From 0d27d15ed38e403dbf710ecdfced95919f96e719 Mon Sep 17 00:00:00 2001 From: Amir MOHAMMADI <amir.mohammadi@idiap.ch> Date: Mon, 2 May 2022 18:34:59 +0200 Subject: [PATCH] automatic pre-commit changes --- bob/__init__.py | 1 + bob/bio/__init__.py | 1 + bob/bio/vein/__init__.py | 12 +- bob/bio/vein/algorithm/Correlate.py | 80 +- bob/bio/vein/algorithm/HammingDistance.py | 41 +- bob/bio/vein/algorithm/MiuraMatch.py | 4 +- bob/bio/vein/algorithm/__init__.py | 21 +- bob/bio/vein/config/database/fv3d.py | 8 +- bob/bio/vein/config/database/putvein.py | 12 +- bob/bio/vein/config/database/verafinger.py | 12 +- bob/bio/vein/config/maximum_curvature.py | 31 +- bob/bio/vein/config/principal_curvature.py | 20 +- bob/bio/vein/config/repeated_line_tracking.py | 31 +- bob/bio/vein/config/wide_line_detector.py | 32 +- bob/bio/vein/database/__init__.py | 24 +- bob/bio/vein/database/database.py | 2 +- bob/bio/vein/database/fv3d.py | 72 +- bob/bio/vein/database/putvein.py | 127 +-- bob/bio/vein/database/roi_annotation.py | 7 +- bob/bio/vein/database/utfvp.py | 11 +- bob/bio/vein/database/verafinger.py | 71 +- .../vein/database/verafinger_contactless.py | 6 +- bob/bio/vein/extractor/MaximumCurvature.py | 786 +++++++++--------- .../extractor/NormalisedCrossCorrelation.py | 8 +- bob/bio/vein/extractor/PrincipalCurvature.py | 16 +- .../vein/extractor/RepeatedLineTracking.py | 26 +- bob/bio/vein/extractor/WideLineDetector.py | 11 +- bob/bio/vein/extractor/__init__.py | 3 +- bob/bio/vein/preprocessor/__init__.py | 21 +- bob/bio/vein/preprocessor/crop.py | 130 ++- bob/bio/vein/preprocessor/filters.py | 112 ++- bob/bio/vein/preprocessor/mask.py | 592 ++++++------- bob/bio/vein/preprocessor/normalize.py | 235 +++--- bob/bio/vein/preprocessor/preprocessor.py | 124 ++- bob/bio/vein/preprocessor/utils.py | 364 ++++---- bob/bio/vein/script/blame.py | 200 +++-- bob/bio/vein/script/compare_rois.py | 245 +++--- bob/bio/vein/script/validate.py | 243 +++--- bob/bio/vein/script/view_sample.py | 293 +++---- bob/bio/vein/tests/test_databases.py | 333 +++++--- bob/bio/vein/tests/test_tools.py | 85 +- doc/api.rst | 1 - doc/conf.py | 152 ++-- doc/extra-intersphinx.txt | 2 +- doc/nitpick-exceptions.txt | 2 +- matlab/compare.py | 51 +- matlab/lib/miura_match.m | 12 +- matlab/lib/miura_repeated_line_tracking.m | 26 +- matlab/lib/miura_usage.m | 10 +- setup.py | 4 +- 50 files changed, 2515 insertions(+), 2198 deletions(-) diff --git a/bob/__init__.py b/bob/__init__.py index 2ab1e28..edbb409 100644 --- a/bob/__init__.py +++ b/bob/__init__.py @@ -1,3 +1,4 @@ # see https://docs.python.org/3/library/pkgutil.html from pkgutil import extend_path + __path__ = extend_path(__path__, __name__) diff --git a/bob/bio/__init__.py b/bob/bio/__init__.py index 2ab1e28..edbb409 100644 --- a/bob/bio/__init__.py +++ b/bob/bio/__init__.py @@ -1,3 +1,4 @@ # see https://docs.python.org/3/library/pkgutil.html from pkgutil import extend_path + __path__ = extend_path(__path__, __name__) diff --git a/bob/bio/vein/__init__.py b/bob/bio/vein/__init__.py index 48ebe31..4163a15 100644 --- a/bob/bio/vein/__init__.py +++ b/bob/bio/vein/__init__.py @@ -1,13 +1,15 @@ #!/usr/bin/env python # vim: set fileencoding=utf-8 : +# isort: skip_file + def get_config(): - """Returns a string containing the configuration information. - """ + """Returns a string containing the configuration information.""" + + import bob.extension - import bob.extension - return bob.extension.get_config(__name__) + return bob.extension.get_config(__name__) # gets sphinx autodoc done right - don't remove it -__all__ = [_ for _ in dir() if not _.startswith('_')] +__all__ = [_ for _ in dir() if not _.startswith("_")] diff --git a/bob/bio/vein/algorithm/Correlate.py b/bob/bio/vein/algorithm/Correlate.py index 2338541..4e82f02 100644 --- a/bob/bio/vein/algorithm/Correlate.py +++ b/bob/bio/vein/algorithm/Correlate.py @@ -7,67 +7,63 @@ import skimage.feature from bob.bio.base.algorithm import Algorithm -class Correlate (Algorithm): - """Correlate probe and model without cropping +class Correlate(Algorithm): + """Correlate probe and model without cropping - The method is based on "cross-correlation" between a model and a probe image. - The difference between this and :py:class:`MiuraMatch` is that **no** - cropping takes place on this implementation. We simply fill the excess - boundary with zeros and extract the valid correlation region between the - probe and the model using :py:func:`skimage.feature.match_template`. + The method is based on "cross-correlation" between a model and a probe image. + The difference between this and :py:class:`MiuraMatch` is that **no** + cropping takes place on this implementation. We simply fill the excess + boundary with zeros and extract the valid correlation region between the + probe and the model using :py:func:`skimage.feature.match_template`. - """ - - def __init__(self): - - # call base class constructor - Algorithm.__init__( - self, - multiple_model_scoring = None, - multiple_probe_scoring = None - ) + """ + def __init__(self): - def enroll(self, enroll_features): - """Enrolls the model by computing an average graph for each model""" + # call base class constructor + Algorithm.__init__( + self, multiple_model_scoring=None, multiple_probe_scoring=None + ) - # return the generated model - return numpy.array(enroll_features) + def enroll(self, enroll_features): + """Enrolls the model by computing an average graph for each model""" + # return the generated model + return numpy.array(enroll_features) - def score(self, model, probe): - """Computes the score between the probe and the model. + def score(self, model, probe): + """Computes the score between the probe and the model. - Parameters: + Parameters: - model (numpy.ndarray): The model of the user to test the probe agains + model (numpy.ndarray): The model of the user to test the probe agains - probe (numpy.ndarray): The probe to test + probe (numpy.ndarray): The probe to test - Returns: + Returns: - float: Value between 0 and 0.5, larger value means a better match + float: Value between 0 and 0.5, larger value means a better match - """ + """ - I=probe.astype(numpy.float64) + I = probe.astype(numpy.float64) - if len(model.shape) == 2: - model = numpy.array([model]) + if len(model.shape) == 2: + model = numpy.array([model]) - scores = [] + scores = [] - # iterate over all models for a given individual - for md in model: + # iterate over all models for a given individual + for md in model: - R = md.astype(numpy.float64) - Nm = skimage.feature.match_template(I, R) + R = md.astype(numpy.float64) + Nm = skimage.feature.match_template(I, R) - # figures out where the maximum is on the resulting matrix - t0, s0 = numpy.unravel_index(Nm.argmax(), Nm.shape) + # figures out where the maximum is on the resulting matrix + t0, s0 = numpy.unravel_index(Nm.argmax(), Nm.shape) - # this is our output - scores.append(Nm[t0,s0]) + # this is our output + scores.append(Nm[t0, s0]) - return numpy.mean(scores) + return numpy.mean(scores) diff --git a/bob/bio/vein/algorithm/HammingDistance.py b/bob/bio/vein/algorithm/HammingDistance.py index b83240d..ff38223 100644 --- a/bob/bio/vein/algorithm/HammingDistance.py +++ b/bob/bio/vein/algorithm/HammingDistance.py @@ -5,30 +5,31 @@ from bob.bio.base.algorithm import Distance -class HammingDistance (Distance): - """This class calculates the Hamming distance between two binary images. +class HammingDistance(Distance): + """This class calculates the Hamming distance between two binary images. - The enrollement and scoring functions of this class are implemented by its - base :py:class:`bob.bio.base.algorithm.Distance`. + The enrollement and scoring functions of this class are implemented by its + base :py:class:`bob.bio.base.algorithm.Distance`. - The input to this function should be of binary nature (boolean arrays). Each - binary input is first flattened to form a one-dimensional vector. The `Hamming - distance <https://en.wikipedia.org/wiki/Hamming_distance>`_ is then - calculated between these two binary vectors. + The input to this function should be of binary nature (boolean arrays). Each + binary input is first flattened to form a one-dimensional vector. The `Hamming + distance <https://en.wikipedia.org/wiki/Hamming_distance>`_ is then + calculated between these two binary vectors. - The current implementation uses :py:func:`scipy.spatial.distance.hamming`, - which returns a scalar 64-bit ``float`` to represent the proportion of - mismatching corresponding bits between the two binary vectors. + The current implementation uses :py:func:`scipy.spatial.distance.hamming`, + which returns a scalar 64-bit ``float`` to represent the proportion of + mismatching corresponding bits between the two binary vectors. - The base class constructor parameter ``is_distance_function`` is set to - ``False`` on purpose to ensure that calculated distances are returned as - positive values rather than negative. + The base class constructor parameter ``is_distance_function`` is set to + ``False`` on purpose to ensure that calculated distances are returned as + positive values rather than negative. - """ + """ - def __init__(self): - from scipy.spatial.distance import hamming - super(HammingDistance, self).__init__( - distance_function = hamming, - is_distance_function = False, + def __init__(self): + from scipy.spatial.distance import hamming + + super(HammingDistance, self).__init__( + distance_function=hamming, + is_distance_function=False, ) diff --git a/bob/bio/vein/algorithm/MiuraMatch.py b/bob/bio/vein/algorithm/MiuraMatch.py index 2019be9..a70a93f 100644 --- a/bob/bio/vein/algorithm/MiuraMatch.py +++ b/bob/bio/vein/algorithm/MiuraMatch.py @@ -122,7 +122,9 @@ class MiuraMatch(BioAlgorithm): Nmm / ( crop_R.sum() - + I[t0 : t0 + h - 2 * self.ch, s0 : s0 + w - 2 * self.cw].sum() + + I[ + t0 : t0 + h - 2 * self.ch, s0 : s0 + w - 2 * self.cw + ].sum() ) ) diff --git a/bob/bio/vein/algorithm/__init__.py b/bob/bio/vein/algorithm/__init__.py index e69a1e6..07c12d7 100644 --- a/bob/bio/vein/algorithm/__init__.py +++ b/bob/bio/vein/algorithm/__init__.py @@ -1,25 +1,28 @@ +# isort: skip_file from .MiuraMatch import MiuraMatch from .Correlate import Correlate from .HammingDistance import HammingDistance # gets sphinx autodoc done right - don't remove it def __appropriate__(*args): - """Says object was actually declared here, an not on the import module. + """Says object was actually declared here, an not on the import module. - Parameters: + Parameters: - *args: An iterable of objects to modify + *args: An iterable of objects to modify - Resolves `Sphinx referencing issues - <https://github.com/sphinx-doc/sphinx/issues/3048>` - """ + Resolves `Sphinx referencing issues + <https://github.com/sphinx-doc/sphinx/issues/3048>` + """ + + for obj in args: + obj.