tinyface.py 7.22 KB
Newer Older
Yu LINGHU's avatar
Yu LINGHU committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import mxnet as mx
from mxnet import gluon
from bob.ip.color import gray_to_rgb
import logging
import numpy as np
import cv2 as cv
import pickle
import os, sys
from collections import namedtuple
import time
from bob.io.image import to_matplotlib
import pkg_resources

logger = logging.getLogger(__name__)
Batch = namedtuple('Batch', ['data'])

class TinyFacesDetector:

    """TinyFace face detector. Original Model is ``ResNet101`` from 
    https://github.com/peiyunh/tiny. Please check for details. The 
    model used in this section is the MxNet version from 
    https://github.com/chinakook/hr101_mxnet.

    Attributes
    ----------
    prob_thresh: float
        Thresholds are a trade-off between false positives and missed detections.
    """
    def __init__(self, prob_thresh=0.5):
        self.MAX_INPUT_DIM=5000.0
        self.prob_thresh = prob_thresh
        self.nms_thresh = 0.1
        self.model_root = pkg_resources.resource_filename(__name__, "tinyface_detector/")

        sym, arg_params, aux_params = mx.model.load_checkpoint(os.path.join(self.model_root, 'hr101'),0)
        all_layers = sym.get_internals()

        meta_file = open(os.path.join(self.model_root, 'meta.pkl'), 'rb')
        self.clusters = pickle.load(meta_file)
        self.averageImage = pickle.load(meta_file)
        meta_file.close()
        self.clusters_h = self.clusters[:,3] - self.clusters[:,1] + 1
        self.clusters_w = self.clusters[:,2] - self.clusters[:,0] + 1
        self.normal_idx = np.where(self.clusters[:,4] == 1)

        self.mod = mx.mod.Module(symbol=all_layers['fusex_output'], data_names=['data'], label_names=None)
        self.mod.bind(for_training=False, data_shapes=[('data', (1, 3, 224, 224))], label_shapes=None, force_rebind=False)
        self.mod.set_params(arg_params=arg_params, aux_params=aux_params, force_init=False)

    @staticmethod
    def _nms(dets, prob_thresh):
  
        x1 = dets[:, 0]
        y1 = dets[:, 1]
        x2 = dets[:, 2]
        y2 = dets[:, 3]
        scores = dets[:, 4]

        areas = (x2 - x1 + 1) * (y2 - y1 + 1)

        order = scores.argsort()[::-1]

        keep = []
        while order.size > 0:
            i = order[0]
            keep.append(i)
            xx1 = np.maximum(x1[i], x1[order[1:]])
            yy1 = np.maximum(y1[i], y1[order[1:]])
            xx2 = np.minimum(x2[i], x2[order[1:]])
            yy2 = np.minimum(y2[i], y2[order[1:]])
            w = np.maximum(0.0, xx2 - xx1 + 1)
            h = np.maximum(0.0, yy2 - yy1 + 1)
            inter = w * h

            ovr = inter / (areas[i] + areas[order[1:]] - inter)
            inds = np.where(ovr <= prob_thresh)[0]

            order = order[inds + 1]
        return keep

    def detect(self, img):
        """Detects and annotates all faces in the image.

        Parameters
        ----------
        image : numpy.ndarray
            An RGB image in Bob format.

        Returns
        -------
        list
            A list of annotations. Annotations are dictionaries that contain the
            following keys: ``topleft``, ``bottomright``, ``reye``, ``leye``. 
            (``reye`` and ``leye`` are the estimated results, not captured by the 
            model.)
        """
        raw_img = img
        if len(raw_img.shape) == 2:
            raw_img = gray_to_rgb(raw_img)
        assert img.shape[0] == 3, img.shape

        raw_img = to_matplotlib(raw_img)
        raw_img = raw_img[..., ::-1]
        
        raw_h = raw_img.shape[0]
        raw_w = raw_img.shape[1]

        raw_img = cv.cvtColor(raw_img, cv.COLOR_BGR2RGB)
        raw_img_f = raw_img.astype(np.float32)
  
