/** * @file io/cxx/ImageGifFile.cc * @date Fri Nov 23 16:53:00 2012 +0200 * @author Laurent El Shafey * @author Manuel Gunther * * @brief Implements an image format reader/writer using giflib. * * Copyright (C) 2011-2013 Idiap Research Institute, Martigny, Switzerland * Copyright (c) 2016, Regents of the University of Colorado on behalf of the University of Colorado Colorado Springs. */ #ifdef HAVE_GIFLIB #include #include #include #include #include #include #include #include #include extern "C" { #include } // QuantizeBuffer function definition that was inlined (only) in giflib 4.2 #if defined(GIFLIB_MAJOR) && GIFLIB_MAJOR < 5 #define ABS(x) ((x) > 0 ? (x) : (-(x))) #define COLOR_ARRAY_SIZE 32768 #define BITS_PER_PRIM_COLOR 5 #define MAX_PRIM_COLOR 0x1f static int SortRGBAxis; typedef struct QuantizedColorType { GifByteType RGB[3]; GifByteType NewColorIndex; long Count; struct QuantizedColorType *Pnext; } QuantizedColorType; typedef struct NewColorMapType { GifByteType RGBMin[3], RGBWidth[3]; unsigned int NumEntries; /* # of QuantizedColorType in linked list below */ unsigned long Count; /* Total number of pixels in all the entries */ QuantizedColorType *QuantizedColors; } NewColorMapType; // Routine called by qsort to compare two entries. static int SortCmpRtn(const void *Entry1, const void *Entry2) { return (*((QuantizedColorType **) Entry1))->RGB[SortRGBAxis] - (*((QuantizedColorType **) Entry2))->RGB[SortRGBAxis]; } // Routine to subdivide the RGB space recursively using median cut in each // axes alternatingly until ColorMapSize different cubes exists. // The biggest cube in one dimension is subdivide unless it has only one entry. // Returns GIF_ERROR if failed, otherwise GIF_OK. static int SubdivColorMap(NewColorMapType * NewColorSubdiv, unsigned int ColorMapSize, unsigned int *NewColorMapSize) { int MaxSize; unsigned int i, j, Index = 0, NumEntries, MinColor, MaxColor; long Sum, Count; QuantizedColorType *QuantizedColor, **SortArray; while (ColorMapSize > *NewColorMapSize) { // Find candidate for subdivision: MaxSize = -1; for (i = 0; i < *NewColorMapSize; i++) { for (j = 0; j < 3; j++) { if ((((int)NewColorSubdiv[i].RGBWidth[j]) > MaxSize) && (NewColorSubdiv[i].NumEntries > 1)) { MaxSize = NewColorSubdiv[i].RGBWidth[j]; Index = i; SortRGBAxis = j; } } } if (MaxSize == -1) return GIF_OK; // Split the entry Index into two along the axis SortRGBAxis: // Sort all elements in that entry along the given axis and split at // the median. SortArray = (QuantizedColorType **)malloc( sizeof(QuantizedColorType *) * NewColorSubdiv[Index].NumEntries); if (SortArray == NULL) return GIF_ERROR; for (j = 0, QuantizedColor = NewColorSubdiv[Index].QuantizedColors; j < NewColorSubdiv[Index].NumEntries && QuantizedColor != NULL; j++, QuantizedColor = QuantizedColor->Pnext) SortArray[j] = QuantizedColor; qsort(SortArray, NewColorSubdiv[Index].NumEntries, sizeof(QuantizedColorType *), SortCmpRtn); // Relink the sorted list into one: for (j = 0; j < NewColorSubdiv[Index].NumEntries - 1; j++) SortArray[j]->Pnext = SortArray[j + 1]; SortArray[NewColorSubdiv[Index].NumEntries - 1]->Pnext = NULL; NewColorSubdiv[Index].QuantizedColors = QuantizedColor = SortArray[0]; free((char *)SortArray); // Now simply add the Counts until we have half of the Count: Sum = NewColorSubdiv[Index].Count / 2 - QuantizedColor->Count; NumEntries = 1; Count = QuantizedColor->Count; while (QuantizedColor->Pnext != NULL && (Sum -= QuantizedColor->Pnext->Count) >= 0 && QuantizedColor->Pnext->Pnext != NULL) { QuantizedColor = QuantizedColor->Pnext; NumEntries++; Count += QuantizedColor->Count; } // Save the values of the last color of the first half, and first // of the second half so we can update the Bounding Boxes later. // Also as the colors are quantized and the BBoxes are full 0..255, // they need to be rescaled. MaxColor = QuantizedColor->RGB[SortRGBAxis]; // Max. of first half // coverity[var_deref_op] MinColor = QuantizedColor->Pnext->RGB[SortRGBAxis]; // of second MaxColor <<= (8 - BITS_PER_PRIM_COLOR); MinColor <<= (8 - BITS_PER_PRIM_COLOR); // Partition right here: NewColorSubdiv[*NewColorMapSize].QuantizedColors = QuantizedColor->Pnext; QuantizedColor->Pnext = NULL; NewColorSubdiv[*NewColorMapSize].Count = Count; NewColorSubdiv[Index].Count -= Count; NewColorSubdiv[*NewColorMapSize].NumEntries = NewColorSubdiv[Index].NumEntries - NumEntries; NewColorSubdiv[Index].NumEntries = NumEntries; for (j = 0; j < 3; j++) { NewColorSubdiv[*NewColorMapSize].RGBMin[j] = NewColorSubdiv[Index].RGBMin[j]; NewColorSubdiv[*NewColorMapSize].RGBWidth[j] = NewColorSubdiv[Index].RGBWidth[j]; } NewColorSubdiv[*NewColorMapSize].RGBWidth[SortRGBAxis] = NewColorSubdiv[*NewColorMapSize].RGBMin[SortRGBAxis] + NewColorSubdiv[*NewColorMapSize].RGBWidth[SortRGBAxis] - MinColor; NewColorSubdiv[*NewColorMapSize].RGBMin[SortRGBAxis] = MinColor; NewColorSubdiv[Index].RGBWidth[SortRGBAxis] = MaxColor - NewColorSubdiv[Index].RGBMin[SortRGBAxis]; (*NewColorMapSize)++; } return GIF_OK; } // Quantize high resolution image into lower one. Input image consists of a // 2D array for each of the RGB colors with size Width by Height. There is no // Color map for the input. Output is a quantized image with 2D array of // indexes into the output color map. // Note input image can be 24 bits at the most (8 for red/green/blue) and // the output has 256 colors at the most (256 entries in the color map.). // ColorMapSize specifies size of color map up to 256 and will be updated to // real size before returning. // Also non of the parameter are allocated by this routine. // This function returns GIF_OK if succesfull, GIF_ERROR otherwise. static int QuantizeBuffer(unsigned int Width, unsigned int Height, int *ColorMapSize, GifByteType * RedInput, GifByteType * GreenInput, GifByteType * BlueInput, GifByteType * OutputBuffer, GifColorType * OutputColorMap) { unsigned int Index, NumOfEntries; int i, j, MaxRGBError[3]; unsigned int NewColorMapSize; long Red, Green, Blue; NewColorMapType NewColorSubdiv[256]; QuantizedColorType *ColorArrayEntries, *QuantizedColor; ColorArrayEntries = (QuantizedColorType *)malloc( sizeof(QuantizedColorType) * COLOR_ARRAY_SIZE); if (ColorArrayEntries == NULL) { return GIF_ERROR; } for (i = 0; i < COLOR_ARRAY_SIZE; i++) { ColorArrayEntries[i].RGB[0] = i >> (2 * BITS_PER_PRIM_COLOR); ColorArrayEntries[i].RGB[1] = (i >> BITS_PER_PRIM_COLOR) & MAX_PRIM_COLOR; ColorArrayEntries[i].RGB[2] = i & MAX_PRIM_COLOR; ColorArrayEntries[i].Count = 0; } // Sample the colors and their distribution: for (i = 0; i < (int)(Width * Height); i++) { Index = ((RedInput[i] >> (8 - BITS_PER_PRIM_COLOR)) << (2 * BITS_PER_PRIM_COLOR)) + ((GreenInput[i] >> (8 - BITS_PER_PRIM_COLOR)) << BITS_PER_PRIM_COLOR) + (BlueInput[i] >> (8 - BITS_PER_PRIM_COLOR)); ColorArrayEntries[Index].Count++; } // Put