test.py 3.24 KB
Newer Older
Sushil BHATTACHARJEE's avatar
Sushil BHATTACHARJEE committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#!/usr/bin/env python
# encoding: utf-8
# sushil bhattacharjee <sushil.bhattacharjee@idiap.ch>
# Fri. 10 March 2017

'''Unit-tests for bob.ip.qualitymeasure'''

import os
import numpy as np
import nose.tools
import pkg_resources

import bob.io.base
import bob.io.base.test_utils
import bob.io.video
import bob.ip.color

18 19
from . import galbally_iqm_features as iqm
from . import msu_iqa_features as iqa
Sushil BHATTACHARJEE's avatar
Sushil BHATTACHARJEE committed
20 21 22 23 24


REF_VIDEO_FILE = 'real_client001_android_SD_scene01.mp4'
REF_FEATURE_FILE = 'real_client001_android_SD_scene01_ref_feats.h5'

Amir Mohammadi's avatar
Amir Mohammadi committed
25 26 27 28 29

def F(n):
  return pkg_resources.resource_filename(
      __name__, os.path.join('data', n))

Sushil BHATTACHARJEE's avatar
Sushil BHATTACHARJEE committed
30 31

input_video_file = F(REF_VIDEO_FILE)
Amir Mohammadi's avatar
Amir Mohammadi committed
32 33
assert os.path.isfile(
    input_video_file), "File: not found: %s" % input_video_file
Sushil BHATTACHARJEE's avatar
Sushil BHATTACHARJEE committed
34 35
inputVideo = bob.io.video.reader(input_video_file)
video_data = inputVideo.load()
Amir Mohammadi's avatar
Amir Mohammadi committed
36 37
numframes = 3

Sushil BHATTACHARJEE's avatar
Sushil BHATTACHARJEE committed
38 39

def load_reference_features():
Amir Mohammadi's avatar
Amir Mohammadi committed
40 41 42 43 44 45 46 47 48 49 50 51
  ref_feat_file = F(REF_FEATURE_FILE)
  assert os.path.isfile(ref_feat_file), "File: not found: %s" % ref_feat_file
  rf = bob.io.base.HDF5File(ref_feat_file)
  assert rf.has_key('/bobiqm'), "Key: /bobiqm not found in file %s" % ref_feat_file
  assert rf.has_key('/msuiqa'), "Key: /msuiqa not found in file %s" % ref_feat_file
  galbally_ref_features = rf.read('/bobiqm')
  msu_ref_features = rf.read('/msuiqa')
  del rf
  return (galbally_ref_features, msu_ref_features)


# load reference-features into global vars.
Sushil BHATTACHARJEE's avatar
Sushil BHATTACHARJEE committed
52 53 54 55
galbally_ref_features, msu_ref_features = load_reference_features()


def test_galbally_feat_extr():
Amir Mohammadi's avatar
Amir Mohammadi committed
56 57 58 59 60
  # change this, if you add more features to galbally_iqm_features module.
  iqm_len = 18
  # feature-array to hold features for several frames
  bobfset = np.zeros([numframes, iqm_len])
  f = 0
Sushil BHATTACHARJEE's avatar
Sushil BHATTACHARJEE committed
61

Amir Mohammadi's avatar
Amir Mohammadi committed
62
  # process first frame separately, to get the no. of iqm features
Sushil BHATTACHARJEE's avatar
Sushil BHATTACHARJEE committed
63 64 65 66
  rgbFrame = video_data[f]
  iqmSet = iqm.compute_quality_features(rgbFrame)
  numIQM = len(iqmSet)

Amir Mohammadi's avatar
Amir Mohammadi committed
67 68 69 70
  # test: check that numIQM is the same as expected iqm_len (18)
  nose.tools.eq_(numIQM, iqm_len)

  # store features for first frame in feature-array
Sushil BHATTACHARJEE's avatar
Sushil BHATTACHARJEE committed
71 72
  bobfset[f] = iqmSet

Amir Mohammadi's avatar
Amir Mohammadi committed
73 74
  # now store iqm features for remaining test-frames of input video.
  for f in range(1, numframes):
Sushil BHATTACHARJEE's avatar
Sushil BHATTACHARJEE committed
75 76 77
    rgbFrame = video_data[f]
    bobfset[f] = iqm.compute_quality_features(rgbFrame)

Amir Mohammadi's avatar
Amir Mohammadi committed
78 79 80
  # test: compare feature-values in bobfset[] with those loaded from hdf5 file
  nose.tools.assert_true((bobfset == galbally_ref_features).all())
  # np.allclose(A,B)
Sushil BHATTACHARJEE's avatar
Sushil BHATTACHARJEE committed
81 82 83


def test_msu_feat_extr():
Amir Mohammadi's avatar
Amir Mohammadi committed
84 85 86 87 88
  # change this, if you change the no. of features in msu_iqa_features module.
  iqa_len = 121
  # feature-array to hold features for several frames
  msufset = np.zeros([numframes, iqa_len])
  f = 0
Sushil BHATTACHARJEE's avatar
Sushil BHATTACHARJEE committed
89

Amir Mohammadi's avatar
Amir Mohammadi committed
90
  # process first frame separately, to get the no. of iqa features
Sushil BHATTACHARJEE's avatar
Sushil BHATTACHARJEE committed
91 92 93 94
  rgbFrame = video_data[f]
  iqaSet = iqa.compute_msu_iqa_features(rgbFrame)
  numIQA = len(iqaSet)

Amir Mohammadi's avatar
Amir Mohammadi committed
95 96 97 98
  # test: check that numIQA matches the expected iqa_len(121)
  nose.tools.eq_(numIQA, iqa_len)

  # store features for first frame in feature-array
Sushil BHATTACHARJEE's avatar
Sushil BHATTACHARJEE committed
99 100
  msufset[f] = iqaSet

Amir Mohammadi's avatar
Amir Mohammadi committed
101 102
  # now store iqm features for remaining test-frames of input video.
  for f in range(1, numframes):
Sushil BHATTACHARJEE's avatar
Sushil BHATTACHARJEE committed
103
    rgbFrame = video_data[f]
Amir Mohammadi's avatar
Amir Mohammadi committed
104
    msuQFeats = iqa.compute_msu_iqa_features(rgbFrame)
Sushil BHATTACHARJEE's avatar
Sushil BHATTACHARJEE committed
105 106
    msufset[f] = msuQFeats

Amir Mohammadi's avatar
Amir Mohammadi committed
107 108
  # test: compare feature-values in bobfset[] with those loaded from hdf5 file
  nose.tools.assert_true((msufset == msu_ref_features).all())