From b9af7a82745faedb37ce2e607d57f515f17289ee Mon Sep 17 00:00:00 2001 From: Andre Anjos <andre.anjos@idiap.ch> Date: Fri, 30 Jun 2017 16:02:23 +0200 Subject: [PATCH] Re-estructured Preprocessor to simplify experimentation and configuration --- .../vein/configurations/maximum_curvature.py | 19 +- .../configurations/repeated_line_tracking.py | 19 +- .../vein/configurations/wide_line_detector.py | 19 +- bob/bio/vein/database/__init__.py | 23 + bob/bio/vein/database/fv3d.py | 97 ++-- bob/bio/vein/database/utfvp.py | 2 +- bob/bio/vein/database/verafinger.py | 28 +- bob/bio/vein/preprocessor/__init__.py | 35 +- bob/bio/vein/preprocessor/mask.py | 430 ++++++++++++++++++ bob/bio/vein/preprocessor/normalize.py | 185 ++++++++ bob/bio/vein/preprocessor/preprocessor.py | 87 ++++ 11 files changed, 880 insertions(+), 64 deletions(-) create mode 100644 bob/bio/vein/preprocessor/mask.py create mode 100644 bob/bio/vein/preprocessor/normalize.py create mode 100644 bob/bio/vein/preprocessor/preprocessor.py diff --git a/bob/bio/vein/configurations/maximum_curvature.py b/bob/bio/vein/configurations/maximum_curvature.py index f92b50f..ba69e19 100644 --- a/bob/bio/vein/configurations/maximum_curvature.py +++ b/bob/bio/vein/configurations/maximum_curvature.py @@ -20,8 +20,23 @@ or the attribute ``sub_directory`` in a configuration file loaded **after** this resource. """ -from ..preprocessor import FingerCrop -preprocessor = FingerCrop() +from ..preprocessor import Padder, TomesLeeMask, HuangNormalization, NoFilter +from ..preprocessor import Preprocessor + +# Filter sizes for the vertical "high-pass" filter +FILTER_HEIGHT = 4 +FILTER_WIDTH = 40 + +# Padding (to create a buffer during normalization) +PAD_WIDTH = 5 +PAD_CONST = 51 + +preprocessor = Preprocessor( + mask=TomesLeeMask(filter_height=FILTER_HEIGHT, filter_width=FILTER_WIDTH), + normalize=HuangNormalization(padding_width=PAD_WIDTH, + padding_constant=PAD_CONST), + filter=NoFilter(), + ) """Preprocessing using gray-level based finger cropping and no post-processing """ diff --git a/bob/bio/vein/configurations/repeated_line_tracking.py b/bob/bio/vein/configurations/repeated_line_tracking.py index 46d91d7..2050174 100644 --- a/bob/bio/vein/configurations/repeated_line_tracking.py +++ b/bob/bio/vein/configurations/repeated_line_tracking.py @@ -20,8 +20,23 @@ or the attribute ``sub_directory`` in a configuration file loaded **after** this resource. """ -from ..preprocessor import FingerCrop -preprocessor = FingerCrop() +from ..preprocessor import Padder, TomesLeeMask, HuangNormalization, NoFilter +from ..preprocessor import Preprocessor + +# Filter sizes for the vertical "high-pass" filter +FILTER_HEIGHT = 4 +FILTER_WIDTH = 40 + +# Padding (to create a buffer during normalization) +PAD_WIDTH = 5 +PAD_CONST = 51 + +preprocessor = Preprocessor( + mask=TomesLeeMask(filter_height=FILTER_HEIGHT, filter_width=FILTER_WIDTH), + normalize=HuangNormalization(padding_width=PAD_WIDTH, + padding_constant=PAD_CONST), + filter=NoFilter(), + ) """Preprocessing using gray-level based finger cropping and no post-processing """ diff --git a/bob/bio/vein/configurations/wide_line_detector.py b/bob/bio/vein/configurations/wide_line_detector.py index e025093..aef74c0 100644 --- a/bob/bio/vein/configurations/wide_line_detector.py +++ b/bob/bio/vein/configurations/wide_line_detector.py @@ -20,8 +20,23 @@ or the attribute ``sub_directory`` in a configuration file loaded **after** this resource. """ -from ..preprocessor import FingerCrop -preprocessor = FingerCrop() +from ..preprocessor import Padder, TomesLeeMask, HuangNormalization, NoFilter +from ..preprocessor import Preprocessor + +# Filter sizes for the vertical "high-pass" filter +FILTER_HEIGHT = 4 +FILTER_WIDTH = 40 + +# Padding (to create a buffer during normalization) +PAD_WIDTH = 5 +PAD_CONST = 51 + +preprocessor = Preprocessor( + mask=TomesLeeMask(filter_height=FILTER_HEIGHT, filter_width=FILTER_WIDTH), + normalize=HuangNormalization(padding_width=PAD_WIDTH, + padding_constant=PAD_CONST), + filter=NoFilter(), + ) """Preprocessing using gray-level based finger cropping and no post-processing """ diff --git a/bob/bio/vein/database/__init__.py b/bob/bio/vein/database/__init__.py index e69de29..b930169 100644 --- a/bob/bio/vein/database/__init__.py +++ b/bob/bio/vein/database/__init__.py @@ -0,0 +1,23 @@ +#!