all the colors in the first entry of the color map, and call the // recursive subdivision process. for (i = 0; i < 256; i++) { NewColorSubdiv[i].QuantizedColors = NULL; NewColorSubdiv[i].Count = NewColorSubdiv[i].NumEntries = 0; for (j = 0; j < 3; j++) { NewColorSubdiv[i].RGBMin[j] = 0; NewColorSubdiv[i].RGBWidth[j] = 255; } } // Find the non empty entries in the color table and chain them: for (i = 0; i < COLOR_ARRAY_SIZE; i++) if (ColorArrayEntries[i].Count > 0) break; QuantizedColor = NewColorSubdiv[0].QuantizedColors = &ColorArrayEntries[i]; NumOfEntries = 1; while (++i < COLOR_ARRAY_SIZE) if (ColorArrayEntries[i].Count > 0) { QuantizedColor->Pnext = &ColorArrayEntries[i]; QuantizedColor = &ColorArrayEntries[i]; NumOfEntries++; } QuantizedColor->Pnext = NULL; NewColorSubdiv[0].NumEntries = NumOfEntries; // Different sampled colors NewColorSubdiv[0].Count = ((long)Width) * Height; // Pixels NewColorMapSize = 1; if (SubdivColorMap(NewColorSubdiv, *ColorMapSize, &NewColorMapSize) != GIF_OK) { free((char *)ColorArrayEntries); return GIF_ERROR; } if (NewColorMapSize < *ColorMapSize) { // And clear rest of color map: for (i = NewColorMapSize; i < *ColorMapSize; i++) OutputColorMap[i].Red = OutputColorMap[i].Green = OutputColorMap[i].Blue = 0; } // Average the colors in each entry to be the color to be used in the // output color map, and plug it into the output color map itself. for (i = 0; i < NewColorMapSize; i++) { if ((j = NewColorSubdiv[i].NumEntries) > 0) { QuantizedColor = NewColorSubdiv[i].QuantizedColors; Red = Green = Blue = 0; while (QuantizedColor) { QuantizedColor->NewColorIndex = i; Red += QuantizedColor->RGB[0]; Green += QuantizedColor->RGB[1]; Blue += QuantizedColor->RGB[2]; QuantizedColor = QuantizedColor->Pnext; } OutputColorMap[i].Red = (Red << (8 - BITS_PER_PRIM_COLOR)) / j; OutputColorMap[i].Green = (Green << (8 - BITS_PER_PRIM_COLOR)) / j; OutputColorMap[i].Blue = (Blue << (8 - BITS_PER_PRIM_COLOR)) / j; } else fprintf(stderr, "\n: Null entry in quantized color map - that's weird.\n"); } // Finally scan the input buffer again and put the mapped index in the // output buffer. MaxRGBError[0] = MaxRGBError[1] = MaxRGBError[2] = 0; for (i = 0; i < (int)(Width * Height); i++) { Index = ((RedInput[i] >> (8 - BITS_PER_PRIM_COLOR)) << (2 * BITS_PER_PRIM_COLOR)) + ((GreenInput[i] >> (8 - BITS_PER_PRIM_COLOR)) << BITS_PER_PRIM_COLOR) + (BlueInput[i] >> (8 - BITS_PER_PRIM_COLOR)); Index = ColorArrayEntries[Index].NewColorIndex; OutputBuffer[i] = Index; if (MaxRGBError[0] < ABS(OutputColorMap[Index].Red - RedInput[i])) MaxRGBError[0] = ABS(OutputColorMap[Index].Red - RedInput[i]); if (MaxRGBError[1] < ABS(OutputColorMap[Index].Green - GreenInput[i])) MaxRGBError[1] = ABS(OutputColorMap[Index].Green - GreenInput[i]); if (MaxRGBError[2] < ABS(OutputColorMap[Index].Blue - BlueInput[i])) MaxRGBError[2] = ABS(OutputColorMap[Index].Blue - BlueInput[i]); } free((char *)ColorArrayEntries); *ColorMapSize = NewColorMapSize; return GIF_OK; } #undef ABS #undef COLOR_ARRAY_SIZE #undef BITS_PER_PRIM_COLOR #undef MAX_PRIM_COLOR #endif // End of ugly QuantizeBuffer definition for giflib 4.2 static void GifErrorHandler(const char* fname, int error) { #if defined(GIF_LIB_VERSION) || (GIFLIB_MAJOR < 5) const char* error_string = GifErrorString(error); #else const char* error_string = "unknown error (giflib < 5)"; #endif boost::format m("GIF: error in %s(): (%d) %s"); m % fname % error; if (error_string) m % error_string; else m % "unknown error"; throw std::runtime_error(m.str()); } static int DGifDeleter (GifFileType* ptr) { #if defined(GIF_LIB_VERSION) || (GIFLIB_MAJOR < 5) || (GIFLIB_MAJOR == 5) && (GIFLIB_MINOR < 1) return DGifCloseFile(ptr); #else int error = GIF_OK; int retval = DGifCloseFile(ptr, &error); if (retval == GIF_ERROR) { //do not call GifErrorHandler here, or the interpreter will crash const char* error_string = GifErrorString(retval); boost::format m("In DGifCloseFile(): (%d) %s"); m % error; if (error_string) m % error_string; else m % "unknown error"; std::cerr << "ERROR: " << m.str() << std::endl; } return retval; #endif } static boost::shared_ptr make_dfile(const char *filename) { #if defined(GIF_LIB_VERSION) || (GIFLIB_MAJOR < 5) GifFileType* fp = DGifOpenFileName(filename); if (!fp) { boost::format m("cannot open file `%s'"); m % filename; throw std::runtime_error(m.str()); } #else int error = GIF_OK; GifFileType* fp = DGifOpenFileName(filename, &error); if (!fp) GifErrorHandler("DGifOpenFileName", error); #endif return boost::shared_ptr(fp, DGifDeleter); } static int EGifDeleter (GifFileType* ptr) { #if defined(GIF_LIB_VERSION) || (GIFLIB_MAJOR < 5) || (GIFLIB_MAJOR == 5) && (GIFLIB_MINOR < 1) return EGifCloseFile(ptr); #else int error = GIF_OK; int retval = EGifCloseFile(ptr, &error); if (retval == GIF_ERROR) { //do not call GifErrorHandler here, or the interpreter will crash const char* error_string = GifErrorString(error); boost::format m("In EGifCloseFile(): (%d) %s"); m % error; if (error_string) m % error_string; else m % "unknown error"; std::cerr << "ERROR: " << m.str() << std::endl; } return retval; #endif } static boost::shared_ptr make_efile(const char *filename) { #if defined(GIF_LIB_VERSION) || (GIFLIB_MAJOR < 5) GifFileType* fp = EGifOpenFileName(filename, false); if (!fp) { boost::format m("cannot open file `%s'"); m % filename; throw std::runtime_error(m.str()); } #else int error = GIF_OK; GifFileType* fp = EGifOpenFileName(filename, false, &error); if (!fp) GifErrorHandler("EGifOpenFileName", error); #endif return boost::shared_ptr(fp, EGifDeleter); } /** * LOADING */ static void im_peek(const std::string& path, bob::io::base::array::typeinfo& info) { // 1. GIF file opening boost::shared_ptr in_file = make_dfile(path.c_str()); // 2. Set typeinfo variables info.dtype = bob::io::base::array::t_uint8; info.nd = 3; info.shape[0] = 3; info.shape[1] = in_file->SHeight; info.shape[2] = in_file->SWidth; info.update_strides(); } static void im_load_color(boost::shared_ptr in_file, bob::io::base::array::interface& b) { const bob::io::base::array::typeinfo& info = b.type(); const size_t height0 = info.shape[1]; const size_t width0 = info.shape[2]; const size_t frame_size = height0*width0; // The following piece of code is based on the giflib utility called gif2rgb // Allocate the screen as vector of column of rows. Note this // screen is device independent - it's the screen defined by the // GIF file parameters. std::vector > screen_buffer; // Size in bytes one row. int size = in_file->SWidth*sizeof(GifPixelType); // First row screen_buffer.push_back(boost::shared_array(new GifPixelType[in_file->SWidth])); // Set its color to BackGround for(int i=0; iSWidth; ++i) screen_buffer[0][i] = in_file->SBackGroundColor; for(int i=1; iSHeight; ++i) { // Allocate the other rows, and