__module__ = __name__ - for obj in args: obj.__module__ = __name__ __appropriate__( MiuraMatch, Correlate, HammingDistance, - ) +) -__all__ = [_ for _ in dir() if not _.startswith('_')] +__all__ = [_ for _ in dir() if not _.startswith("_")] diff --git a/bob/bio/vein/config/database/fv3d.py b/bob/bio/vein/config/database/fv3d.py index 2324d33..357458a 100644 --- a/bob/bio/vein/config/database/fv3d.py +++ b/bob/bio/vein/config/database/fv3d.py @@ -11,12 +11,12 @@ the link. """ -from bob.extension import rc -from bob.bio.vein.database.fv3d import Database -from bob.bio.base.pipelines import DatabaseConnector - import logging +from bob.bio.base.pipelines import DatabaseConnector +from bob.bio.vein.database.fv3d import Database +from bob.extension import rc + logger = logging.getLogger("bob.bio.vein") # Retrieve directory from config diff --git a/bob/bio/vein/config/database/putvein.py b/bob/bio/vein/config/database/putvein.py index f07282d..0d52875 100644 --- a/bob/bio/vein/config/database/putvein.py +++ b/bob/bio/vein/config/database/putvein.py @@ -16,12 +16,12 @@ You can download the raw data of the `PUT Vein`_ database by following the link. """ -from bob.extension import rc -from bob.bio.vein.database.putvein import PutveinBioDatabase -from bob.bio.base.pipelines import DatabaseConnector - import logging +from bob.bio.base.pipelines import DatabaseConnector +from bob.bio.vein.database.putvein import PutveinBioDatabase +from bob.extension import rc + logger = logging.getLogger("bob.bio.vein") _putvein_directory = rc.get("bob.db.putvein.directory", "") @@ -61,4 +61,6 @@ installed the `put vein`_ dataset, as explained in the section :ref:`bob.bio.vein.baselines`. """ -logger.debug(f"loaded database putvein config file, using protocol '{protocol}'.") +logger.debug( + f"loaded database putvein config file, using protocol '{protocol}'." +) diff --git a/bob/bio/vein/config/database/verafinger.py b/bob/bio/vein/config/database/verafinger.py index 3f866be..df1d86a 100644 --- a/bob/bio/vein/config/database/verafinger.py +++ b/bob/bio/vein/config/database/verafinger.py @@ -12,12 +12,12 @@ You can download the raw data of the `VERA Fingervein`_ database by following the link. """ -from bob.extension import rc -from bob.bio.vein.database.verafinger import Database -from bob.bio.base.pipelines import DatabaseConnector - import logging +from bob.bio.base.pipelines import DatabaseConnector +from bob.bio.vein.database.verafinger import Database +from bob.extension import rc + logger = logging.getLogger("bob.bio.vein") _verafinger_directory = rc.get("bob.db.verafinger.directory", "") @@ -55,4 +55,6 @@ installed the `vera fingervein`_ dataset, as explained in the section :ref:`bob.bio.vein.baselines`. """ -logger.debug(f"Loaded database verafinger config file, using protocol '{protocol}'.") +logger.debug( + f"Loaded database verafinger config file, using protocol '{protocol}'." +) diff --git a/bob/bio/vein/config/maximum_curvature.py b/bob/bio/vein/config/maximum_curvature.py index eec8370..32f816d 100644 --- a/bob/bio/vein/config/maximum_curvature.py +++ b/bob/bio/vein/config/maximum_curvature.py @@ -12,27 +12,26 @@ References: """ -import tempfile import os +import tempfile -from bob.bio.base.transformers import PreprocessorTransformer -from bob.bio.base.transformers import ExtractorTransformer -from bob.bio.base.pipelines import ( - PipelineSimple, - BioAlgorithmLegacy, -) from sklearn.pipeline import make_pipeline -from bob.pipelines import wrap +from bob.bio.base.pipelines import BioAlgorithmLegacy, PipelineSimple +from bob.bio.base.transformers import ( + ExtractorTransformer, + PreprocessorTransformer, +) +from bob.bio.vein.algorithm import MiuraMatch +from bob.bio.vein.extractor import MaximumCurvature from bob.bio.vein.preprocessor import ( - NoCrop, - TomesLeeMask, HuangNormalization, + NoCrop, NoFilter, Preprocessor, + TomesLeeMask, ) -from bob.bio.vein.extractor import MaximumCurvature -from bob.bio.vein.algorithm import MiuraMatch +from bob.pipelines import wrap """Baseline updated with the wrapper for the pipelines package""" @@ -46,7 +45,9 @@ default_temp = ( ) if os.path.exists(default_temp): - legacy_temp_dir = os.path.join(default_temp, "bob_bio_base_tmp", sub_directory) + legacy_temp_dir = os.path.join( + default_temp, "bob_bio_base_tmp", sub_directory + ) else: # if /idiap/temp/<USER> does not exist, use /tmp/tmpxxxxxxxx legacy_temp_dir = tempfile.TemporaryDirectory().name @@ -76,5 +77,7 @@ Defaults taken from [TV13]_. # biometric_algorithm = BioAlgorithmLegacy(MiuraMatch(), base_dir=legacy_temp_dir) biometric_algorithm = MiuraMatch() -transformer = make_pipeline(wrap(["sample"], preprocessor), wrap(["sample"], extractor)) +transformer = make_pipeline( + wrap(["sample"], preprocessor), wrap(["sample"], extractor) +) pipeline = PipelineSimple(transformer, biometric_algorithm) diff --git a/bob/bio/vein/config/principal_curvature.py b/bob/bio/vein/config/principal_curvature.py index 4fd3856..47cbe72 100644 --- a/bob/bio/vein/config/principal_curvature.py +++ b/bob/bio/vein/config/principal_curvature.py @@ -13,11 +13,11 @@ References: """ from bob.bio.vein.preprocessor import ( - NoCrop, - TomesLeeMask, HuangNormalization, + NoCrop, NoFilter, Preprocessor, + TomesLeeMask, ) legacy_preprocessor = Preprocessor( @@ -35,10 +35,13 @@ from bob.bio.vein.extractor import PrincipalCurvature legacy_extractor = PrincipalCurvature() -from bob.bio.base.transformers import PreprocessorTransformer, ExtractorTransformer from sklearn.pipeline import make_pipeline -from bob.pipelines import wrap +from bob.bio.base.transformers import ( + ExtractorTransformer, + PreprocessorTransformer, +) +from bob.pipelines import wrap transformer = make_pipeline( wrap(["sample"], PreprocessorTransformer(legacy_preprocessor)), @@ -65,16 +68,15 @@ default_temp = ( ) if os.path.exists(default_temp): - legacy_temp_dir = os.path.join(default_temp, "bob_bio_base_tmp", sub_directory) + legacy_temp_dir = os.path.join( + default_temp, "bob_bio_base_tmp", sub_directory + ) else: # if /idiap/temp/<USER> does not exist, use /tmp/tmpxxxxxxxx legacy_temp_dir = tempfile.TemporaryDirectory().name -from bob.bio.base.pipelines import ( - PipelineSimple, - BioAlgorithmLegacy, -) +from bob.bio.base.pipelines import BioAlgorithmLegacy, PipelineSimple biometric_algorithm = MiuraMatch(ch=18, cw=28) diff --git a/bob/bio/vein/config/repeated_line_tracking.py b/bob/bio/vein/config/repeated_line_tracking.py index 8e09896..7407bd4 100644 --- a/bob/bio/vein/config/repeated_line_tracking.py +++ b/bob/bio/vein/config/repeated_line_tracking.py @@ -11,27 +11,26 @@ References: 3. [TVM14]_ """ -import tempfile import os +import tempfile -from bob.bio.base.transformers import PreprocessorTransformer -from bob.bio.base.transformers import ExtractorTransformer -from bob.bio.base.pipelines import ( - PipelineSimple, - BioAlgorithmLegacy, -) from sklearn.pipeline import make_pipeline -from bob.pipelines import wrap +from bob.bio.base.pipelines import BioAlgorithmLegacy, PipelineSimple +from bob.bio.base.transformers import ( + ExtractorTransformer, + PreprocessorTransformer, +) +from bob.bio.vein.algorithm import MiuraMatch +from bob.bio.vein.extractor import RepeatedLineTracking from bob.bio.vein.preprocessor import ( - NoCrop, - TomesLeeMask, HuangNormalization, + NoCrop, NoFilter, Preprocessor, + TomesLeeMask, ) -from bob.bio.vein.extractor import RepeatedLineTracking -from bob.bio.vein.algorithm import MiuraMatch +from bob.pipelines import wrap """Baseline updated with the wrapper for the pipelines package""" @@ -44,7 +43,9 @@ default_temp = ( ) if os.path.exists(default_temp): - legacy_temp_dir = os.path.join(default_temp, "bob_bio_base_tmp", sub_directory) + legacy_temp_dir = os.path.join( + default_temp, "bob_bio_base_tmp", sub_directory + ) else: # if /idiap/temp/<USER> does not exist, use /tmp/tmpxxxxxxxx legacy_temp_dir = tempfile.TemporaryDirectory().name @@ -72,5 +73,7 @@ Defaults taken from [TV13]_. """ biometric_algorithm = MiuraMatch(ch=65, cw=55) -transformer = make_pipeline(wrap(["sample"], preprocessor), wrap(["sample"], extractor)) +transformer = make_pipeline( + wrap(["sample"], preprocessor), wrap(["sample"], extractor) +) pipeline = PipelineSimple(transformer, biometric_algorithm) diff --git a/bob/bio/vein/config/wide_line_detector.py b/bob/bio/vein/config/wide_line_detector.py index 7470577..d88d505 100644 --- a/bob/bio/vein/config/wide_line_detector.py +++ b/bob/bio/vein/config/wide_line_detector.py @@ -11,28 +11,26 @@ References: 3. [TVM14]_ """ -import tempfile import os +import tempfile -from bob.bio.base.transformers import PreprocessorTransformer -from bob.bio.base.transformers import ExtractorTransformer -from bob.bio.base.pipelines import ( - PipelineSimple, - BioAlgorithmLegacy, -) from sklearn.pipeline import make_pipeline -from bob.pipelines import wrap +from bob.bio.base.pipelines import BioAlgorithmLegacy, PipelineSimple +from bob.bio.base.transformers import ( + ExtractorTransformer, + PreprocessorTransformer, +) +from bob.bio.vein.algorithm import MiuraMatch +from bob.bio.vein.extractor import WideLineDetector from bob.bio.vein.preprocessor import ( - NoCrop, - TomesLeeMask, HuangNormalization, + NoCrop, NoFilter, Preprocessor, + TomesLeeMask, ) - -from bob.bio.vein.extractor import WideLineDetector -from bob.bio.vein.algorithm import MiuraMatch +from bob.pipelines import wrap """Baseline updated with the wrapper for the pipelines package""" @@ -45,7 +43,9 @@ default_temp = ( ) if os.path.exists(default_temp): - legacy_temp_dir = os.path.join(default_temp, "bob_bio_base_tmp", sub_directory) + legacy_temp_dir = os.path.join( + default_temp, "bob_bio_base_tmp", sub_directory + ) else: # if /idiap/temp/<USER> does not exist, use /tmp/tmpxxxxxxxx legacy_temp_dir = tempfile.TemporaryDirectory().name @@ -77,5 +77,7 @@ Defaults taken from [TV13]_. # repeated-line tracking **and** maximum curvature baselines. biometric_algorithm = MiuraMatch(ch=18, cw=28) -transformer = make_pipeline(wrap(["sample"], preprocessor), wrap(["sample"], extractor)) +transformer = make_pipeline( + wrap(["sample"], preprocessor), wrap(["sample"], extractor) +) pipeline = PipelineSimple(transformer, biometric_algorithm) diff --git a/bob/bio/vein/database/__init__.py b/bob/bio/vein/database/__init__.py index b930169..95037ad 100644 --- a/bob/bio/vein/database/__init__.py +++ b/bob/bio/vein/database/__init__.py @@ -1,23 +1,25 @@ #!