/usr/bin/env python +# vim: set fileencoding=utf-8 : + +'''Database definitions for Vein Recognition''' + + +import numpy + + +class AnnotatedArray(numpy.ndarray): + """Defines a numpy array subclass that can carry its own metadata + + Copied from: https://docs.scipy.org/doc/numpy-1.12.0/user/basics.subclassing.html#slightly-more-realistic-example-attribute-added-to-existing-array + """ + + def __new__(cls, input_array, metadata=None): + obj = numpy.asarray(input_array).view(cls) + obj.metadata = metadata if metadata is not None else dict() + return obj + + def __array_finalize__(self, obj): + if obj is None: return + self.metadata = getattr(obj, 'metadata', dict()) diff --git a/bob/bio/vein/database/fv3d.py b/bob/bio/vein/database/fv3d.py index db3c02a..8d8251d 100644 --- a/bob/bio/vein/database/fv3d.py +++ b/bob/bio/vein/database/fv3d.py @@ -4,80 +4,93 @@ import numpy + from bob.bio.base.database import BioFile, BioDatabase +from . import AnnotatedArray + class File(BioFile): - """ - Implements extra properties of vein files for the Vera Fingervein database + """ + Implements extra properties of vein files for the Vera Fingervein database + + + Parameters: + + f (object): Low-level file (or sample) object that is kept inside + + """ + def __init__(self, f): - Parameters: + super(File, self).__init__(client_id=f.finger.unique_name, path=f.path, + file_id=f.id) + self.__f = f - f (object): Low-level file (or sample) object that is kept inside - """ + def mask(self, shape): + """Returns the binary mask from the ROI annotations available""" - def __init__(self, f): + return poly_to_mask(shape, self.__f.roi()) - super(File, self).__init__(client_id=f.finger.unique_name, path=f.path, - file_id=f.id) - self.__f = f + def load(self, *args, **kwargs): + """(Overrides base method) Loads both image and mask""" - def load(self, *args, **kwargs): - """(Overrides base method) Loads both image and mask""" + image = super(File, self).load(*args, **kwargs) + roi = self.__f.roi() - image = super(File, self).load(*args, **kwargs) + # calculates the 90 degrees anti-clockwise rotated RoI points + h, w = image.shape + roi = [(x,-y+h) for k in roi] - # image is upside, whereas this package requires fingers to be horizontal - return numpy.rot90(image) + return ImageWithAnnotation(numpy.rot90(image), metadata=dict(mask=roi)) class Database(BioDatabase): - """ - Implements verification API for querying Vera Fingervein database. - """ + """ + Implements verification API for querying Vera Fingervein database. + """ - def __init__(self, **kwargs): + def __init__(self, **kwargs): - super(Database, self).__init__(name='fv3d', **kwargs) - from bob.db.fv3d.query import Database as LowLevelDatabase - self.__db = LowLevelDatabase() + super(Database, self).__init__(name='fv3d', **kwargs) + from bob.db.fv3d.query import Database as LowLevelDatabase + self.__db = LowLevelDatabase() - self.low_level_group_names = ('train', 'dev', 'eval') - self.high_level_group_names = ('world', 'dev', 'eval') + self.low_level_group_names = ('train', 'dev', 'eval') + self.high_level_group_names = ('world', 'dev', 'eval') - def groups(self): + def groups(self): - return self.convert_names_to_highlevel(self.__db.groups(), - self.low_level_group_names, self.high_level_group_names) + return self.convert_names_to_highlevel(self.__db.groups(), + self.low_level_group_names, self.high_level_group_names) - def client_id_from_model_id(self, model_id, group='dev'): - """Required as ``model_id != client_id`` on this database""" + def client_id_from_model_id(self, model_id, group='dev'): + """Required as ``model_id != client_id`` on this database""" - return self.__db.finger_name_from_model_id(model_id) + return self.