set their color to background too: screen_buffer.push_back(boost::shared_array(new GifPixelType[in_file->SWidth])); memcpy(screen_buffer[i].get(), screen_buffer[0].get(), size); } // Scan the content of the GIF file and load the image(s) in: GifRecordType record_type; GifByteType *extension; int InterlacedOffset[] = { 0, 4, 2, 1 }; // The way Interlaced image should. int InterlacedJumps[] = { 8, 8, 4, 2 }; // be read - offsets and jumps... int row, col, width, height, count, ext_code; int error = DGifGetRecordType(in_file.get(), &record_type); if(error == GIF_ERROR) GifErrorHandler("DGifGetRecordType", error); switch(record_type) { case IMAGE_DESC_RECORD_TYPE: error = DGifGetImageDesc(in_file.get()); if (error == GIF_ERROR) GifErrorHandler("DGifGetImageDesc", error); row = in_file->Image.Top; // Image Position relative to Screen. col = in_file->Image.Left; width = in_file->Image.Width; height = in_file->Image.Height; if(in_file->Image.Left + in_file->Image.Width > in_file->SWidth || in_file->Image.Top + in_file->Image.Height > in_file->SHeight) { throw std::runtime_error("GIF: the dimensions of image larger than the dimensions of the canvas."); } if(in_file->Image.Interlace) { // Need to perform 4 passes on the images: for(int i=count=0; i<4; ++i) for(int j=row+InterlacedOffset[i]; jImage.ColorMap ? in_file->Image.ColorMap : in_file->SColorMap); if(ColorMap == 0) throw std::runtime_error("GIF: image does not have a colormap"); // Put data into C-style buffer uint8_t *element_r = reinterpret_cast(b.ptr()); uint8_t *element_g = element_r + frame_size; uint8_t *element_b = element_g + frame_size; GifRowType gif_row; GifColorType *ColorMapEntry; for(int i=0; iSHeight; ++i) { gif_row = screen_buffer[i].get(); for(int j=0; jSWidth; ++j) { ColorMapEntry = &ColorMap->Colors[gif_row[j]]; *element_r++ = ColorMapEntry->Red; *element_g++ = ColorMapEntry->Green; *element_b++ = ColorMapEntry->Blue; } } } static void im_load(const std::string& filename, bob::io::base::array::interface& b) { // 1. GIF file opening boost::shared_ptr in_file = make_dfile(filename.c_str()); // 2. Read content const bob::io::base::array::typeinfo& info = b.type(); if (info.dtype == bob::io::base::array::t_uint8) { if (info.nd == 3) im_load_color(in_file, b); else { boost::format m("GIF: cannot read object of type `%s' from file `%s'"); m % info.str() % filename; throw std::runtime_error(m.str()); } } else { boost::format m("GIF: cannot read object of type `%s' from file `%s'"); m % info.str() % filename; throw std::runtime_error(m.str()); } } /** * SAVING */ static void im_save_color(const bob::io::base::array::interface& b, boost::shared_ptr out_file) { const bob::io::base::array::typeinfo& info = b.type(); const int height = info.shape[1]; const int width = info.shape[2]; const size_t frame_size = height * width; // pointer to a single row (tiff_bytep is a typedef to unsigned char or char) const uint8_t *element_r = static_cast(b.ptr()); const uint8_t *element_g = element_r + frame_size; const uint8_t *element_b = element_g + frame_size; GifByteType *red_buffer = const_cast(reinterpret_cast(element_r)); GifByteType *green_buffer = const_cast(reinterpret_cast(element_g)); GifByteType *blue_buffer = const_cast(reinterpret_cast(element_b)); boost::shared_array output_buffer(new GifByteType[width*height]); // The following piece of code is based on the giflib utility called gif2rgb const