man_diffuse.ppm'))
    ref2 = image.load(F('toys_diffuse.ppm'))

    # test: compare results
David GEISSBUHLER's avatar
David GEISSBUHLER committed
131
132
    assert (diff1_u8 == ref1).all()
    assert (diff2_u8 == ref2).all()