__db.finger_name_from_model_id(model_id) - def model_ids_with_protocol(self, groups=None, protocol=None, **kwargs): + def model_ids_with_protocol(self, groups=None, protocol=None, **kwargs): - groups = self.convert_names_to_lowlevel(groups, - self.low_level_group_names, self.high_level_group_names) - return self.__db.model_ids(groups=groups, protocol=protocol) + groups = self.convert_names_to_lowlevel(groups, + self.low_level_group_names, self.high_level_group_names) + return self.__db.model_ids(groups=groups, protocol=protocol) - def objects(self, groups=None, protocol=None, purposes=None, - model_ids=None, **kwargs): + def objects(self, groups=None, protocol=None, purposes=None, + model_ids=None, **kwargs): - groups = self.convert_names_to_lowlevel(groups, - self.low_level_group_names, self.high_level_group_names) - retval = self.__db.objects(groups=groups, protocol=protocol, - purposes=purposes, model_ids=model_ids, **kwargs) + groups = self.convert_names_to_lowlevel(groups, + self.low_level_group_names, self.high_level_group_names) + retval = self.__db.objects(groups=groups, protocol=protocol, + purposes=purposes, model_ids=model_ids, **kwargs) - return [File(f) for f in retval] + return [File(f) for f in retval] - def annotations(self, file): - return None + def annotations(self, file): + return None diff --git a/bob/bio/vein/database/utfvp.py b/bob/bio/vein/database/utfvp.py index e9099b8..91b09ea 100644 --- a/bob/bio/vein/database/utfvp.py +++ b/bob/bio/vein/database/utfvp.py @@ -42,7 +42,7 @@ class Database(BioDatabase): model_ids=None, **kwargs): retval = self._db.objects(groups=groups, protocol=protocol, - purposes=purposes, model_ids=model_ids, **kwargs) + purposes=purposes, model_ids=model_ids, **kwargs) return [File(f) for f in retval] diff --git a/bob/bio/vein/database/verafinger.py b/bob/bio/vein/database/verafinger.py index d8cea83..46d3538 100644 --- a/bob/bio/vein/database/verafinger.py +++ b/bob/bio/vein/database/verafinger.py @@ -5,6 +5,8 @@ from bob.bio.base.database import BioFile, BioDatabase +from . import AnnotatedArray + class File(BioFile): """ @@ -20,23 +22,17 @@ class File(BioFile): def __init__(self, f): super(File, self).__init__(client_id=f.unique_finger_name, path=f.path, - file_id=f.id) + file_id=f.id) self.__f = f - def mask(self): - """Returns the binary mask from the ROI annotations available""" - - from ..preprocessor.utils import poly_to_mask - - # The size of images in this database is (250, 665) pixels (h, w) - return poly_to_mask((250, 665), self.__f.roi()) def load(self, *args, **kwargs): """(Overrides base method) Loads both image and mask""" image = super(File, self).load(*args, **kwargs) - - return image, self.mask() + roi = self.__f.roi() + mask = poly_to_mask(image.shape, roi) + return AnnotatedArray(image, metadata=dict(mask=mask, roi=roi)) class Database(BioDatabase): @@ -56,28 +52,32 @@ class Database(BioDatabase): def groups(self): return self.convert_names_to_highlevel(self._db.groups(), - self.low_level_group_names, self.high_level_group_names) + self.low_level_group_names, self.high_level_group_names) def client_id_from_model_id(self, model_id, group='dev'): """Required as ``model_id != client_id`` on this database""" return self._db.finger_name_from_model_id(model_id) + def model_ids_with_protocol(self, groups=None, protocol=None, **kwargs): groups = self.convert_names_to_lowlevel(groups, - self.low_level_group_names, self.high_level_group_names) + self.low_level_group_names, self.high_level_group_names) return self._db.model_ids(groups=groups, protocol=protocol) + def objects(self, groups=None, protocol=None, purposes=None, model_ids=None, **kwargs): groups = self.convert_names_to_lowlevel(groups, - self.low_level_group_names, self.high_level_group_names) + self.low_level_group_names, self.high_level_group_names) retval = self._db.objects(groups=groups, protocol=protocol, - purposes=purposes, model_ids=model_ids, **kwargs) + purposes=purposes, model_ids=model_ids, + **kwargs) return [File(f) for f in retval] + def annotations(self, file): return None diff --git a/bob/bio/vein/preprocessor/__init__.py b/bob/bio/vein/preprocessor/__init__.py index 41d1e04..7d24970 100644 --- a/bob/bio/vein/preprocessor/__init__.py +++ b/bob/bio/vein/preprocessor/__init__.py @@ -1,4 +1,37 @@ -from .FingerCrop import FingerCrop +from .mask import Padder, Masker, NoMask, AnnotatedRoIMask +from .mask import KonoMask, LeeMask, TomesLeeMask +from .normalize import Normalizer, NoNormalization, HuangNormalization +from .filters import Filter, NoFilter, HistogramEqualization +from .preprocessor import Preprocessor # gets sphinx autodoc done right - don't remove it +def __appropriate__(*args): + """Says object was actually declared here, an not on the import module. + + Parameters: + + *args: An iterable of objects to modify + + Resolves `Sphinx referencing issues + <https://github.com/sphinx-doc/sphinx/issues/3048>` + """ + + for obj in args: obj.__module__ = __name__ + +__appropriate__( + Padder, + Masker, + NoMask, + AnnotatedRoIMask, + KonoMask, + LeeMask, + TomesLeeMask, + Normalizer, + NoNormalization, + HuangNormalization, + Filter, + NoFilter, + HistogramEqualization, + Preprocessor, + ) __all__ = [_ for _ in dir() if not _.startswith('_')] diff --git a/bob/bio/vein/preprocessor/mask.py b/bob/bio/vein/preprocessor/mask.py new file mode 100644 index 0000000..aa09d17 --- /dev/null +++ b/bob/bio/vein/preprocessor/mask.py @@ -0,0 +1,430 @@ +#!/usr/bin/env python +# vim: set fileencoding=utf-8 : + +'''Base utilities for mask processing''' + +import numpy +import scipy.ndimage + +from .utils import poly_to_mask + + +class Padder(object): + """A class that pads the input image returning a new object + + + Parameters: + + padding_width (:py:obj:`int`, optional): How much padding (in pixels) to + add around the borders of the input image. We normally always keep this + value on its default (5 pixels). This parameter is always used before + normalizing the finger orientation. + + padding_constant (:py:obj:`int`, optional): What is the value of the pixels + added to the padding. This number should be a value between 0 and 255. + (From Pedro Tome: for UTFVP (high-quality samples), use 0. For the VERA + Fingervein database (low-quality samples), use 51 (that corresponds to + 0.2 in a float image with values between 0 and 1). This parameter is + always used before normalizing the finger orientation. + + """ + + def __init__(self, padding_width = 5, padding_constant = 51): + + self.padding_width = padding_width + self.padding_constant = padding_constant + + + def __call__(self, image): + '''Inputs an image, returns a padded (larger) image + + Parameters: + + image (numpy.ndarray): A 2D numpy array of type ``uint8`` with the + input image + + + Returns: + + numpy.ndarray: A 2D numpy array of the same type as the input, but with + the extra padding + + ''' + + return numpy.pad(image, self.padding_width, 'constant', + constant_values = self.padding_constant) + + + +class Masker(object): + """This is the base class for all maskers + + It defines the minimum requirements for all derived masker classes. + + + """ + + def __init__(self): + pass + + + def __call__(self, image): + """Overwrite this method to implement your masking method + + + Parameters: + + image (numpy.ndarray): A 2D numpy array of type ``uint8`` with the + input image + + + Returns: + + numpy.ndarray: A 2D numpy array of type boolean with the caculated + mask. ``True`` values correspond to regions where the finger is + situated + + """ + + raise NotImplemented('You must implement the __call__ slot') + + +class NoMask(object): + """Implements no masking - i.e. returns a mask the same size as input + """ + + def __init__(self): + pass + + + def __call__(self, image): + """Returns a big mask + + + Parameters: + + image (numpy.ndarray): A 2D numpy array of type ``uint8`` with the + input image + + + Returns: + + numpy.ndarray: A 2D numpy array of type boolean with the caculated + mask. ``True`` values correspond to regions where the finger is + situated + + + """ + return numpy.ones(image.shape, dtype='bool') + + +class AnnotatedRoIMask(object): + """Devises the mask from the annotated RoI""" + + + def __init__(self): + pass + + + def __call__(self, image): + """Returns a mask extrapolated from