/usr/bin/env python # vim: set fileencoding=utf-8 : +# isort: skip_file -'''Database definitions for Vein Recognition''' +"""Database definitions for Vein Recognition""" import numpy class AnnotatedArray(numpy.ndarray): - """Defines a numpy array subclass that can carry its own metadata + """Defines a numpy array subclass that can carry its own metadata - Copied from: https://docs.scipy.org/doc/numpy-1.12.0/user/basics.subclassing.html#slightly-more-realistic-example-attribute-added-to-existing-array - """ + Copied from: https://docs.scipy.org/doc/numpy-1.12.0/user/basics.subclassing.html#slightly-more-realistic-example-attribute-added-to-existing-array + """ - def __new__(cls, input_array, metadata=None): - obj = numpy.asarray(input_array).view(cls) - obj.metadata = metadata if metadata is not None else dict() - return obj + def __new__(cls, input_array, metadata=None): + obj = numpy.asarray(input_array).view(cls) + obj.metadata = metadata if metadata is not None else dict() + return obj - def __array_finalize__(self, obj): - if obj is None: return - self.metadata = getattr(obj, 'metadata', dict()) + def __array_finalize__(self, obj): + if obj is None: + return + self.metadata = getattr(obj, "metadata", dict()) diff --git a/bob/bio/vein/database/database.py b/bob/bio/vein/database/database.py index 2d43d43..72918da 100644 --- a/bob/bio/vein/database/database.py +++ b/bob/bio/vein/database/database.py @@ -23,7 +23,7 @@ class VeinBioFile(BioFile): client_id=f.model_id, path=f.path, file_id=f.id, - ) + ) # keep copy of original low-level database file object self.f = f diff --git a/bob/bio/vein/database/fv3d.py b/bob/bio/vein/database/fv3d.py index 04ff2a4..b51d477 100644 --- a/bob/bio/vein/database/fv3d.py +++ b/bob/bio/vein/database/fv3d.py @@ -5,10 +5,10 @@ import numpy -from bob.bio.base.database import BioFile, BioDatabase +from bob.bio.base.database import BioDatabase, BioFile -from . import AnnotatedArray from ..preprocessor.utils import poly_to_mask +from . import AnnotatedArray class File(BioFile): @@ -24,11 +24,11 @@ class File(BioFile): def __init__(self, f): - super(File, self).__init__(client_id=f.finger.unique_name, path=f.path, - file_id=f.id) + super(File, self).__init__( + client_id=f.finger.unique_name, path=f.path, file_id=f.id + ) self.__f = f - def load(self, *args, **kwargs): """(Overrides base method) Loads both image and mask""" @@ -36,14 +36,14 @@ class File(BioFile): image = numpy.rot90(image, -1) if not self.__f.has_roi(): - return image + return image else: - roi = self.__f.roi() + roi = self.__f.roi() - # calculates the 90 degrees anti-clockwise rotated RoI points - w, h = image.shape - roi = [(x,h-y) for (y,x) in roi] + # calculates the 90 degrees anti-clockwise rotated RoI points + w, h = image.shape + roi = [(x, h - y) for (y, x) in roi] return AnnotatedArray(image, metadata=dict(roi=roi)) @@ -55,43 +55,55 @@ class Database(BioDatabase): def __init__(self, **kwargs): - super(Database, self).__init__(name='fv3d', **kwargs) + super(Database, self).__init__(name="fv3d", **kwargs) from bob.db.fv3d.query import Database as LowLevelDatabase - self.__db = LowLevelDatabase() - self.low_level_group_names = ('train', 'dev', 'eval') - self.high_level_group_names = ('world', 'dev', 'eval') + self.__db = LowLevelDatabase() + self.low_level_group_names = ("train", "dev", "eval") + self.high_level_group_names = ("world", "dev", "eval") def groups(self): - return self.convert_names_to_highlevel(self.__db.groups(), - self.low_level_group_names, self.high_level_group_names) + return self.convert_names_to_highlevel( + self.__db.groups(), + self.low_level_group_names, + self.high_level_group_names, + ) - - def client_id_from_model_id(self, model_id, group='dev'): + def client_id_from_model_id(self, model_id, group="dev"): """Required as ``model_id != client_id`` on this database""" return self.__db.finger_name_from_model_id(model_id) - def model_ids_with_protocol(self, groups=None, protocol=None, **kwargs): - groups = self.convert_names_to_lowlevel(groups, - self.low_level_group_names, self.high_level_group_names) + groups = self.convert_names_to_lowlevel( + groups, self.low_level_group_names, self.high_level_group_names + ) return self.__db.model_ids(groups=groups, protocol=protocol) - - def objects(self, groups=None, protocol=None, purposes=None, - model_ids=None, **kwargs): - - groups = self.convert_names_to_lowlevel(groups, - self.low_level_group_names, self.high_level_group_names) - retval = self.__db.objects(groups=groups, protocol=protocol, - purposes=purposes, model_ids=model_ids, **kwargs) + def objects( + self, + groups=None, + protocol=None, + purposes=None, + model_ids=None, + **kwargs + ): + + groups = self.convert_names_to_lowlevel( + groups, self.low_level_group_names, self.high_level_group_names + ) + retval = self.__db.objects( + groups=groups, + protocol=protocol, + purposes=purposes, + model_ids=model_ids, + **kwargs + ) return [File(f) for f in retval] - def annotations(self, file): return None diff --git a/bob/bio/vein/database/putvein.py b/bob/bio/vein/database/putvein.py index 8f993d9..3090d48 100644 --- a/bob/bio/vein/database/putvein.py +++ b/bob/bio/vein/database/putvein.py @@ -7,17 +7,19 @@ PUTVEIN database for verification experiments (good to use in bob.bio.base framework). """ -from bob.bio.base.database import BioFile, BioDatabase import numpy as np -#TODO: I know this is not DRY recommended, but that's life +from bob.bio.base.database import BioDatabase, BioFile + + +# TODO: I know this is not DRY recommended, but that's life # I might move this to a proper package. def rgb_to_gray(image): """ Converts an RGB image to a grayscale image. The formula is: GRAY = 0.299 * R + 0.587 * G + 0.114 * B - + Parameters ---------- @@ -37,7 +39,6 @@ def rgb_to_gray(image): return 0.299 * R + 0.587 * G + 0.114 * B - class File(BioFile): """ Implements extra properties of vein files for the PUTVEIN database @@ -46,14 +47,15 @@ class File(BioFile): f (object): Low-level file (or sample) object that is kept inside """ + def __init__(self, f): - super(File, self).__init__(client_id=f.client_id, - path=f.path, - file_id=f.id) + super(File, self).__init__( + client_id=f.client_id, path=f.path, file_id=f.id + ) self.f = f - def load(self, directory=None, extension='.bmp'): + def load(self, directory=None, extension=".bmp"): """ The image returned by the ``bob.db.putvein`` is RGB (with shape (3, 768, 1024)). This method converts image to a greyscale (shape @@ -62,8 +64,7 @@ class File(BioFile): ``bob.db.biowave_v1`` database. Output images dimentions - (1024, 768). """ - color_image = self.f.load(directory=directory, - extension=extension) + color_image = self.f.load(directory=directory, extension=extension) grayscale_image = rgb_to_gray(color_image) grayscale_image = np.rot90(grayscale_image, k=3) return grayscale_image @@ -101,18 +102,22 @@ class PutveinBioDatabase(BioDatabase): def __init__(self, **kwargs): - super(PutveinBioDatabase, self).__init__(name='putvein', **kwargs) + super(PutveinBioDatabase, self).__init__(name="putvein", **kwargs) from bob.db.putvein.query import Database as LowLevelDatabase + self.__db = LowLevelDatabase() - self.low_level_group_names = ('train', 'dev', 'eval') - self.high_level_group_names = ('world', 'dev', 'eval') + self.low_level_group_names = ("train", "dev", "eval") + self.high_level_group_names = ("world", "dev", "eval") def groups(self): - return self.convert_names_to_highlevel(self.__db.groups(), - self.low_level_group_names, self.high_level_group_names) + return self.convert_names_to_highlevel( + self.__db.groups(), + self.low_level_group_names, + self.high_level_group_names, + ) def __protocol_split__(self, prot_name): """ @@ -136,40 +141,44 @@ class PutveinBioDatabase(BioDatabase): RL; please read the ``bob.db.putvein`` documentation. """ - allowed_prot_names = ["palm-L_1", - "palm-LR_1", - "palm-R_1", - "palm-RL_1", - "palm-R_BEAT_1", - "palm-L_4", - "palm-LR_4", - "palm-R_4", - "palm-RL_4", - "palm-R_BEAT_4", - "wrist-L_1", - "wrist-LR_1", - "wrist-R_1", - "wrist-RL_1", - "wrist-R_BEAT_1", - "wrist-L_4", - "wrist-LR_4", - "wrist-R_4", - "wrist-RL_4", - "wrist-R_BEAT_4"] + allowed_prot_names = [ + "palm-L_1", + "palm-LR_1", + "palm-R_1", + "palm-RL_1", + "palm-R_BEAT_1", + "palm-L_4", + "palm-LR_4", + "palm-R_4", + "palm-RL_4", + "palm-R_BEAT_4", + "wrist-L_1", + "wrist-LR_1", + "wrist-R_1", + "wrist-RL_1", + "wrist-R_BEAT_1", + "wrist-L_4", + "wrist-LR_4", + "wrist-R_4", + "wrist-RL_4", + "wrist-R_BEAT_4", + ] if prot_name not in allowed_prot_names: - raise IOError("Protocol name {} not allowed. Allowed names - {}".\ - format(prot_name, allowed_prot_names)) + raise IOError( + "Protocol name {} not allowed. Allowed names - {}".format( + prot_name, allowed_prot_names + ) + ) kind, prot = prot_name.split("-") return kind, prot - def client_id_from_model_id(self, model_id, group='dev'): + def client_id_from_model_id(self, model_id, group="dev"): """Required as ``model_id != client_id`` on this database""" return self.__db.client_id_from_model_id(model_id) - def model_ids_with_protocol(self, groups=None, protocol=None, **kwargs): """model_ids_with_protocol(groups = None, protocol = None, **kwargs) -> ids @@ -189,28 +198,36 @@ class PutveinBioDatabase(BioDatabase): """ kind, prot = self.__protocol_split__(protocol) - groups = self.convert_names_to_lowlevel(groups, self.low_level_group_names, self.high_level_group_names) - - return self.__db.model_ids(protocol=prot, - groups=groups, - kinds=kind) + groups = self.convert_names_to_lowlevel( + groups, self.low_level_group_names, self.high_level_group_names + ) + return self.__db.model_ids(protocol=prot, groups=groups, kinds=kind) - def objects(self, protocol=None, groups=None, purposes=None, model_ids=None, kinds=None, **kwargs): + def objects( + self, + protocol=None, + groups=None, + purposes=None, + model_ids=None, + kinds=None, + **kwargs + ): kind, prot = self.__protocol_split__(protocol) - groups = self.convert_names_to_lowlevel(groups, self.low_level_group_names, self.high_level_group_names) - - retval = self.__db.objects(protocol=prot, - groups=groups, - purposes=purposes, - model_ids=model_ids, - kinds=kind) + groups = self.convert_names_to_lowlevel( + groups, self.low_level_group_names, self.high_level_group_names + ) + + retval = self.__db.objects( + protocol=prot, + groups=groups, + purposes=purposes, + model_ids=model_ids, + kinds=kind, + ) return [File(f) for f in retval] - def annotations(self, file): return None - - diff --git a/bob/bio/vein/database/roi_annotation.py b/bob/bio/vein/database/roi_annotation.py index 53fbbe1..aa7b550 100644 --- a/bob/bio/vein/database/roi_annotation.py +++ b/bob/bio/vein/database/roi_annotation.py @@ -1,6 +1,8 @@ -from sklearn.base import TransformerMixin, BaseEstimator from pathlib import Path + from numpy import loadtxt +from sklearn.base import BaseEstimator, TransformerMixin + from bob.pipelines import DelayedSample @@ -8,6 +10,7 @@ class ROIAnnotation(TransformerMixin, BaseEstimator): """ Transformer class to read ROI annotation file for grayscale images """ + def __init__(self, roi_path): super(ROIAnnotation, self).