        min_scale = min(np.floor(np.log2(np.max(self.clusters_w[self.normal_idx]/raw_w))), np.floor(np.log2(np.max(self.clusters_h[self.normal_idx]/raw_h))))
        max_scale = min(1.0, -np.log2(max(raw_h, raw_w)/self.MAX_INPUT_DIM))

        scales_down = np.arange(min_scale, 0+0.0001, 1.)
        scales_up = np.arange(0.5, max_scale+0.0001, 0.5)
        scales_pow = np.hstack((scales_down, scales_up))
        scales = np.power(2.0, scales_pow)

        start = time.time()
        bboxes = np.empty(shape=(0,5))
        for s in scales[::-1]:
            img = cv.resize(raw_img_f, (0,0), fx = s, fy = s)
            img = np.transpose(img,(2,0,1))
            img = img - self.averageImage

            tids = []
            if s <= 1. :
                tids = list(range(4, 12))
            else :
                tids = list(range(4, 12)) + list(range(18, 25))
            ignoredTids = list(set(range(0,self.clusters.shape[0]))-set(tids))
            img_h = img.shape[1]
            img_w = img.shape[2]
            img = img[np.newaxis, :]

            self.mod.reshape(data_shapes=[('data', (1, 3, img_h, img_w))])
            self.mod.forward(Batch([mx.nd.array(img)]))
            self.mod.get_outputs()[0].wait_to_read()
            fusex_res = self.mod.get_outputs()[0]

            score_cls = mx.nd.slice_axis(fusex_res, axis=1, begin=0, end=25, name='score_cls')
            score_reg = mx.nd.slice_axis(fusex_res, axis=1, begin=25, end=None, name='score_reg')
            prob_cls = mx.nd.sigmoid(score_cls)

            prob_cls_np = prob_cls.asnumpy()
            prob_cls_np[0,ignoredTids,:,:] = 0.

            _, fc, fy, fx = np.where(prob_cls_np > self.prob_thresh)

            cy = fy * 8 - 1
            cx = fx * 8 - 1
            ch = self.clusters[fc, 3] - self.clusters[fc,1] + 1
            cw = self.clusters[fc, 2] - self.clusters[fc, 0] + 1

            Nt = self.clusters.shape[0]

            score_reg_np = score_reg.asnumpy()
            tx = score_reg_np[0, 0:Nt, :, :]
            ty = score_reg_np[0, Nt:2*Nt,:,:]
            tw = score_reg_np[0, 2*Nt:3*Nt,:,:]
            th = score_reg_np[0,3*Nt:4*Nt,:,:]

            dcx = cw * tx[fc, fy, fx]
            dcy = ch * ty[fc, fy, fx]
            rcx = cx + dcx
            rcy = cy + dcy
            rcw = cw * np.exp(tw[fc, fy, fx])
            rch = ch * np.exp(th[fc, fy, fx])

            score_cls_np = score_cls.asnumpy()
            scores = score_cls_np[0, fc, fy, fx]

            tmp_bboxes = np.vstack((rcx-rcw/2, rcy-rch/2, rcx+rcw/2,rcy+rch/2))
            tmp_bboxes = np.vstack((tmp_bboxes/s, scores))
            tmp_bboxes = tmp_bboxes.transpose()
            bboxes = np.vstack((bboxes, tmp_bboxes))

        refind_idx = self._nms(bboxes, self.nms_thresh)
        refind_bboxes = bboxes[refind_idx]
        refind_bboxes = refind_bboxes.astype(np.int32)

        annotations = refind_bboxes
        annots = []
        for i in range(len(refind_bboxes)):
            topleft = float(annotations[i][1]),float(annotations[i][0])
            bottomright = float(annotations[i][3]),float(annotations[i][2])
            width = float(annotations[i][2]) - float(annotations[i][0])
            length = float(annotations[i][3]) - float(annotations[i][1])
            right_eye = (0.37) * length + float(annotations[i][1]),(0.3) * width + float(annotations[i][0])
            left_eye = (0.37) * length + float(annotations[i][1]),(0.7) * width + float(annotations[i][0])
            annots.append(
                {
                    "topleft": topleft,
                    "bottomright": bottomright,
                    "reye": right_eye,
                    "leye": left_eye,
                }
            )

        return annots