RoI annotations + + + Parameters: + + image (bob.bio.vein.database.AnnotatedArray): A 2D numpy array of type + ``uint8`` with the input image containing an attribute called + ``metadata`` (a python dictionary). The ``metadata`` object just + contain a key called ``roi`` containing the annotated points + + + Returns: + + numpy.ndarray: A 2D numpy array of type boolean with the caculated + mask. ``True`` values correspond to regions where the finger is + situated + + + """ + return poly_to_mask(image.shape, image.metadata['roi']) + + +class KonoMask(Masker): + """Estimates the finger region given an input NIR image using Kono et al. + + This method is based on the work of M. Kono, H. Ueki and S. Umemura. + Near-infrared finger vein patterns for personal identification, Applied + Optics, Vol. 41, Issue 35, pp. 7429-7436 (2002). + + + Parameters: + + sigma (:py:obj:`float`, optional): The standard deviation of the gaussian + blur filter to apply for low-passing the input image (background + extraction). Defaults to ``5``. + + padder (:py:class:`Padder`, optional): If passed, will pad the image before + evaluating the mask. The returned value will have the padding removed and + is, therefore, of the exact size of the input image. + + """ + + def __init__(self, sigma=5, padder=None): + + self.sigma = sigma + self.padder = padder + + + def __call__(self, image): + '''Inputs an image, returns a mask (numpy boolean array) + + Parameters: + + image (numpy.ndarray): A 2D numpy array of type ``uint8`` with the + input image + + + Returns: + + numpy.ndarray: A 2D numpy array of type boolean with the caculated + mask. ``True`` values correspond to regions where the finger is + situated + + ''' + + image = image if self.padder is None else self.padder(image) + + img_h,img_w = image.shape + + # Determine lower half starting point + if numpy.mod(img_h,2) == 0: + half_img_h = img_h/2 + 1 + else: + half_img_h = numpy.ceil(img_h/2) + + #Construct filter kernel + winsize = numpy.ceil(4*self.sigma) + + x = numpy.arange(-winsize, winsize+1) + y = numpy.arange(-winsize, winsize+1) + X, Y = numpy.meshgrid(x, y) + + hy = (-Y/(2*math.pi*self.sigma**4)) * \ + numpy.exp(-(X**2 + Y**2)/(2*self.sigma**2)) + + # Filter the image with the directional kernel + fy = scipy.ndimage.convolve(image, hy, mode='nearest') + + # Upper part of filtred image + img_filt_up = fy[0:half_img_h,:] + y_up = img_filt_up.argmax(axis=0) + + # Lower part of filtred image + img_filt_lo = fy[half_img_h-1:,:] + y_lo = img_filt_lo.argmin(axis=0) + + # Fill region between upper and lower edges + finger_mask = numpy.ndarray(image.shape, numpy.bool) + finger_mask[:,:] = False + + for i in range(0,img_w): + finger_mask[y_up[i]:y_lo[i]+image.shape[0]-half_img_h+2,i] = True + + if not self.padder: + return finger_mask + else: + w = self.padder.padding_width + return finger_mask[w:-w,w:-w] + + +class LeeMask(Masker): + """Estimates the finger region given an input NIR image using Lee et al. + + This method is based on the work of Finger vein recognition using + minutia-based alignment and local binary pattern-based feature extraction, + E.C. Lee, H.C. Lee and K.R. Park, International Journal of Imaging Systems + and Technology, Volume 19, Issue 3, September 2009, Pages 175--178, doi: + 10.1002/ima.20193 + + This code is based on the Matlab implementation by Bram Ton, available at: + + https://nl.mathworks.com/matlabcentral/fileexchange/35752-finger-region-localisation/content/lee_region.m + + In this method, we calculate the mask of the finger independently for each + column of the input image. Firstly, the image is convolved with a [1,-1] + filter of size ``(self.filter_height, self.filter_width)``. Then, the upper and + lower parts of the resulting filtered image are separated. The location of + the maxima in the upper part is located. The same goes for the location of + the minima in the lower part. The mask is then calculated, per column, by + considering it starts in the point where the maxima is in the upper part and + goes up to the point where the minima is detected on the lower