__init__() self.roi_path = Path(roi_path) if roi_path else False @@ -29,7 +32,7 @@ class ROIAnnotation(TransformerMixin, BaseEstimator): annotated_samples = [] for x in X: roi_file = (self.roi_path / x.key).with_suffix(".txt") - roi = loadtxt(roi_file, dtype='uint16') + roi = loadtxt(roi_file, dtype="uint16") sample = DelayedSample.from_sample(x, roi=roi) annotated_samples.append(sample) diff --git a/bob/bio/vein/database/utfvp.py b/bob/bio/vein/database/utfvp.py index 203a7a1..bc75102 100644 --- a/bob/bio/vein/database/utfvp.py +++ b/bob/bio/vein/database/utfvp.py @@ -6,13 +6,14 @@ Utfvp database implementation """ -from bob.bio.base.database import CSVDataset -from bob.bio.base.database import CSVToSampleLoaderBiometrics -from bob.extension import rc -from bob.extension.download import get_file -import bob.io.base from sklearn.pipeline import make_pipeline + +import bob.io.base + +from bob.bio.base.database import CSVDataset, CSVToSampleLoaderBiometrics from bob.bio.vein.database.roi_annotation import ROIAnnotation +from bob.extension import rc +from bob.extension.download import get_file class UtfvpDatabase(CSVDataset): diff --git a/bob/bio/vein/database/verafinger.py b/bob/bio/vein/database/verafinger.py index 485f4bc..ea3db17 100644 --- a/bob/bio/vein/database/verafinger.py +++ b/bob/bio/vein/database/verafinger.py @@ -4,10 +4,10 @@ import os -from bob.bio.base.database import BioFile, BioDatabase +from bob.bio.base.database import BioDatabase, BioFile -from . import AnnotatedArray from ..preprocessor.utils import poly_to_mask +from . import AnnotatedArray class File(BioFile): @@ -24,20 +24,20 @@ class File(BioFile): def __init__(self, f): id_ = f.finger.unique_name - if f.source == 'pa': id_ = 'attack/%s' % id_ + if f.source == "pa": + id_ = "attack/%s" % id_ super(File, self).__init__(client_id=id_, path=f.path, file_id=f.id) self.__f = f - def load(self, *args, **kwargs): """(Overrides base method) Loads both image and mask""" image = super(File, self).load(*args, **kwargs) - basedir = args[0] if args else kwargs['directory'] - annotdir = os.path.join(basedir, 'annotations', 'roi') + basedir = args[0] if args else kwargs["directory"] + annotdir = os.path.join(basedir, "annotations", "roi") if os.path.exists(annotdir): - roi = self.__f.roi(args[0]) - return AnnotatedArray(image, metadata=dict(roi=roi)) + roi = self.__f.roi(args[0]) + return AnnotatedArray(image, metadata=dict(roi=roi)) return image @@ -48,48 +48,63 @@ class Database(BioDatabase): def __init__(self, **kwargs): - super(Database, self).__init__(name='verafinger', **kwargs) + super(Database, self).__init__(name="verafinger", **kwargs) from bob.db.verafinger.query import Database as LowLevelDatabase + self._db = LowLevelDatabase() - self.low_level_group_names = ('train', 'dev') - self.high_level_group_names = ('world', 'dev') + self.low_level_group_names = ("train", "dev") + self.high_level_group_names = ("world", "dev") def groups(self): - return self.convert_names_to_highlevel(self._db.groups(), - self.low_level_group_names, self.high_level_group_names) + return self.convert_names_to_highlevel( + self._db.groups(), + self.low_level_group_names, + self.high_level_group_names, + ) - def client_id_from_model_id(self, model_id, group='dev'): + def client_id_from_model_id(self, model_id, group="dev"): """Required as ``model_id != client_id`` on this database""" return self._db.finger_name_from_model_id(model_id) - def model_ids_with_protocol(self, groups=None, protocol=None, **kwargs): - groups = self.convert_names_to_lowlevel(groups, - self.low_level_group_names, self.high_level_group_names) - if protocol.endswith('-va') or protocol.endswith('-VA'): + groups = self.convert_names_to_lowlevel( + groups, self.low_level_group_names, self.high_level_group_names + ) + if protocol.endswith("-va") or protocol.endswith("-VA"): protocol = protocol[:-3] return self._db.model_ids(groups=groups, protocol=protocol) + def objects( + self, + groups=None, + protocol=None, + purposes=None, + model_ids=None, + **kwargs + ): - def objects(self, groups=None, protocol=None, purposes=None, - model_ids=None, **kwargs): - - groups = self.convert_names_to_lowlevel(groups, - self.low_level_group_names, self.high_level_group_names) + groups = self.convert_names_to_lowlevel( + groups, self.low_level_group_names, self.high_level_group_names + ) - if protocol.endswith('-va') or protocol.endswith('-VA'): + if protocol.endswith("-va") or protocol.endswith("-VA"): protocol = protocol[:-3] - if purposes=='probe': purposes='attack' + if purposes == "probe": + purposes = "attack" - retval = self._db.objects(groups=groups, protocol=protocol, - purposes=purposes, model_ids=model_ids, **kwargs) + retval = self._db.objects( + groups=groups, + protocol=protocol, + purposes=purposes, + model_ids=model_ids, + **kwargs + ) return [File(f) for f in retval] - def annotations(self, file): return None diff --git a/bob/bio/vein/database/verafinger_contactless.py b/bob/bio/vein/database/verafinger_contactless.py index 35bd8d1..6730a5e 100644 --- a/bob/bio/vein/database/verafinger_contactless.py +++ b/bob/bio/vein/database/verafinger_contactless.py @@ -6,11 +6,11 @@ VERA-Fingervein-Contactless database implementation """ -from bob.bio.base.database import CSVDataset -from bob.bio.base.database import CSVToSampleLoaderBiometrics +import bob.io.base + +from bob.bio.base.database import CSVDataset, CSVToSampleLoaderBiometrics from bob.extension import rc from bob.extension.download import get_file -import bob.io.base class VerafingerContactless(CSVDataset): diff --git a/bob/bio/vein/extractor/MaximumCurvature.py b/bob/bio/vein/extractor/MaximumCurvature.py index c3d9880..698ff1b 100644 --- a/bob/bio/vein/extractor/MaximumCurvature.py +++ b/bob/bio/vein/extractor/MaximumCurvature.py @@ -2,503 +2,511 @@ # vim: set fileencoding=utf-8 : import math + import numpy import scipy.ndimage -import bob.io.base -from bob.bio.base.extractor import Extractor - - -class MaximumCurvature (Extractor): - """ - MiuraMax feature extractor. - - Based on N. Miura, A. Nagasaka, and T. Miyatake, Extraction of Finger-Vein - Pattern Using Maximum Curvature Points in Image Profiles. Proceedings on IAPR - conference on machine vision applications, 9 (2005), pp. 347--350. - - - Parameters: - - sigma (:py:class:`int`, optional): standard deviation for the gaussian - smoothing kernel used to denoise the input image. The width of the - gaussian kernel will be set automatically to 4x this value (in pixels). - - """ - - - def __init__(self, sigma = 5): - Extractor.__init__(self, sigma = sigma) - self.sigma = sigma - - - def detect_valleys(self, image, mask): - """Detects valleys on the image respecting the mask - - This step corresponds to Step 1-1 in the original paper. The objective is, - for all 4 cross-sections (z) of the image (horizontal, vertical, 45 and -45 - diagonals), to compute the following proposed valley detector as defined in - Equation 1, page 348: - - .. math:: - - \kappa(z) = \\frac{d^2P_f(z)/dz^2}{(1 + (dP_f(z)/dz)^2)^\\frac{3}{2}} - - - We start the algorithm by smoothing the image with a 2-dimensional gaussian - filter. The equation that defines the kernel for the filter is: - - .. math:: - - \mathcal{N}(x,y)=\\frac{1}{2\pi\sigma^2}e^\\frac{-(x^2+y^2)}{2\sigma^2} - - - This is done to avoid noise from the raw data (from the sensor). The - maximum curvature method then requires we compute the first and second - derivative of the image for all cross-sections, as per the equation above. - - We instead take the following equivalent approach: - - 1. construct a gaussian filter - 2. take the first (dh/dx) and second (d^2/dh^2) deritivatives of the filter - 3. calculate the first and second derivatives of the smoothed signal using - the results from 3. This is done for all directions we're interested in: - horizontal, vertical and 2 diagonals. First and second derivatives of a - convolved signal - - .. note:: - - Item 3 above is only possible thanks to the steerable filter property of - the gaussian kernel. See "The Design and Use of Steerable Filters" from - Freeman and Adelson, IEEE Transactions on Pattern Analysis and Machine - Intelligence, Vol. 13, No. 9, September 1991. - - - Parameters: - - image (numpy.ndarray): an array of 64-bit floats containing the input - image - mask (numpy.ndarray): an array, of the same size as ``image``, containing - a mask (booleans) indicating where the finger is on ``image``. +import bob.io.base - Returns: +from bob.bio.base.extractor import Extractor - numpy.ndarray: a 3-dimensional array of 64-bits containing $\kappa$ for - all considered directions. $\kappa$ has the same shape as ``image``, - except for the 3rd. dimension, which provides planes for the - cross-section valley detections for each of the contemplated directions, - in this order: horizontal, vertical, +45 degrees, -45 degrees. +class MaximumCurvature(Extractor): """ + MiuraMax feature extractor. - # 1. constructs the 2D gaussian filter "h" given the window size, - # extrapolated from the "sigma" parameter (4x) - # N.B.: This is a text-book gaussian filter definition - winsize = numpy.ceil(4*self.sigma) #enough space for the filter - window = numpy.arange(-winsize, winsize+1) - X, Y = numpy.meshgrid(window, window) - G = 1.0 / (2*math.pi*self.sigma**2) - G *= numpy.exp(-(X**2 + Y**2) / (2*self.sigma**2)) - - # 2. calculates first and second derivatives of "G" with respect to "X" - # (0), "Y" (90 degrees) and 45 degrees (?) - G1_0 = (-X/(self.sigma**2))*G - G2_0 = ((X**2 - self.sigma**2)/(self.sigma**4))*G - G1_90 = G1_0.T - G2_90 = G2_0.T - hxy = ((X*Y)/(self.sigma**4))*G - - # 3. calculates derivatives w.r.t. to all directions of interest - # stores results in the variable "k". The entries (last dimension) in k - # correspond to curvature detectors in the following directions: - # - # [0] horizontal - # [1] vertical - # [2] diagonal \ (45 degrees rotation) - # [3] diagonal / (-45 degrees rotation) - image_g1_0 = scipy.ndimage.convolve(image, G1_0, mode='nearest') - image_g2_0 = scipy.ndimage.convolve(image, G2_0, mode='nearest') - image_g1_90 = scipy.ndimage.convolve(image, G1_90, mode='nearest') - image_g2_90 = scipy.ndimage.convolve(image, G2_90, mode='nearest') - fxy = scipy.ndimage.convolve(image, hxy, mode='nearest') - - # support