diff --git a/bob/bio/vein/algorithm/MiuraMatch.py b/bob/bio/vein/algorithm/MiuraMatch.py index 86e02632e3c241b007895e2bcd9f21c656edf909..b2cc6549317da236fe44dfd348c829db62c8508c 100644 --- a/bob/bio/vein/algorithm/MiuraMatch.py +++ b/bob/bio/vein/algorithm/MiuraMatch.py @@ -4,7 +4,6 @@ import numpy import scipy.signal -import bob.ip.base from bob.bio.base.algorithm import Algorithm @@ -96,20 +95,25 @@ class MiuraMatch (Algorithm): scores = [] - for i in range(n_models): + # iterate over all models for a given individual + for md in model: # erode model by (ch, cw) - R=model[i,:].astype(numpy.float64) + R = md.astype(numpy.float64) h, w = R.shape crop_R = R[self.ch:h-self.ch, self.cw:w-self.cw] - # rotate input image - rotate_R = numpy.zeros((crop_R.shape[0], crop_R.shape[1])) - bob.ip.base.rotate(crop_R, rotate_R, 180) - - # convolve model and probe using FFT/IFFT. - #Nm = utils.convfft(I, rotate_R) #drop-in replacement for scipy method - Nm = scipy.signal.convolve2d(I, rotate_R, 'valid') + # correlates using scipy - fastest option available iff the self.ch and + # self.cw are height (>30). In this case, the number of components + # returned by the convolution is high and using an FFT-based method + # yields best results. Otherwise, you may try the other options bellow + # -> check our test_correlation() method on the test units for more + # details and benchmarks. + Nm = scipy.signal.fftconvolve(I, numpy.rot90(crop_R, k=2), 'valid') + # 2nd best: use convolve2d or correlate2d directly; + # Nm = scipy.signal.convolve2d(I, numpy.rot90(crop_R, k=2), 'valid') + # 3rd best: use correlate2d + # Nm = scipy.signal.correlate2d(I, crop_R, 'valid') # figures out where the maximum is on the resulting matrix t0, s0 = numpy.unravel_index(Nm.argmax(), Nm.shape) diff --git a/bob/bio/vein/tests/test.py b/bob/bio/vein/tests/test.py index b2c9530faabe555cd9b8f007e68b340e687e1928..ab9b76f9c6c3adddcba10568226bf8a4bd242766 100644 --- a/bob/bio/vein/tests/test.py +++ b/bob/bio/vein/tests/test.py @@ -24,7 +24,6 @@ import bob.io.matlab import bob.io.image from ..preprocessor import utils as preprocessor_utils -from ..algorithm import utils as algorithm_utils def F(parts): @@ -332,56 +331,150 @@ def test_intersection_ratio(): nose.tools.eq_(preprocessor_utils.intersect_ratio_of_complement(b, numpy.zeros(b.shape, dtype=bool)), 0) -def test_convolution(): +def test_correlation(): - # A test for convolution performance. Convolutions are used on the Miura + # A test for convolution performance. Correlations are used on the Miura # Match algorithm, therefore we want to make sure we can perform them as fast # as possible. + import numpy import scipy.signal + import bob.sp + # Rough example from Vera fingervein database Y = 250 X = 600 - CH = 1 - CW = 1 + CH = 80 + CW = 90 def gen_ab(): a = numpy.random.randint(256, size=(Y, X)).astype(float) b = numpy.random.randint(256, size=(Y-CH, X-CW)).astype(float) return a, b - def utils_function(a, b): - return algorithm_utils.convfft(a, b) + + def bob_function(a, b): + + # rotate input image by 180 degrees + b = numpy.rot90(b, k=2) + + # Determine padding size in x and y dimension + size_a = numpy.array(a.shape) + size_b = numpy.array(b.shape) + outsize = size_a + size_b - 1 + + # Determine 2D cross correlation in Fourier domain + a2 = numpy.zeros(outsize) + a2[0:size_a[0],0:size_a[1]] = a + Fa = bob.sp.fft(a2.astype(numpy.complex128)) + + b2 = numpy.zeros(outsize) + b2[0:size_b[0],0:size_b[1]] = b + Fb = bob.sp.fft(b2.astype(numpy.complex128)) + + conv_ab = numpy.real(bob.sp.ifft(Fa*Fb)) + + h, w = size_a - size_b + 1 + + Nm = conv_ab[size_b[0]-1:size_b[0]-1+h, size_b[1]-1:size_b[1]-1+w] + + t0, s0 = numpy.unravel_index(Nm.argmax(), Nm.shape) + + # this is our output + Nmm = Nm[t0,s0] + + # normalizes the output by the number of pixels lit on the input + # matrices, taking into consideration the surface that produced the + # result (i.e., the eroded model and part of the probe) + h, w = b.shape + return Nmm/(sum(sum(b)) + sum(sum(a[t0:t0+h-2*CH, s0:s0+w-2*CW]))) + def scipy_function(a, b): - return scipy.signal.convolve2d(a, b, 'valid') + b = numpy.rot90(b, k=2) + + Nm = scipy.signal.convolve2d(a, b, 'valid') + + # figures out where the maximum is on the resulting matrix + t0, s0 = numpy.unravel_index(Nm.argmax(), Nm.shape) + + # this is our output + Nmm = Nm[t0,s0] + + # normalizes the output by the number of pixels lit on the input + # matrices, taking into consideration the surface that produced the + # result (i.e., the eroded model and part of the probe) + h, w = b.shape + return Nmm/(sum(sum(b)) + sum(sum(a[t0:t0+h-2*CH, s0:s0+w-2*CW]))) + def scipy2_function(a, b): - return scipy.signal.fftconvolve(a, b, 'valid') + b = numpy.rot90(b, k=2) + Nm = scipy.signal.fftconvolve(a, b, 'valid') + + # figures out where the maximum is on the resulting matrix + t0, s0 = numpy.unravel_index(Nm.argmax(), Nm.shape) + + # this is our output + Nmm = Nm[t0,s0] + + # normalizes the output by the number of pixels lit on the input + # matrices, taking into consideration the surface that produced the + # result (i.e., the eroded model and part of the probe) + h, w = b.shape + return Nmm/(sum(sum(b)) + sum(sum(a[t0:t0+h-2*CH, s0:s0+w-2*CW]))) + + + def scipy3_function(a, b): + Nm = scipy.signal.correlate2d(a, b, 'valid') + + # figures out where the maximum is on the resulting matrix + t0, s0 = numpy.unravel_index(Nm.argmax(), Nm.shape) + + # this is our output + Nmm = Nm[t0,s0] + + # normalizes the output by the number of pixels lit on the input + # matrices, taking into consideration the surface that produced the + # result (i.e., the eroded model and part of the probe) + h, w = b.shape + return Nmm/(sum(sum(b)) + sum(sum(a[t0:t0+h-2*CH, s0:s0+w-2*CW]))) a, b = gen_ab() - assert numpy.allclose(utils_function(a, b), scipy_function(a, b)) + + assert numpy.allclose(bob_function(a, b), scipy_function(a, b)) assert numpy.allclose(scipy_function(a, b), scipy2_function(a, b)) + assert numpy.allclose(scipy2_function(a, b), scipy3_function(a, b)) + # if you want to test timings, uncomment the following section + ''' import time start = time.clock() N = 10 for i in range(N): a, b = gen_ab() - utils_function(a, b) + bob_function(a, b) total = time.clock() - start - print('utils, %d iterations - %.2e per iteration' % (N, total/N)) + print('bob implementation, %d iterations - %.2e per iteration' % (N, total/N)) start = time.clock() for i in range(N): a, b = gen_ab() scipy_function(a, b) total = time.clock() - start - print('scipy, %d iterations - %.2e per iteration' % (N, total/N)) + print('scipy+convolve, %d iterations - %.2e per iteration' % (N, total/N)) start = time.clock() for i in range(N): a, b = gen_ab() scipy2_function(a, b) total = time.clock() - start - print('scipy2, %d iterations - %.2e per iteration' % (N, total/N)) + print('scipy+fftconvolve, %d iterations - %.2e per iteration' % (N, total/N)) + + start = time.clock() + for i in range(N): + a, b = gen_ab() + scipy3_function(a, b) + total = time.clock() - start + print('scipy+correlate2d, %d iterations - %.2e per iteration' % (N, total/N)) + '''