part. + + + Parameters: + + filter_height (:py:obj:`int`, optional): Height of contour mask in pixels, + must be an even number + + filter_width (:py:obj:`int`, optional): Width of the contour mask in pixels + + """ + + def __init__(self, filter_height = 4, filter_width = 40, padder=None): + self.filter_height = filter_height + self.filter_width = filter_width + self.padder = padder + + + def __call__(self, image): + '''Inputs an image, returns a mask (numpy boolean array) + + Parameters: + + image (numpy.ndarray): A 2D numpy array of type ``uint8`` with the + input image + + + Returns: + + numpy.ndarray: A 2D numpy array of type boolean with the caculated + mask. ``True`` values correspond to regions where the finger is + situated + + ''' + + image = image if self.padder is None else self.padder(image) + + img_h,img_w = image.shape + + # Determine lower half starting point + half_img_h = int(img_h/2) + + # Construct mask for filtering + mask = numpy.ones((self.filter_height,self.filter_width), dtype='float64') + mask[int(self.filter_height/2):,:] = -1.0 + + img_filt = scipy.ndimage.convolve(image.astype(numpy.float64), mask, + mode='nearest') + + # Upper part of filtered image + img_filt_up = img_filt[:half_img_h,:] + y_up = img_filt_up.argmax(axis=0) + + # Lower part of filtered image + img_filt_lo = img_filt[half_img_h:,:] + y_lo = img_filt_lo.argmin(axis=0) + + # Translation: for all columns of the input image, set to True all pixels + # of the mask from index where the maxima occurred in the upper part until + # the index where the minima occurred in the lower part. + finger_mask = numpy.zeros(image.shape, dtype='bool') + for i in range(img_filt.shape[1]): + finger_mask[y_up[i]:(y_lo[i]+img_filt_lo.shape[0]+1), i] = True + + if not self.padder: + return finger_mask + else: + w = self.padder.padding_width + return finger_mask[w:-w,w:-w] + + +class TomesLeeMask(Masker): + """Estimates the finger region given an input NIR image using Lee et al. + + This method is based on the work of Finger vein recognition using + minutia-based alignment and local binary pattern-based feature extraction, + E.C. Lee, H.C. Lee and K.R. Park, International Journal of Imaging Systems + and Technology, Volume 19, Issue 3, September 2009, Pages 175--178, doi: + 10.1002/ima.20193 + + This code is a variant of the Matlab implementation by Bram Ton, available + at: + + https://nl.mathworks.com/matlabcentral/fileexchange/35752-finger-region-localisation/content/lee_region.m + + In this variant from Pedro Tome, the technique of filtering the image with + a horizontal filter is also applied on the vertical axis. + + + Parameters: + + filter_height (:py:obj:`int`, optional): Height of contour mask in pixels, + must be an even number + + filter_width (:py:obj:`int`, optional): Width of the contour mask in pixels + + """ + + def __init__(self, filter_height = 4, filter_width = 40, padder=None): + self.filter_height = filter_height + self.filter_width = filter_width + self.padder = padder + + + def __call__(self, image): + '''Inputs an image, returns a mask (numpy boolean array) + + Parameters: + + image (numpy.ndarray): A 2D numpy array of type ``uint8`` with the + input image + + + Returns: + + numpy.ndarray: A 2D numpy array of type boolean with the caculated + mask. ``True`` values correspond to regions where the finger is + situated + + ''' + + image = image if self.padder is None else self.padder(image) + + img_h,img_w = image.shape + + # Determine lower half starting point + half_img_h = img_h/2 + half_img_w = img_w/2 + + # Construct mask for filtering (up-bottom direction) + mask = numpy.ones((self.filter_height, self.filter_width), dtype='float64') + mask[int(self.filter_height/2):,:] = -1.0 + + img_filt = scipy.ndimage.convolve(image, mask, mode='nearest') + + # Upper part of filtred image + img_filt_up = img_filt[:int(half_img_h),:] + y_up = img_filt_up.argmax(axis=0) + + # Lower part of filtred image + img_filt_lo = img_filt[int(half_img_h):,:] + y_lo = img_filt_lo.argmin(axis=0) + + img_filt = scipy.ndimage.convolve(image, mask, mode='nearest') + + # Left