diff --git a/bob/bio/vein/extractor/RepeatedLineTracking.py b/bob/bio/vein/extractor/RepeatedLineTracking.py index 5b9d4ab1a2cf8a434b6edd5303f0701aa39e4e9d..ed394babb566b8269a53a6621008e6df04265170 100644 --- a/bob/bio/vein/extractor/RepeatedLineTracking.py +++ b/bob/bio/vein/extractor/RepeatedLineTracking.py @@ -111,13 +111,13 @@ class RepeatedLineTracking (Extractor): Dud = 1 # Going down # Initialize locus-positition table Tc - Tc = numpy.zeros(finger_image.shape, numpy.bool) + Tc = numpy.zeros(finger_image.shape, bool) #Dlr = -1; Dud=-1; LET OP Vl = 1 while (Vl > 0): # Determine the moving candidate point set Nc - Nr = numpy.zeros([3,3], numpy.bool) + Nr = numpy.zeros([3,3], bool) Rnd = numpy.random.random_sample() #Rnd = 0.8 LET OP if (Rnd < p_lr): @@ -128,10 +128,10 @@ class RepeatedLineTracking (Extractor): Nr[1+Dud,:] = True else: # Going any direction - Nr = numpy.ones([3,3], numpy.bool) + Nr = numpy.ones([3,3], bool) Nr[1,1] = False - #tmp = numpy.argwhere( (~Tc[yc-2:yc+1,xc-2:xc+1] & Nr & finger_mask[yc-2:yc+1,xc-2:xc+1].astype(numpy.bool)).T.reshape(-1) == True ) - tmp = numpy.argwhere( (~Tc[yc-1:yc+2,xc-1:xc+2] & Nr & finger_mask[yc-1:yc+2,xc-1:xc+2].astype(numpy.bool)).T.reshape(-1) == True ) + #tmp = numpy.argwhere( (~Tc[yc-2:yc+1,xc-2:xc+1] & Nr & finger_mask[yc-2:yc+1,xc-2:xc+1].astype(bool)).T.reshape(-1) == True ) + tmp = numpy.argwhere( (~Tc[yc-1:yc+2,xc-1:xc+2] & Nr & finger_mask[yc-1:yc+2,xc-1:xc+2].astype(bool)).T.reshape(-1) == True ) Nc = numpy.concatenate((xc + filtermask[tmp,0],yc + filtermask[tmp,1]),axis=1) if (Nc.size==0): Vl=-1 diff --git a/bob/bio/vein/preprocessor/mask.py b/bob/bio/vein/preprocessor/mask.py index 45b615df874d0bc9a7da93dca89aa783d4c14456..cf6cb51665fd2dafc630ec8f1cde89d15196061e 100644 --- a/bob/bio/vein/preprocessor/mask.py +++ b/bob/bio/vein/preprocessor/mask.py @@ -269,7 +269,7 @@ class KonoMask(Masker): y_lo = img_filt_lo.argmin(axis=0) # Fill region between upper and lower edges - finger_mask = numpy.ndarray(image.shape, numpy.bool) + finger_mask = numpy.ndarray(image.shape, bool) finger_mask[:,:] = False for i in range(0,img_w): diff --git a/bob/bio/vein/preprocessor/utils.py b/bob/bio/vein/preprocessor/utils.py index 723b2458352f35b263e3c4d420fe734245676ac2..ad98846a1125ad00d4d5c8ea3622144ab7f962a2 100644 --- a/bob/bio/vein/preprocessor/utils.py +++ b/bob/bio/vein/preprocessor/utils.py @@ -106,7 +106,7 @@ def poly_to_mask(shape, points): # draws polygon ImageDraw.Draw(mask).polygon(fixed, fill=255) - return numpy.array(mask, dtype=numpy.bool) + return numpy.array(mask, dtype=bool) def mask_to_image(mask, dtype=numpy.uint8): diff --git a/bob/bio/vein/tests/test.py b/bob/bio/vein/tests/test.py index ab25fa5470a8fdb10a097c0b67d3a1dd9ac23fe7..199b998cb17f6ba33c3a16458c3cb3b1d54a5c03 100644 --- a/bob/bio/vein/tests/test.py +++ b/bob/bio/vein/tests/test.py @@ -411,7 +411,7 @@ def test_poly_to_mask(): area = (10, 9) #10 rows, 9 columns polygon = [(2, 2), (2, 7), (7, 7), (7, 2)] #square shape, (y, x) format mask = preprocessor_utils.poly_to_mask(area, polygon) - nose.tools.eq_(mask.dtype, numpy.bool) + nose.tools.eq_(mask.dtype, bool) # This should be the output: expected = numpy.array([ @@ -430,7 +430,7 @@ def test_poly_to_mask(): polygon = [(3, 2), (5, 7), (8, 7), (7, 3)] #trapezoid, (y, x) format mask = preprocessor_utils.poly_to_mask(area, polygon) - nose.tools.eq_(mask.dtype, numpy.bool) + nose.tools.eq_(mask.dtype, bool) # This should be the output: expected = numpy.array([ @@ -453,7 +453,7 @@ def test_mask_to_image(): # Tests we can correctly convert a boolean array into an image # that makes sense according to the data types sample = numpy.array([False, True]) - nose.tools.eq_(sample.dtype, numpy.bool) + nose.tools.eq_(sample.dtype, bool) def _check_uint(n): conv = preprocessor_utils.mask_to_image(sample, 'uint%d' % n)