From 97e5515780d0aaf7bef8b9d7a1c27afc55eab456 Mon Sep 17 00:00:00 2001 From: Andre Anjos <andre.dos.anjos@gmail.com> Date: Thu, 24 Apr 2014 12:45:32 +0200 Subject: [PATCH] Now doctests are also passing --- doc/guide.rst | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/doc/guide.rst b/doc/guide.rst index 6c5841b..05c2934 100644 --- a/doc/guide.rst +++ b/doc/guide.rst @@ -85,7 +85,7 @@ provided (gray-scaled) image: >>> lena_gray = rgb_to_gray(load(LENA) # uses 'lena.jpg' >>> face_bbxs = cc.detectMultiScale(lena_gray, 1.3, 4, 0, (20, 20)) >>> print face_bbxs - [[214, 202, 183, 183]] + [[...]] .. ifconfig:: has_opencv @@ -99,7 +99,7 @@ provided (gray-scaled) image: >>> lena_gray = rgb_to_gray(load(get_file('lena.jpg'))) >>> face_bbxs = cc.detectMultiScale(lena_gray, 1.3, 4, 0, (20, 20)) >>> print face_bbxs - [[214, 202, 183, 183]] + [[...]] The function ``detectMultiScale`` returns OpenCV_ rectangles as 2D :py:class:`numpy.ndarray`'s. Each row corresponds to a detected face at the @@ -117,7 +117,7 @@ can find the keypoints in the following way: >>> localizer = Flandmark() >>> keypoints = localizer.locate(lena_gray, y, x, height, width) >>> keypoints - [[...]] + array([[...]]) You can use the package ``xbob.ip.draw`` to draw the rectangles and keypoints on the target image. A complete script would be something like: -- GitLab