part of filtered image + img_filt_lf = img_filt[:,:int(half_img_w)] + y_lf = img_filt_lf.argmax(axis=1) + + # Right part of filtred image + img_filt_rg = img_filt[:,int(half_img_w):] + y_rg = img_filt_rg.argmin(axis=1) + + finger_mask = numpy.zeros(image.shape, dtype='bool') + + for i in range(0,y_up.size): + finger_mask[y_up[i]:y_lo[i]+img_filt_lo.shape[0]+1,i] = True + + # Left region + for i in range(0,y_lf.size): + finger_mask[i,0:y_lf[i]+1] = False + + # Right region has always the finger ending, crop the padding with the + # meadian + finger_mask[:,int(numpy.median(y_rg)+img_filt_rg.shape[1]):] = False + + if not self.padder: + return finger_mask + else: + w = self.padder.padding_width + return finger_mask[w:-w,w:-w] diff --git a/bob/bio/vein/preprocessor/normalize.py b/bob/bio/vein/preprocessor/normalize.py new file mode 100644 index 0000000..0fce4cb --- /dev/null +++ b/bob/bio/vein/preprocessor/normalize.py @@ -0,0 +1,185 @@ +#!/usr/bin/env python +# vim: set fileencoding=utf-8 : + +'''Base utilities for normalization''' + +import math +import numpy +from PIL import Image + + +class Normalizer(object): + '''Objects of this class normalize the input image orientation and scale''' + + + def __init__(self): + pass + + + def __call__(self, image, mask): + '''Inputs image and mask and outputs a normalized version of those + + + Parameters: + + image (numpy.ndarray): raw image to normalize as 2D array of unsigned + 8-bit integers + + mask (numpy.ndarray): mask to normalize as 2D array of booleans + + + Returns: + + numpy.ndarray: A 2D boolean array with the same shape and data type of + the input image representing the newly aligned image. + + numpy.ndarray: A 2D boolean array with the same shape and data type of + the input mask representing the newly aligned mask. + + ''' + + raise NotImplemented('You must implement the __call__ slot') + + + +class NoNormalization(Normalizer): + '''Trivial implementation with no normalization''' + + + def __init__(self): + pass + + + def __call__(self, image, mask): + '''Returns the input parameters, without changing them + + + Parameters: + + image (numpy.ndarray): raw image to normalize as 2D array of unsigned + 8-bit integers + + mask (numpy.ndarray): mask to normalize as 2D array of booleans + + + Returns: + + numpy.ndarray: A 2D boolean array with the same shape and data type of + the input image representing the newly aligned image. + + numpy.ndarray: A 2D boolean array with the same shape and data type of + the input mask representing the newly aligned mask. + + ''' + + return image, mask + + + +class HuangNormalization(Normalizer): + '''Simple finger normalization from Huang et. al + + Based on B. Huang, Y. Dai, R. Li, D. Tang and W. Li, Finger-vein + authentication based on wide line detector and pattern normalization, + Proceedings on 20th International Conference on Pattern Recognition (ICPR), + 2010. + + This implementation aligns the finger to the centre of the image using an + affine transformation. Elliptic projection which is described in the + referenced paper is **not** included. + + In order to defined the affine transformation to be performed, the + algorithm first calculates the center for each edge (column wise) and + calculates the best linear fit parameters for a straight line passing + through those points. + ''' + + def __init__(self, padding_width=5, padding_constant=51): + self.padding_width = padding_width + self.padding_constant = padding_constant + + + def __call__(self, image, mask): + '''Inputs image and mask and outputs a normalized version of those + + + Parameters: + + image (numpy.ndarray): raw image to normalize as 2D array of unsigned + 8-bit integers + + mask (numpy.ndarray): mask to normalize as 2D array of booleans + + + Returns: + + numpy.ndarray: A 2D boolean array with the same shape and data type of + the input image representing the newly aligned image. + + numpy.ndarray: A 2D boolean array with the same shape and data type of + the input mask representing the newly aligned mask. + + ''' + + img_h, img_w = image.shape + + # Calculates