calculation for diagonals, given the gaussian kernel is - # steerable. To calculate the derivatives for the "\" diagonal, we first - # **would** have to rotate the image 45 degrees counter-clockwise (so the - # diagonal lies on the horizontal axis). Using the steerable property, we - # can evaluate the first derivative like this: - # - # image_g1_45 = cos(45)*image_g1_0 + sin(45)*image_g1_90 - # = sqrt(2)/2*fx + sqrt(2)/2*fx - # - # to calculate the first derivative for the "/" diagonal, we first - # **would** have to rotate the image -45 degrees "counter"-clockwise. - # Therefore, we can calculate it like this: - # - # image_g1_m45 = cos(-45)*image_g1_0 + sin(-45)*image_g1_90 - # = sqrt(2)/2*image_g1_0 - sqrt(2)/2*image_g1_90 - # - - image_g1_45 = 0.5*numpy.sqrt(2)*(image_g1_0 + image_g1_90) - image_g1_m45 = 0.5*numpy.sqrt(2)*(image_g1_0 - image_g1_90) - - # NOTE: You can't really get image_g2_45 and image_g2_m45 from the theory - # of steerable filters. In contact with B.Ton, he suggested the following - # material, where that is explained: Chapter 5.2.3 of van der Heijden, F. - # (1994) Image based measurement systems: object recognition and parameter - # estimation. John Wiley & Sons Ltd, Chichester. ISBN 978-0-471-95062-2 - - # This also shows the same result: - # http://www.mif.vu.lt/atpazinimas/dip/FIP/fip-Derivati.html (look for - # SDGD) - - # He also suggested to look at slide 75 of the following presentation - # indicating it is self-explanatory: http://slideplayer.com/slide/5084635/ - - image_g2_45 = 0.5*image_g2_0 + fxy + 0.5*image_g2_90 - image_g2_m45 = 0.5*image_g2_0 - fxy + 0.5*image_g2_90 - - # ###################################################################### - # [Step 1-1] Calculation of curvature profiles - # ###################################################################### - - # Peak detection (k or kappa) calculation as per equation (1) page 348 on - # Miura's paper - finger_mask = mask.astype('float64') - - return numpy.dstack([ - (image_g2_0 / ((1 + image_g1_0**2)**(1.5)) ) * finger_mask, - (image_g2_90 / ((1 + image_g1_90**2)**(1.5)) ) * finger_mask, - (image_g2_45 / ((1 + image_g1_45**2)**(1.5)) ) * finger_mask, - (image_g2_m45 / ((1 + image_g1_m45**2)**(1.5))) * finger_mask, - ]) - - - def eval_vein_probabilities(self, k): - '''Evaluates joint vein centre probabilities from cross-sections - - This function will take $\kappa$ and will calculate the vein centre - probabilities taking into consideration valley widths and depths. It - aggregates the following steps from the paper: - - * [Step 1-2] Detection of the centres of veins - * [Step 1-3] Assignment of scores to the centre positions - * [Step 1-4] Calculation of all the profiles - - Once the arrays of curvatures (concavities) are calculated, here is how - detection works: The code scans the image in a precise direction (vertical, - horizontal, diagonal, etc). It tries to find a concavity on that direction - and measure its width (see Wr on Figure 3 on the original paper). It then - identifies the centers of the concavity and assign a value to it, which - depends on its width (Wr) and maximum depth (where the peak of darkness - occurs) in such a concavity. This value is accumulated on a variable (Vt), - which is re-used for all directions. Vt represents the vein probabilites - from the paper. + Based on N. Miura, A. Nagasaka, and T. Miyatake, Extraction of Finger-Vein + Pattern Using Maximum Curvature Points in Image Profiles. Proceedings on IAPR + conference on machine vision applications, 9 (2005), pp. 347--350. Parameters: - k (numpy.ndarray): a 3-dimensional array of 64-bits containing $\kappa$ - for all considered directions. $\kappa$ has the same shape as - ``image``, except for the 3rd. dimension, which provides planes for the - cross-section valley detections for each of the contemplated - directions, in this order: horizontal, vertical, +45 degrees, -45 - degrees. + sigma (:py:class:`int`, optional): standard deviation for the gaussian + smoothing kernel used to denoise the input image. The width of the + gaussian kernel will be set automatically to 4x this value (in pixels). + """ - Returns: - - numpy.ndarray: The un-accumulated vein centre probabilities ``V``. This - is a 3D array with 64-bit floats with the same dimensions of the input - array ``k``. You must accumulate (sum) over the last dimension to - retrieve the variable ``V`` from the paper. - - ''' - - V = numpy.zeros(k.shape[:2], dtype='float64') - - def _prob_1d(a): - '''Finds "vein probabilities" in a 1-D signal - - This function efficiently counts the width and height of concavities in - the cross-section (1-D) curvature signal ``s``. - - It works like this: + def __init__(self, sigma=5): + Extractor.__init__(self, sigma=sigma) + self.sigma = sigma - 1. We create a 1-shift difference between the thresholded signal and - itself - 2. We compensate for starting and ending regions - 3. For each sequence of start/ends, we compute the maximum in the - original signal + def detect_valleys(self, image, mask): + """Detects valleys on the image respecting the mask + + This step corresponds to Step 1-1 in the original paper. The objective is, + for all 4 cross-sections (z) of the image (horizontal, vertical, 45 and -45 + diagonals), to compute the following proposed valley detector as defined in + Equation 1, page 348: + + .. math:: + + \kappa(z) = \\frac{d^2P_f(z)/dz^2}{(1 + (dP_f(z)/dz)^2)^\\frac{3}{2}} + + + We start the algorithm by smoothing the image with a 2-dimensional gaussian + filter. The equation that defines the kernel for the filter is: + + .. math:: + + \mathcal{N}(x,y)=\\frac{1}{2\pi\sigma^2}e^\\frac{-(x^2+y^2)}{2\sigma^2} + + + This is done to avoid noise from the raw data (from the sensor). The + maximum curvature method then requires we compute the first and second + derivative of the image for all cross-sections, as per the equation above. + + We instead take the following equivalent approach: + + 1. construct a gaussian filter + 2. take the first (dh/dx) and second (d^2/dh^2) deritivatives of the filter + 3. calculate the first and second derivatives of the smoothed signal using + the results from 3. This is done for all directions we're interested in: + horizontal, vertical and 2 diagonals. First and second derivatives of a + convolved signal + + .. note:: + + Item 3 above is only possible thanks to the steerable filter property of + the gaussian kernel. See "The Design and Use of Steerable Filters" from + Freeman and Adelson, IEEE Transactions on Pattern Analysis and Machine + Intelligence, Vol. 13, No. 9, September 1991. + + + Parameters: + + image (numpy.ndarray): an array of 64-bit floats containing the input + image + mask (numpy.ndarray): an array, of the same size as ``image``, containing + a mask (booleans) indicating where the finger is on ``image``. + + + Returns: + + numpy.ndarray: a 3-dimensional array of 64-bits containing $\kappa$ for + all considered directions. $\kappa$ has the same shape as ``image``, + except for the 3rd. dimension, which provides planes for the + cross-section valley detections for each of the contemplated directions, + in this order: horizontal, vertical, +45 degrees, -45 degrees. + + """ + + # 1. constructs the 2D gaussian filter "h" given the window size, + # extrapolated from the "sigma" parameter (4x) + # N.B.: This is a text-book gaussian filter definition + winsize = numpy.ceil(4 * self.sigma) # enough space for the filter + window = numpy.arange(-winsize, winsize + 1) + X, Y = numpy.meshgrid(window, window) + G = 1.0 / (2 * math.pi * self.sigma**2) + G *= numpy.exp(-(X**2 + Y**2) / (2 * self.sigma**2)) + + # 2. calculates first and second derivatives of "G" with respect to "X" + # (0), "Y" (90 degrees) and 45 degrees (?) + G1_0 = (-X / (self.sigma**2)) * G + G2_0 = ((X**2 - self.sigma**2) / (self.sigma**4)) * G + G1_90 = G1_0.T + G2_90 = G2_0.T + hxy = ((X * Y) / (self.sigma**4)) * G + + # 3. calculates derivatives w.r.t. to all directions of interest + # stores results in the variable "k". The entries (last dimension) in k + # correspond to curvature detectors in the following directions: + # + # [0] horizontal + # [1] vertical + # [2] diagonal \ (45 degrees rotation) + # [3] diagonal / (-45 degrees rotation) + image_g1_0 = scipy.ndimage.convolve(image, G1_0, mode="nearest") + image_g2_0 = scipy.ndimage.convolve(image, G2_0, mode="nearest") + image_g1_90 = scipy.ndimage.convolve(image, G1_90, mode="nearest") + image_g2_90 = scipy.ndimage.convolve(image, G2_90, mode="nearest") + fxy = scipy.ndimage.convolve(image, hxy, mode="nearest") + + # support calculation for diagonals, given the gaussian kernel is + # steerable. To calculate the derivatives for the "\" diagonal, we first + # **would** have to rotate the image 45 degrees counter-clockwise (so the + # diagonal lies on the horizontal axis). Using the steerable property, we + # can evaluate the first derivative like this: + # + # image_g1_45 = cos(45)*image_g1_0 + sin(45)*image_g1_90 + # = sqrt(2)/2*fx + sqrt(2)/2*fx + # + # to calculate the first derivative for the "/" diagonal, we first + # **would** have to rotate the image -45 degrees "counter"-clockwise. + # Therefore, we can calculate it like this: + # + # image_g1_m45 = cos(-45)*image_g1_0 + sin(-45)*image_g1_90 + # = sqrt(2)/2*image_g1_0 - sqrt(2)/2*image_g1_90 + # - Example (mixed with pseudo-code): + image_g1_45 = 0.5 * numpy.sqrt(2) * (image_g1_0 + image_g1_90) + image_g1_m45 = 0.5 * numpy.sqrt(2) * (image_g1_0 - image_g1_90) + + # NOTE: You can't really get image_g2_45 and image_g2_m45 from the theory + # of steerable filters. In contact with B.Ton, he suggested the following + # material, where that is explained: Chapter 5.2.3 of van der Heijden, F. + # (1994) Image based measurement systems: object recognition and parameter + # estimation. John Wiley & Sons Ltd, Chichester. ISBN 978-0-471-95062-2 + + # This also shows the same result: + # http://www.mif.vu.lt/atpazinimas/dip/FIP/fip-Derivati.html (look for + # SDGD) + + # He also suggested to look at slide 75 of the following presentation + # indicating it is self-explanatory: http://slideplayer.com/slide/5084635/ + + image_g2_45 = 0.5 * image_g2_0 + fxy + 0.5 * image_g2_90 + image_g2_m45 = 0.5 * image_g2_0 - fxy + 0.5 * image_g2_90 + + # ###################################################################### + # [Step 1-1] Calculation of curvature profiles + # ###################################################################### + + # Peak detection (k or kappa) calculation as per equation (1) page 348 on + # Miura's paper + finger_mask = mask.astype("float64") - a = 0 1 2 3 2 1 0 -1 0 0 1 2 5 2 2 2 1 - b = a > 0 (as