int ExpNumOfColors = 8; int ColorMapSize = 1 << ExpNumOfColors; ColorMapObject *OutputColorMap = 0; #if defined(GIF_LIB_VERSION) || (GIFLIB_MAJOR < 5) if((OutputColorMap = MakeMapObject(ColorMapSize, NULL)) == 0) #else if((OutputColorMap = GifMakeMapObject(ColorMapSize, NULL)) == 0) #endif throw std::runtime_error("GIF: error in GifMakeMapObject()."); int error; #if defined(GIF_LIB_VERSION) || (GIFLIB_MAJOR < 5) error = QuantizeBuffer(width, height, &ColorMapSize, red_buffer, green_buffer, blue_buffer, output_buffer.get(), OutputColorMap->Colors); #else error = GifQuantizeBuffer(width, height, &ColorMapSize, red_buffer, green_buffer, blue_buffer, output_buffer.get(), OutputColorMap->Colors); #endif if (error == GIF_ERROR) GifErrorHandler("GifQuantizeBuffer", error); error = EGifPutScreenDesc(out_file.get(), width, height, ExpNumOfColors, 0, OutputColorMap); if (error == GIF_ERROR) GifErrorHandler("EGifPutScreenDesc", error); error = EGifPutImageDesc(out_file.get(), 0, 0, width, height, false, NULL); if (error == GIF_ERROR) GifErrorHandler("EGifPutImageDesc", error); GifByteType *ptr = output_buffer.get(); for(int i=0; i out_file = make_efile(filename.c_str()); // 2. Set the image information here: const bob::io::base::array::typeinfo& info = array.type(); // 3. Writes content if(info.dtype == bob::io::base::array::t_uint8) { if(info.nd == 3) { if(info.shape[0] != 3) throw std::runtime_error("color image does not have 3 planes on 1st. dimension"); im_save_color(array, out_file); } else { boost::format m("GIF: cannot save object of type `%s' to file `%s'"); m % info.str() % filename; throw std::runtime_error(m.str()); } } else { boost::format m("GIF: cannot save object of type `%s' to file `%s'"); m % info.str() % filename; throw std::runtime_error(m.str()); } } /** * GIF class */ bob::io::image::GIFFile::GIFFile(const char* path, char mode) : m_filename(path), m_newfile(true) { //checks if file exists if (mode == 'r' && !boost::filesystem::exists(path)) { boost::format m("file '%s' is not readable"); m % path; throw std::runtime_error(m.str()); } if (mode == 'r' || (mode == 'a' && boost::filesystem::exists(path))) { im_peek(path, m_type); m_length = 1; m_newfile = false; } else { m_length = 0; m_newfile = true; } } void bob::io::image::GIFFile::read(bob::io::base::array::interface& buffer, size_t index) { if (m_newfile) throw std::runtime_error("uninitialized image file cannot be read"); if (!buffer.type().is_compatible(m_type)) buffer.set(m_type); if (index != 0) throw std::runtime_error("cannot read image with index > 0 -- there is only one image in an image file"); if(!buffer.type().is_compatible(m_type)) buffer.set(m_type); im_load(m_filename, buffer); } size_t bob::io::image::GIFFile::append(const bob::io::base::array::interface& buffer) { if (m_newfile) { im_save(m_filename, buffer); m_type = buffer.type(); m_newfile = false; m_length = 1; return 0; } throw std::runtime_error("image files only accept a single array"); } void bob::io::image::GIFFile::write (const bob::io::base::array::interface& buffer) { //overwriting position 0 should always work if (m_newfile) { append(buffer); return; } throw std::runtime_error("image files only accept a single array"); } std::string bob::io::image::GIFFile::s_codecname = "bob.image_gif"; boost::shared_ptr make_gif_file (const char* path, char mode) { return boost::make_shared(path, mode); } #endif // HAVE_GIFLIB