tinyface.py 8.05 KB
Newer Older
Yu LINGHU's avatar
Yu LINGHU committed
1
2
3
4
5
6
7
8
9
from bob.ip.color import gray_to_rgb
import logging
import numpy as np
import pickle
import os, sys
from collections import namedtuple
import time
from bob.io.image import to_matplotlib
import pkg_resources
Xinyi ZHANG's avatar
Xinyi ZHANG committed
10
from bob.extension import rc
Yu LINGHU's avatar
Yu LINGHU committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

logger = logging.getLogger(__name__)

class TinyFacesDetector:

    """TinyFace face detector. Original Model is ``ResNet101`` from 
    https://github.com/peiyunh/tiny. Please check for details. The 
    model used in this section is the MxNet version from 
    https://github.com/chinakook/hr101_mxnet.

    Attributes
    ----------
    prob_thresh: float
        Thresholds are a trade-off between false positives and missed detections.
    """
Yu LINGHU's avatar
Yu LINGHU committed
26
27
28
29
30
31
    def __init__(self, prob_thresh=0.5, **kwargs):
        super().__init__(**kwargs)

        import mxnet as mx
        from bob.bio.face.embeddings import download_model
        
Xinyi ZHANG's avatar
Xinyi ZHANG committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
        internal_path = pkg_resources.resource_filename(
            __name__, os.path.join("data", "tinyface_detector/tinyface_detector"),
        )
        
        checkpoint_path = (
            internal_path
            if rc["bob.bio.face.models.tinyface_detector"]
            is None
            else rc["bob.bio.face.models.tinyface_detector"]
        )

        urls = ["https://www.idiap.ch/software/bob/data/bob/bob.ip.facedetect/master/tinyface_detector.tar.gz"]

        download_model(
            checkpoint_path, urls, "tinyface_detector.tar.gz"
        )
        self.checkpoint_path = checkpoint_path


Yu LINGHU's avatar
Yu LINGHU committed
51
52
53
        self.MAX_INPUT_DIM=5000.0
        self.prob_thresh = prob_thresh
        self.nms_thresh = 0.1
Xinyi ZHANG's avatar
Xinyi ZHANG committed
54
        self.model_root = pkg_resources.resource_filename(__name__,self.checkpoint_path)
Yu LINGHU's avatar
Yu LINGHU committed
55

Xinyi ZHANG's avatar
Xinyi ZHANG committed
56
        sym, arg_params, aux_params = mx.model.load_checkpoint(os.path.join(self.checkpoint_path, 'hr101'),0)
Yu LINGHU's avatar
Yu LINGHU committed
57
58
        all_layers = sym.get_internals()

Xinyi ZHANG's avatar
Xinyi ZHANG committed
59
        meta_file = open(os.path.join(self.checkpoint_path, 'meta.pkl'), 'rb')
Yu LINGHU's avatar
Yu LINGHU committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
        self.clusters = pickle.load(meta_file)
        self.averageImage = pickle.load(meta_file)
        meta_file.close()
        self.clusters_h = self.clusters[:,3] - self.clusters[:,1] + 1
        self.clusters_w = self.clusters[:,2] - self.clusters[:,0] + 1
        self.normal_idx = np.where(self.clusters[:,4] == 1)

        self.mod = mx.mod.Module(symbol=all_layers['fusex_output'], data_names=['data'], label_names=None)
        self.mod.bind(for_training=False, data_shapes=[('data', (1, 3, 224, 224))], label_shapes=None, force_rebind=False)
        self.mod.set_params(arg_params=arg_params, aux_params=aux_params, force_init=False)

    @staticmethod
    def _nms(dets, prob_thresh):
  
        x1 = dets[:, 0]
        y1 = dets[:, 1]
        x2 = dets[:, 2]
        y2 = dets[:, 3]
        scores = dets[:, 4]

        areas = (x2 - x1 + 1) * (y2 - y1 + 1)

        order = scores.argsort()[::-1]

        keep = []
        while order.size > 0:
            i = order[0]
            keep.append(i)
            xx1 = np.maximum(x1[i], x1[order[1:]])
            yy1 = np.maximum(y1[i], y1[order[1:]])
            xx2 = np.minimum(x2[i], x2[order[1:]])
            yy2 = np.minimum(y2[i], y2[order[1:]])
            w = np.maximum(0.0, xx2 - xx1 + 1)
            h = np.maximum(0.0, yy2 - yy1 + 1)
            inter = w * h

            ovr = inter / (areas[i] + areas[order[1:]] - inter)
            inds = np.where(ovr <= prob_thresh)[0]

            order = order[inds + 1]
        return keep

    def detect(self, img):
        """Detects and annotates all faces in the image.

        Parameters
        ----------
        image : numpy.ndarray
            An RGB image in Bob format.