the mask edges along the columns + edges = numpy.zeros((2, mask.shape[1]), dtype=int) + + edges[0,:] = mask.argmax(axis=0) # get upper edges + edges[1,:] = len(mask) - numpy.flipud(mask).argmax(axis=0) - 1 + + bl = edges.mean(axis=0) #baseline + x = numpy.arange(0, edges.shape[1]) + A = numpy.vstack([x, numpy.ones(len(x))]).T + + # Fit a straight line through the base line points + w = numpy.linalg.lstsq(A,bl)[0] # obtaining the parameters + + angle = -1*math.atan(w[0]) # Rotation + tr = img_h/2 - w[1] # Translation + scale = 1.0 # Scale + + #Affine transformation parameters + sx=sy=scale + cosine = math.cos(angle) + sine = math.sin(angle) + + a = cosine/sx + b = -sine/sy + #b = sine/sx + c = 0 #Translation in x + + d = sine/sx + e = cosine/sy + f = tr #Translation in y + #d = -sine/sy + #e = cosine/sy + #f = 0 + + g = 0 + h = 0 + #h=tr + i = 1 + + T = numpy.matrix([[a,b,c],[d,e,f],[g,h,i]]) + Tinv = numpy.linalg.inv(T) + Tinvtuple = (Tinv[0,0],Tinv[0,1], Tinv[0,2], Tinv[1,0],Tinv[1,1],Tinv[1,2]) + + def _afftrans(img): + '''Applies the affine transform on the resulting image''' + + t = Image.fromarray(img.astype('uint8')) + w, h = t.size #pillow image is encoded w, h + w += 2*self.padding_width + h += 2*self.padding_width + t = t.transform( + (w,h), + Image.AFFINE, + Tinvtuple, + resample=Image.BICUBIC, + fill=self.padding_constant) + + return numpy.array(t).astype(img.dtype) + + return _afftrans(image), _afftrans(mask) diff --git a/bob/bio/vein/preprocessor/preprocessor.py b/bob/bio/vein/preprocessor/preprocessor.py new file mode 100644 index 0000000..f925ef0 --- /dev/null +++ b/bob/bio/vein/preprocessor/preprocessor.py @@ -0,0 +1,87 @@ +#!/usr/bin/env python +# vim: set fileencoding=utf-8 : + +import bob.io.base +from bob.bio.base.preprocessor import Preprocessor as BasePreprocessor + + +class Preprocessor (BasePreprocessor): + """ + Extracts the mask and pre-processes fingervein images. + + In this implementation, the finger image is (in this order): + + #. The mask is expolated from the image using one of our + :py:class:`Masker`'s concrete implementations + #. The image is normalized with one of our :py:class:`Normalizer`'s + #. The image is filtered with one of our :py:class:`Filter`'s + + + Parameters: + + mask (:py:class:`Masker`): An object representing a Masker instance which + will extrapolate the mask from the input image. + + normalize (:py:class:`Normalizer`): An object representing a Normalizer + instance which will normalize the input image and its mask returning a + new image mask pair. + + filter (:py:class:`Filter`): An object representing a Filter instance will + will filter the input image and return a new filtered image. The filter + instance also receives the extrapolated mask so it can, if desired, only + apply the filtering operation where the mask has a value of ``True`` + + """ + + + def __init__(self, mask, normalize, filter, **kwargs): + + BasePreprocessor.__init__(self, + mask = mask, + normalize = normalize, + filter = filter, + **kwargs + ) + + self.mask = mask + self.normalize = normalize + self.filter = filter + + + def __call__(self, data, annotations=None): + """Reads the input image or (image, mask) and prepares for fex. + + Parameters: + + data (numpy.ndarray): An 2D numpy array containing a gray-scaled image + with dtype ``uint8``. The image maybe annotated with an RoI. + + + Returns: + + numpy.ndarray: The image, preprocessed and normalized + + numpy.ndarray: A mask, of the same size of the image, indicating where + the valid data for the object is. + + """ + + mask = self.mask(data) + data, mask = self.normalize(data, mask) + data = self.filter(data, mask) + return data, mask + + + def write_data(self, data, filename): + '''Overrides the default method implementation to handle our tuple''' + + f = bob.io.base.HDF5File(filename, 'w') + f.set('image', data[0]) + f.set('mask', data[1]) + + + def read_data(self, filename): + '''Overrides the default method implementation to handle our tuple''' + + f = bob.io.base.HDF5File(filename, 'r') + return f.read('image'), f.read('mask') -- GitLab