type int) - b = 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 + return numpy.dstack( + [ + (image_g2_0 / ((1 + image_g1_0**2) ** (1.5))) * finger_mask, + (image_g2_90 / ((1 + image_g1_90**2) ** (1.5))) * finger_mask, + (image_g2_45 / ((1 + image_g1_45**2) ** (1.5))) * finger_mask, + (image_g2_m45 / ((1 + image_g1_m45**2) ** (1.5))) + * finger_mask, + ] + ) + + def eval_vein_probabilities(self, k): + """Evaluates joint vein centre probabilities from cross-sections + + This function will take $\kappa$ and will calculate the vein centre + probabilities taking into consideration valley widths and depths. It + aggregates the following steps from the paper: + + * [Step 1-2] Detection of the centres of veins + * [Step 1-3] Assignment of scores to the centre positions + * [Step 1-4] Calculation of all the profiles + + Once the arrays of curvatures (concavities) are calculated, here is how + detection works: The code scans the image in a precise direction (vertical, + horizontal, diagonal, etc). It tries to find a concavity on that direction + and measure its width (see Wr on Figure 3 on the original paper). It then + identifies the centers of the concavity and assign a value to it, which + depends on its width (Wr) and maximum depth (where the peak of darkness + occurs) in such a concavity. This value is accumulated on a variable (Vt), + which is re-used for all directions. Vt represents the vein probabilites + from the paper. + + + Parameters: + + k (numpy.ndarray): a 3-dimensional array of 64-bits containing $\kappa$ + for all considered directions. $\kappa$ has the same shape as + ``image``, except for the 3rd. dimension, which provides planes for the + cross-section valley detections for each of the contemplated + directions, in this order: horizontal, vertical, +45 degrees, -45 + degrees. + + + Returns: + + numpy.ndarray: The un-accumulated vein centre probabilities ``V``. This + is a 3D array with 64-bit floats with the same dimensions of the input + array ``k``. You must accumulate (sum) over the last dimension to + retrieve the variable ``V`` from the paper. + + """ - 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 - 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 (-) - ------------------------------------------- - X 1 0 0 0 0 -1 0 0 0 1 0 0 0 0 0 0 X (length is smaller than orig.) + V = numpy.zeros(k.shape[:2], dtype="float64") - starts = numpy.where(diff > 0) - ends = numpy.where(diff < 0) + def _prob_1d(a): + """Finds "vein probabilities" in a 1-D signal - -> now the number of starts and ends should match, otherwise, we must - compensate + This function efficiently counts the width and height of concavities in + the cross-section (1-D) curvature signal ``s``. - -> case 1: b starts with 1: add one start in begin of "starts" - -> case 2: b ends with 1: add one end in the end of "ends" + It works like this: - -> iterate over the sequence of starts/ends and find maximums + 1. We create a 1-shift difference between the thresholded signal and + itself + 2. We compensate for starting and ending regions + 3. For each sequence of start/ends, we compute the maximum in the + original signal + Example (mixed with pseudo-code): - Parameters: + a = 0 1 2 3 2 1 0 -1 0 0 1 2 5 2 2 2 1 + b = a > 0 (as type int) + b = 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 - a (numpy.ndarray): 1D signal with curvature to explore + 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 + 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 (-) + ------------------------------------------- + X 1 0 0 0 0 -1 0 0 0 1 0 0 0 0 0 0 X (length is smaller than orig.) + starts = numpy.where(diff > 0) + ends = numpy.where(diff < 0) - Returns: + -> now the number of starts and ends should match, otherwise, we must + compensate - numpy.ndarray: 1D container with the vein centre probabilities + -> case 1: b starts with 1: add one start in begin of "starts" + -> case 2: b ends with 1: add one end in the end of "ends" - ''' + -> iterate over the sequence of starts/ends and find maximums - b = (a > 0).astype(int) - diff = b[1:] - b[:-1] - starts = numpy.argwhere(diff > 0) - starts += 1 #compensates for shifted different - ends = numpy.argwhere(diff < 0) - ends += 1 #compensates for shifted different - if b[0]: starts = numpy.insert(starts, 0, 0) - if b[-1]: ends = numpy.append(ends, len(a)) - z = numpy.zeros_like(a) + Parameters: - if starts.size == 0 and ends.size == 0: return z + a (numpy.ndarray): 1D signal with curvature to explore - for start, end in zip(starts, ends): - maximum = numpy.argmax(a[int(start):int(end)]) - z[start+maximum] = a[start+maximum] * (end-start) - return z + Returns: + numpy.ndarray: 1D container with the vein centre probabilities - # Horizontal direction - for index in range(k.shape[0]): - V[index,:] += _prob_1d(k[index,:,0]) + """ - # Vertical direction - for index in range(k.shape[1]): - V[:,index] += _prob_1d(k[:,index,1]) + b = (a > 0).astype(int) + diff = b[1:] - b[:-1] + starts = numpy.argwhere(diff > 0) + starts += 1 # compensates for shifted different + ends = numpy.argwhere(diff < 0) + ends += 1 # compensates for shifted different + if b[0]: + starts = numpy.insert(starts, 0, 0) + if b[-1]: + ends = numpy.append(ends, len(a)) - # Direction: 45 degrees (\) - curv = k[:,:,2] - i,j = numpy.indices(curv.shape) - for index in range(-curv.shape[0]+1, curv.shape[1]): - V[i==(j-index)] += _prob_1d(curv.diagonal(index)) + z = numpy.zeros_like(a) - # Direction: -45 degrees (/) - # NOTE: due to the way the access to the diagonals are implemented, in this - # loop, we operate bottom-up. To match this behaviour, we also address V - # through Vud. - curv = numpy.flipud(k[:,:,3]) #required so we get "/" diagonals correctly - Vud = numpy.flipud(V) #match above inversion - for index in reversed(range(curv.shape[1]-1, -curv.shape[0], -1)): - Vud[i==(j-index)] += _prob_1d(curv.diagonal(index)) + if starts.size == 0 and ends.size == 0: + return z - return V + for start, end in zip(starts, ends): + maximum = numpy.argmax(a[int(start) : int(end)]) + z[start + maximum] = a[start + maximum] * (end - start) + return z - def connect_centres(self, V): - """Connects vein centres by filtering vein probabilities ``V`` + # Horizontal direction + for index in range(k.shape[0]): + V[index, :] += _prob_1d(k[index, :, 0]) - This function does the equivalent of Step 2 / Equation 4 at Miura's paper. + # Vertical direction + for index in range(k.shape[1]): + V[:, index] += _prob_1d(k[:, index, 1]) - The operation is applied on a row from the ``V`` matrix, which may be - acquired horizontally, vertically or on a diagonal direction. The pixel - value is then reset in the center of a windowing operation (width = 5) with - the following value: + # Direction: 45 degrees (\) + curv = k[:, :, 2] + i, j = numpy.indices(curv.shape) + for index in range(-curv.shape[0] + 1, curv.shape[1]): + V[i == (j - index)] += _prob_1d(curv.diagonal(index)) - .. math:: + # Direction: -45 degrees (/) + # NOTE: due to the way the access to the diagonals are implemented, in this + # loop, we operate bottom-up. To match this behaviour, we also address V + # through Vud. + curv = numpy.flipud( + k[:, :, 3] + ) # required so we get "/" diagonals correctly + Vud = numpy.flipud(V) # match above inversion + for index in reversed(range(curv.shape[1] - 1, -curv.shape[0], -1)): + Vud[i == (j - index)] += _prob_1d(curv.diagonal(index)) - b[w] = min(max(a[w+1], a[w+2]) + max(a[w-1], a[w-2])) + return V + def connect_centres(self, V): + """Connects vein centres by filtering vein probabilities ``V`` - Parameters: + This function does the equivalent of Step 2 / Equation 4 at Miura's paper. - V (numpy.ndarray): The accumulated vein centre probabilities ``V``. This - is a 2D array with 64-bit floats and is defined by Equation (3) on the - paper. + The operation is applied on a row from the ``V`` matrix, which may be + acquired horizontally, vertically or on a diagonal direction. The pixel + value is then reset in the center of a windowing operation (width = 5) with + the following value: + .. math:: - Returns: + b[w] = min(max(a[w+1], a[w+2]) + max(a[w-1], a[w-2])) - numpy.ndarray: A 3-dimensional 64-bit array ``Cd`` containing the result - of the filtering operation for each of the directions. ``Cd`` has the - dimensions of $\kappa$ and $V_i$. Each of the planes correspond to the - horizontal, vertical, +45 and -45 directions. - """ + Parameters: - def _connect_1d(a): - '''Connects centres in the given vector + V (numpy.ndarray): The accumulated vein centre probabilities ``V``. This + is a 2D array with 64-bit floats and is defined by Equation (3) on the + paper. - The strategy we use to vectorize this is to shift a twice to the left and - twice to the right and apply a vectorized operation to compute the above. + Returns: - Parameters: + numpy.ndarray: A 3-dimensional 64-bit array ``Cd`` containing the result + of the filtering operation for each of the directions. ``Cd`` has the + dimensions of $\kappa$ and $V_i$. Each of the planes correspond to the + horizontal, vertical, +45 and -45 directions. - a (numpy.ndarray): Input 1D array which will be window scanned + """ + def _connect_1d(a): + """Connects centres in the given vector - Returns: + The strategy we use to vectorize this is to shift a twice to the left and + twice to the right and apply a vectorized operation to compute the above. - numpy.ndarray: Output 1D array (must be writeable), in which we will - set the corrected pixel values after the filtering above. Notice that, - given the windowing operation, the returned array size would be 4 short - of the input array. - ''' + Parameters: - return numpy.amin([numpy.amax([a[3:-1], a[4:]], axis=0), - numpy.amax([a[1:-3], a[:-4]], axis=0)], axis=0) + a (numpy.ndarray): Input 1D array which will be window scanned - Cd = numpy.zeros(V.shape + (4,), dtype='float64') + Returns: - # Horizontal direction - for index in range(V.shape[0]): - Cd[index, 2:-2, 0] = _connect_1d(V[index,:]) + numpy.ndarray: Output 1D array (must be writeable), in which we will + set the corrected pixel values after the filtering above. Notice that, + given the windowing operation, the returned array size would be 4 short + of the input array. - # Vertical direction - for index in range(V.shape[1]): - Cd[2:-2, index, 1] = _connect_1d(V[:,index]) + """ - # Direction: 45 degrees (\) - i,j = numpy.indices(V.shape) - border = numpy.zeros((2,), dtype='float64') - for index in range(-V.shape[0]+5, V.shape[1]-4): - # NOTE: hstack **absolutately** necessary here as double indexing after - # array indexing is **not** possible with numpy (it returns a