        Returns
        -------
        list
            A list of annotations. Annotations are dictionaries that contain the
            following keys: ``topleft``, ``bottomright``, ``reye``, ``leye``. 
            (``reye`` and ``leye`` are the estimated results, not captured by the 
            model.)
        """
Yu LINGHU's avatar
Yu LINGHU committed
118
119
120
121
        import cv2 as cv
        import mxnet as mx
        Batch = namedtuple('Batch', ['data'])

Yu LINGHU's avatar
Yu LINGHU committed
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
        raw_img = img
        if len(raw_img.shape) == 2:
            raw_img = gray_to_rgb(raw_img)
        assert img.shape[0] == 3, img.shape

        raw_img = to_matplotlib(raw_img)
        raw_img = raw_img[..., ::-1]
        
        raw_h = raw_img.shape[0]
        raw_w = raw_img.shape[1]

        raw_img = cv.cvtColor(raw_img, cv.COLOR_BGR2RGB)
        raw_img_f = raw_img.astype(np.float32)
  
        min_scale = min(np.floor(np.log2(np.max(self.clusters_w[self.normal_idx]/raw_w))), np.floor(np.log2(np.max(self.clusters_h[self.normal_idx]/raw_h))))
        max_scale = min(1.0, -np.log2(max(raw_h, raw_w)/self.MAX_INPUT_DIM))

        scales_down = np.arange(min_scale, 0+0.0001, 1.)
        scales_up = np.arange(0.5, max_scale+0.0001, 0.5)
        scales_pow = np.hstack((scales_down, scales_up))
        scales = np.power(2.0, scales_pow)

        start = time.time()
        bboxes = np.empty(shape=(0,5))
        for s in scales[::-1]:
            img = cv.resize(raw_img_f, (0,0), fx = s, fy = s)
            img = np.transpose(img,(2,0,1))
            img = img - self.averageImage

            tids = []
            if s <= 1. :
                tids = list(range(4, 12))
            else :
                tids = list(range(4, 12)) + list(range(18, 25))
            ignoredTids = list(set(range(0,self.clusters.shape[0]))-set(tids))
            img_h = img.shape[1]
            img_w = img.shape[2]
            img = img[np.newaxis, :]

            self.mod.reshape(data_shapes=[('data', (1, 3, img_h, img_w))])
            self.mod.forward(Batch([mx.nd.array(img)]))
            self.mod.get_outputs()[0].wait_to_read()
            fusex_res = self.mod.get_outputs()[0]

            score_cls = mx.nd.slice_axis(fusex_res, axis=1, begin=0, end=25, name='score_cls')
            score_reg = mx.nd.slice_axis(fusex_res, axis=1, begin=25, end=None, name='score_reg')
            prob_cls = mx.nd.sigmoid(score_cls)

            prob_cls_np = prob_cls.asnumpy()
            prob_cls_np[0,ignoredTids,:,:] = 0.

            _, fc, fy, fx = np.where(prob_cls_np > self.prob_thresh)

            cy = fy * 8 - 1
            cx = fx * 8 - 1
            ch = self.clusters[fc, 3] - self.clusters[fc,1] + 1
            cw = self.clusters[fc, 2] - self.clusters[fc, 0] + 1

            Nt = self.clusters.shape[0]

            score_reg_np = score_reg.asnumpy()
            tx = score_reg_np[0, 0:Nt, :, :]
            ty = score_reg_np[0, Nt:2*Nt,:,:]
            tw = score_reg_np[0, 2*Nt:3*Nt,:,:]
            th = score_reg_np[0,3*Nt:4*Nt,:,:]

            dcx = cw * tx[fc, fy, fx]
            dcy = ch * ty[fc, fy, fx]
            rcx = cx + dcx
            rcy = cy + dcy
            rcw = cw * np.exp(tw[fc, fy, fx])
            rch = ch * np.exp(th[fc, fy, fx])

            score_cls_np = score_cls.asnumpy()
            scores = score_cls_np[0, fc, fy, fx]

            tmp_bboxes = np.vstack((rcx-rcw/2, rcy-rch/2, rcx+rcw/2,rcy+rch/2))
            tmp_bboxes = np.vstack((tmp_bboxes/s, scores))
            tmp_bboxes = tmp_bboxes.transpose()
            bboxes = np.vstack((bboxes, tmp_bboxes))

        refind_idx = self._nms(bboxes, self.nms_thresh)
        refind_bboxes = bboxes[refind_idx]
        refind_bboxes = refind_bboxes.astype(np.int32)

        annotations = refind_bboxes
        annots = []
        for i in range(len(refind_bboxes)):
Yu LINGHU's avatar
Yu LINGHU committed
210
211
            topleft = round(float(annotations[i][1])),round(float(annotations[i][0]))
            bottomright = round(float(annotations[i][3])), round(float(annotations[i][2]))
Yu LINGHU's avatar
Yu LINGHU committed
212
213
            width = float(annotations[i][2]) - float(annotations[i][0])
            length = float(annotations[i][3]) - float(annotations[i][1])
Yu LINGHU's avatar
Yu LINGHU committed
214
215
            right_eye = round((0.37) * length + float(annotations[i][1])), round((0.3) * width + float(annotations[i][0]))
            left_eye = round((0.37) * length + float(annotations[i][1])),round((0.7) * width + float(annotations[i][0]))
Yu LINGHU's avatar
Yu LINGHU committed
216
217
218
219
220
221
222
223
224
            annots.append(
                {
                    "topleft": topleft,
                    "bottomright": bottomright,
                    "reye": right_eye,
                    "leye": left_eye,
                }
            )

Xinyi ZHANG's avatar
Xinyi ZHANG committed
225
        return annots