copy) - Cd[:,:,2][i==(j-index)] = numpy.hstack([border, - _connect_1d(V.diagonal(index)), border]) + return numpy.amin( + [ + numpy.amax([a[3:-1], a[4:]], axis=0), + numpy.amax([a[1:-3], a[:-4]], axis=0), + ], + axis=0, + ) - # Direction: -45 degrees (/) - Vud = numpy.flipud(V) - Cdud = numpy.flipud(Cd[:,:,3]) - for index in reversed(range(V.shape[1]-5, -V.shape[0]+4, -1)): - # NOTE: hstack **absolutately** necessary here as double indexing after - # array indexing is **not** possible with numpy (it returns a copy) - Cdud[:,:][i==(j-index)] = numpy.hstack([border, - _connect_1d(Vud.diagonal(index)), border]) + Cd = numpy.zeros(V.shape + (4,), dtype="float64") - return Cd + # Horizontal direction + for index in range(V.shape[0]): + Cd[index, 2:-2, 0] = _connect_1d(V[index, :]) + # Vertical direction + for index in range(V.shape[1]): + Cd[2:-2, index, 1] = _connect_1d(V[:, index]) - def binarise(self, G): - """Binarise vein images using a threshold assuming distribution is diphasic + # Direction: 45 degrees (\) + i, j = numpy.indices(V.shape) + border = numpy.zeros((2,), dtype="float64") + for index in range(-V.shape[0] + 5, V.shape[1] - 4): + # NOTE: hstack **absolutately** necessary here as double indexing after + # array indexing is **not** possible with numpy (it returns a copy) + Cd[:, :, 2][i == (j - index)] = numpy.hstack( + [border, _connect_1d(V.diagonal(index)), border] + ) - This function implements Step 3 of the paper. It binarises the 2-D array - ``G`` assuming its histogram is mostly diphasic and using a median value. + # Direction: -45 degrees (/) + Vud = numpy.flipud(V) + Cdud = numpy.flipud(Cd[:, :, 3]) + for index in reversed(range(V.shape[1] - 5, -V.shape[0] + 4, -1)): + # NOTE: hstack **absolutately** necessary here as double indexing after + # array indexing is **not** possible with numpy (it returns a copy) + Cdud[:, :][i == (j - index)] = numpy.hstack( + [border, _connect_1d(Vud.diagonal(index)), border] + ) + return Cd - Parameters: + def binarise(self, G): + """Binarise vein images using a threshold assuming distribution is diphasic - G (numpy.ndarray): A 2-dimensional 64-bit array ``G`` containing the - result of the filtering operation. ``G`` has the dimensions of the - original image. + This function implements Step 3 of the paper. It binarises the 2-D array + ``G`` assuming its histogram is mostly diphasic and using a median value. - Returns: + Parameters: - numpy.ndarray: A 2-dimensional 64-bit float array with the same - dimensions of the input image, but containing its vein-binarised version. - The output of this function corresponds to the output of the method. + G (numpy.ndarray): A 2-dimensional 64-bit array ``G`` containing the + result of the filtering operation. ``G`` has the dimensions of the + original image. - """ - median = numpy.median(G[G>0]) - Gbool = G > median - return Gbool.astype(numpy.float64) + Returns: + numpy.ndarray: A 2-dimensional 64-bit float array with the same + dimensions of the input image, but containing its vein-binarised version. + The output of this function corresponds to the output of the method. - def _view_four(self, k, suptitle): - '''Display four plots using matplotlib''' + """ - import matplotlib.pyplot as plt + median = numpy.median(G[G > 0]) + Gbool = G > median + return Gbool.astype(numpy.float64) - k[k<=0] = 0 - k /= k.max() + def _view_four(self, k, suptitle): + """Display four plots using matplotlib""" - plt.subplot(2,2,1) - plt.imshow(k[...,0], cmap='gray') - plt.title('Horizontal') + import matplotlib.pyplot as plt - plt.subplot(2,2,2) - plt.imshow(k[...,1], cmap='gray') - plt.title('Vertical') + k[k <= 0] = 0 + k /= k.max() - plt.subplot(2,2,3) - plt.imshow(k[...,2], cmap='gray') - plt.title('+45 degrees') + plt.subplot(2, 2, 1) + plt.imshow(k[..., 0], cmap="gray") + plt.title("Horizontal") - plt.subplot(2,2,4) - plt.imshow(k[...,3], cmap='gray') - plt.title('-45 degrees') + plt.subplot(2, 2, 2) + plt.imshow(k[..., 1], cmap="gray") + plt.title("Vertical") - plt.suptitle(suptitle) - plt.tight_layout() - plt.show() + plt.subplot(2, 2, 3) + plt.imshow(k[..., 2], cmap="gray") + plt.title("+45 degrees") + plt.subplot(2, 2, 4) + plt.imshow(k[..., 3], cmap="gray") + plt.title("-45 degrees") - def _view_single(self, k, title): - '''Displays a single plot using matplotlib''' + plt.suptitle(suptitle) + plt.tight_layout() + plt.show() - import matplotlib.pyplot as plt + def _view_single(self, k, title): + """Displays a single plot using matplotlib""" - plt.imshow(k, cmap='gray') - plt.title(title) - plt.tight_layout() - plt.show() + import matplotlib.pyplot as plt + plt.imshow(k, cmap="gray") + plt.title(title) + plt.tight_layout() + plt.show() - def __call__(self, image): + def __call__(self, image): - finger_image = image[0].astype('float64') - finger_mask = image[1] + finger_image = image[0].astype("float64") + finger_mask = image[1] - #import time - #start = time.time() + # import time + # start = time.time() - kappa = self.detect_valleys(finger_image, finger_mask) + kappa = self.detect_valleys(finger_image, finger_mask) - #self._view_four(kappa, "Valley Detectors - $\kappa$") + # self._view_four(kappa, "Valley Detectors - $\kappa$") - #print('filtering took %.2f seconds' % (time.time() - start)) - #start = time.time() + # print('filtering took %.2f seconds' % (time.time() - start)) + # start = time.time() - V = self.eval_vein_probabilities(kappa) + V = self.eval_vein_probabilities(kappa) - #self._view_single(V, "Accumulated Probabilities - V") + # self._view_single(V, "Accumulated Probabilities - V") - #print('probabilities took %.2f seconds' % (time.time() - start)) - #start = time.time() + # print('probabilities took %.2f seconds' % (time.time() - start)) + # start = time.time() - Cd = self.connect_centres(V) + Cd = self.connect_centres(V) - #self._view_four(Cd, "Connected Centers - $C_{di}$") - #self._view_single(numpy.amax(Cd, axis=2), "Connected Centers - G") + # self._view_four(Cd, "Connected Centers - $C_{di}$") + # self._view_single(numpy.amax(Cd, axis=2), "Connected Centers - G") - #print('connections took %.2f seconds' % (time.time() - start)) - #start = time.time() + # print('connections took %.2f seconds' % (time.time() - start)) + # start = time.time() - retval = self.binarise(numpy.amax(Cd, axis=2)) + retval = self.binarise(numpy.amax(Cd, axis=2)) - #self._view_single(retval, "Final Binarised Image") + # self._view_single(retval, "Final Binarised Image") - #print('binarization took %.2f seconds' % (time.time() - start)) + # print('binarization took %.2f seconds' % (time.time() - start)) - return retval + return retval diff --git a/bob/bio/vein/extractor/NormalisedCrossCorrelation.py b/bob/bio/vein/extractor/NormalisedCrossCorrelation.py index 8916cbe..df44560 100644 --- a/bob/bio/vein/extractor/NormalisedCrossCorrelation.py +++ b/bob/bio/vein/extractor/NormalisedCrossCorrelation.py @@ -11,16 +11,16 @@ from bob.bio.base.extractor import Extractor class NormalisedCrossCorrelation(Extractor): """Normalised Cross-Correlation feature extractor - Based on [KUU02]_ - """ + Based on [KUU02]_ + """ def __init__(self): Extractor.__init__(self) def __call__(self, image, mask): """Reads the input image, extract the features based on Normalised - Cross-Correlation of the fingervein image, and writes the resulting - template""" + Cross-Correlation of the fingervein image, and writes the resulting + template""" finger_image = image # Normalized image with histogram equalization finger_mask = mask diff --git a/bob/bio/vein/extractor/PrincipalCurvature.py b/bob/bio/vein/extractor/PrincipalCurvature.py index 97ba760..751be99 100644 --- a/bob/bio/vein/extractor/PrincipalCurvature.py +++ b/bob/bio/vein/extractor/PrincipalCurvature.py @@ -3,12 +3,12 @@ import numpy +from scipy.ndimage import gaussian_filter + import bob.io.base from bob.bio.base.extractor import Extractor -from scipy.ndimage import gaussian_filter - class PrincipalCurvature(Extractor): """MiuraMax feature extractor @@ -29,7 +29,9 @@ class PrincipalCurvature(Extractor): """ # call base class constructor Extractor.__init__( - self, sigma=sigma, threshold=threshold, + self, + sigma=sigma, + threshold=threshold, ) # block parameters @@ -46,12 +48,12 @@ class PrincipalCurvature(Extractor): finger_mask = numpy.zeros(mask.shape) finger_mask[mask == True] = 1 - sigma = numpy.sqrt(self.sigma ** 2 / 2) + sigma = numpy.sqrt(self.sigma**2 / 2) gx = self.ut_gauss(image, self.sigma, 1, 0) gy = self.ut_gauss(image, self.sigma, 0, 1) - Gmag = numpy.sqrt(gx ** 2 + gy ** 2) # Gradient magnitude + Gmag = numpy.sqrt(gx**2 + gy**2) # Gradient magnitude # Apply threshold gamma = (self.threshold / 100) * numpy.max(Gmag) @@ -71,7 +73,9 @@ class PrincipalCurvature(Extractor): hyy = self.ut_gauss(gy, sigma, 0, 1) lambda1 = 0.5 * ( - hxx + hyy + numpy.sqrt(hxx ** 2 + hyy ** 2 - 2 * hxx * hyy + 4 * hxy ** 2) + hxx + + hyy + + numpy.sqrt(hxx**2 + hyy**2 - 2 * hxx * hyy + 4 * hxy**2) ) veins = lambda1 * finger_mask diff --git a/bob/bio/vein/extractor/RepeatedLineTracking.py b/bob/bio/vein/extractor/RepeatedLineTracking.py index 3d77f04..65d627c 100644 --- a/bob/bio/vein/extractor/RepeatedLineTracking.py +++ b/bob/bio/vein/extractor/RepeatedLineTracking.py @@ -2,10 +2,12 @@ # vim: set fileencoding=utf-8 : import math + import numpy import scipy.ndimage from PIL import Image + from bob.bio.base.extractor import Extractor @@ -60,14 +62,18 @@ class RepeatedLineTracking(Extractor): # finger_image = bob.ip.base.scale(finger_image, scaling_factor) # finger_mask = bob.ip.base.scale(finger_mask, scaling_factor) new_size = tuple( - (numpy.array(finger_image.shape) * scaling_factor).astype(numpy.int) + (numpy.array(finger_image.shape) * scaling_factor).astype( + numpy.int + ) ) finger_image = numpy.array( Image.fromarray(finger_image).resize(size=new_size) ).T new_size = tuple( - (numpy.array(finger_mask.shape) * scaling_factor).astype(numpy.int) + (numpy.array(finger_mask.shape) * scaling_factor).astype( + numpy.int + ) ) finger_mask = numpy.array( Image.fromarray(finger_mask).resize(size=new_size) @@ -101,8 +107,12 @@ class RepeatedLineTracking(Extractor): print("Error: profile_w must be odd") ro = numpy.round(self.r * math.sqrt(2) / 2) # r for oblique directions - hW = (self.profile_w - 1) / 2 # half width for horz. and vert. directions - hWo = numpy.round(hW * math.sqrt(2) / 2) # half width for oblique directions + hW = ( + self.profile_w - 1 + ) / 2 # half width for horz. and vert. directions + hWo = numpy.round( + hW * math.sqrt(2) / 2 + ) # half width for oblique directions # Omit unreachable borders border = int(self.r + hW) @@ -114,7 +124,9 @@ class RepeatedLineTracking(Extractor): ## Uniformly distributed starting points aux = numpy.argwhere((finger_mask > 0) == True) indices = numpy.random.permutation(aux) - indices = indices[0 : self.iterations, :] # Limit to number of iterations + indices = indices[ + 0 : self.iterations, : + ] # Limit to number of iterations ## Iterate through all starting points for it in range(0, self.iterations): @@ -159,7 +171,9 @@ class RepeatedLineTracking(Extractor): ( ~Tc[yc - 1 : yc + 2, xc - 1 : xc + 2] & Nr - & finger_mask[yc - 1 : yc + 2, xc - 1 : xc + 2].astype(bool) + & finger_mask[yc - 1 : yc + 2, xc - 1 : xc + 2].astype( + bool + ) ).T.reshape(-1) == True ) diff --git a/bob/bio/vein/extractor/WideLineDetector.py b/bob/bio/vein/extractor/WideLineDetector.py index 7ea2411..9350e72 100644 --- a/bob/bio/vein/extractor/WideLineDetector.py +++ b/bob/bio/vein/extractor/WideLineDetector.py @@ -4,7 +4,6 @@ import numpy import scipy - from PIL import Image from bob.bio.base.extractor import Extractor @@ -53,14 +52,18 @@ class WideLineDetector(Extractor): scaling_factor = 0.24 new_size = tuple( - (numpy.array(finger_image.shape) * scaling_factor).astype(numpy.int) + (numpy.array(finger_image.shape) * scaling_factor).astype( + numpy.int + ) ) finger_image = numpy.array( Image.fromarray(finger_image).resize(size=new_size) ).T new_size = tuple( - (numpy.array(finger_mask.shape) * scaling_factor).astype(numpy.int) + (numpy.array(finger_mask.shape) * scaling_factor).astype( + numpy.int + ) ) finger_mask = numpy.array( Image.fromarray(finger_mask).resize(size=new_size) @@ -75,7 +78,7 @@ class WideLineDetector(Extractor): y = numpy.arange((-1) * self.radius, self.radius + 1) X, Y = numpy.meshgrid(x, y) - N = X ** 2 + Y ** 2 <= self.radius ** 2 # Neighbourhood mask + N = X**2 + Y**2 <= self.radius**2 # Neighbourhood mask img_h, img_w = finger_image.shape # Image height and width diff --git a/bob/bio/vein/extractor/__init__.py b/bob/bio/vein/extractor/__init__.py index 559d6f5..4f5cbfb 100644 --- a/bob/bio/vein/extractor/__init__.py +++ b/bob/bio/vein/extractor/__init__.py @@ -1,3 +1,4 @@ +# isort: skip_file from .NormalisedCrossCorrelation import NormalisedCrossCorrelation from .PrincipalCurvature import PrincipalCurvature from .RepeatedLineTracking import RepeatedLineTracking @@ -5,4 +6,4 @@ from .WideLineDetector import WideLineDetector from .MaximumCurvature import MaximumCurvature # gets sphinx autodoc done right - don't remove it -__all__ = [_ for _ in dir() if not _.startswith('_')] +__all__ = [_ for _ in dir() if not _.startswith("_")] diff --git a/bob/bio/vein/preprocessor/__init__.py b/bob/bio/vein/preprocessor/__init__.py index d0afb73..51771f9 100644 --- a/bob/bio/vein/preprocessor/__init__.py +++ b/bob/bio/vein/preprocessor/__init__.py @@ -1,3 +1,4 @@ +# isort: skip_file from .crop import Cropper, FixedCrop, NoCrop from .mask import Padder, Masker, FixedMask, NoMask, AnnotatedRoIMask from .mask import KonoMask, LeeMask, TomesLeeMask @@ -7,17 +8,19 @@ from .preprocessor import Preprocessor # gets sphinx autodoc done right - don't remove it def __appropriate__(*args): - """Says object was actually declared here, an not on the import module. + """Says object was actually declared here, an not on the import module. - Parameters: + Parameters: - *args: An iterable of objects to modify + *args: An iterable of objects to modify - Resolves `Sphinx referencing issues - <https://github.com/sphinx-doc/sphinx/issues/3048>` - """ + Resolves `Sphinx referencing issues + <https://github.com/sphinx-doc/sphinx/issues/3048>` + """ + + for obj in args: + obj.__module__ = __name__ - for obj in args: obj.__module__ = __name__ __appropriate__( Cropper, @@ -38,5 +41,5 @@ __appropriate__( NoFilter, HistogramEqualization, Preprocessor, - ) -__all__ = [_ for _ in dir() if not _.startswith('_')] +) +__all__ = [_ for _ in dir() if not _.startswith("_")] diff --git a/bob/bio/vein/preprocessor/crop.py b/bob/bio/vein/preprocessor/crop.py index dfd620d..7064ff0 100644 --- a/bob/bio/vein/preprocessor/crop.py +++ b/bob/bio/vein/preprocessor/crop.py @@ -2,7 +2,7 @@ # vim: set fileencoding=utf-8 : -'''Base utilities for pre-cropping images''' +"""Base utilities for pre-cropping images""" import numpy @@ -16,109 +16,107 @@ class Cropper(object): """ def __init__(self): - pass - + pass def __call__(self, image): - """Overwrite this method to implement your masking method + """Overwrite this method to implement your masking method - Parameters: + Parameters: - image (numpy.ndarray): A 2D numpy array of type ``uint8`` with the - input image + image (numpy.ndarray): A 2D numpy array of type ``uint8`` with the + input image - Returns: + Returns: - numpy.ndarray: A 2D numpy array of the same type as the input, with - cropped rows and columns as per request + numpy.ndarray: A 2D numpy array of the same type as the input, with + cropped rows and columns as per request - """ + """ - raise NotImplemented('You must implement the __call__ slot') + raise NotImplemented("You must implement the __call__ slot") class FixedCrop(Cropper): - """Implements cropping using a fixed suppression of border pixels - - The defaults supress no lines from the image and returns an image like the - original. If an :py:class:`bob.bio.vein.database.AnnotatedArray` is passed, - then we also check for its ``.metadata['roi']`` component and correct it so - that annotated RoI points are consistent on the cropped image. + """Implements cropping using a fixed suppression of border pixels + The defaults supress no lines from the image and returns an image like the + original. If an :py:class:`bob.bio.vein.database.AnnotatedArray` is passed, + then we also check for its ``.metadata['roi']`` component and correct it so + that annotated RoI points are consistent on the cropped image. - .. note:: - Before choosing values, note you're responsible for knowing what is the - orientation of images fed into this cropper. + .. note:: + Before choosing values, note you're responsible for knowing what is the + orientation of images fed into this cropper. - Parameters: - top (:py:class:`int`, optional): Number of lines to suppress from the top - of the image. The top of the image corresponds to ``y = 0``. + Parameters: - bottom (:py:class:`int`, optional): Number of lines to suppress from the - bottom of the image. The bottom of the image corresponds to ``y = - height``. + top (:py:class:`int`, optional): Number of lines to suppress from the top + of the image. The top of the image corresponds to ``y = 0``. - left (:py:class:`int`, optional): Number of lines to suppress from the left - of the image. The left of the image corresponds to ``x = 0``. + bottom (:py:class:`int`, optional): Number of lines to suppress from the + bottom of the image. The bottom of the image corresponds to ``y = + height``. - right (:py:class:`int`, optional): Number of lines to suppress from the - right of the image. The right of the image corresponds to ``x = width``. + left (:py:class:`int`, optional): Number of lines to suppress from the left + of the image. The left of the image corresponds to ``x = 0``. - """ + right (:py:class:`int`, optional): Number of lines to suppress from the + right of the image. The right of the image corresponds to ``x = width``. - def __init__(self, top=0, bottom=0, left=0, right=0): - self.top = top - self.bottom = bottom - self.left = left - self.right = right + """ + def __init__(self, top=0, bottom=0, left=0, right=0): + self.top = top + self.bottom = bottom + self.left = left + self.right = right - def __call__(self, image): - """Returns a big mask + def __call__(self, image): + """Returns a big mask - Parameters: + Parameters: - image (numpy.ndarray): A 2D numpy array of type ``uint8`` with the - input image + image (numpy.ndarray): A 2D numpy array of type ``uint8`` with the + input image - Returns: + Returns: - numpy.ndarray: A 2D numpy array of type boolean with the caculated - mask. ``True`` values correspond to regions where the finger is - situated + numpy.ndarray: A 2D numpy array of type boolean with the caculated + mask. ``True`` values correspond to regions where the finger is + situated - """ + """ - # this should work even if limits are zeros - h, w = image.shape - retval = image[self.top:h-self.bottom, self.left:w-self.right] + # this should work even if limits are zeros + h, w = image.shape + retval = image[self.top : h - self.bottom, self.left : w - self.right] - if hasattr(retval, 'metadata') and 'roi' in retval.metadata: - # adjust roi points to new cropping - retval = retval.copy() #don't override original - h, w = retval.shape - points = [] - for y, x in retval.metadata['roi']: - y = max(y-self.top, 0) #adjust - y = min(y, h-1) #verify it is not over the limits - x = max(x-self.left, 0) #adjust - x = min(x, w-1) #verify it is not over the limits - points.append((y,x)) - retval.metadata['roi'] = points + if hasattr(retval, "metadata") and "roi" in retval.metadata: + # adjust roi points to new cropping + retval = retval.copy() # don't override original + h, w = retval.shape + points = [] + for y, x in retval.metadata["roi"]: + y = max(y - self.top, 0) # adjust + y = min(y, h - 1) # verify it is not over the limits + x = max(x - self.left, 0) # adjust + x = min(x, w - 1) # verify it is not over the limits + points.append((y, x)) + retval.metadata["roi"] = points - return retval + return retval class NoCrop(FixedCrop): - """Convenience: same as FixedCrop()""" + """Convenience: same as FixedCrop()""" - def __init__(self): - super(NoCrop, self).__init__(0, 0, 0, 0) + def __init__(self): + super(NoCrop, self).__init__(0, 0, 0, 0) diff --git a/bob/bio/vein/preprocessor/filters.py b/bob/bio/vein/preprocessor/filters.py index c1aa814..31f3ef1 100644 --- a/bob/bio/vein/preprocessor/filters.py +++ b/bob/bio/vein/preprocessor/filters.py @@ -1,109 +1,105 @@ #!/usr/bin/env python # vim: set fileencoding=utf-8 : -'''Base utilities for post-filtering vein images''' +"""Base utilities for post-filtering vein images""" import numpy class Filter(object): - '''Objects of this class filter the input image''' + """Objects of this class filter the input image""" + def __init__(self): + pass - def __init__(self): - pass + def __call__(self, image, mask): + """Inputs image and mask and outputs a filtered version of the image - def __call__(self, image, mask): - '''Inputs image and mask and outputs a filtered version of the image + Parameters: + image (numpy.ndarray): raw image to filter as 2D array of unsigned + 8-bit integers - Parameters: + mask (numpy.ndarray): mask to normalize as 2D array of booleans - image (numpy.ndarray): raw image to filter as 2D array of unsigned - 8-bit integers - mask (numpy.ndarray): mask to normalize as 2D array of booleans + Returns: + numpy.ndarray: A 2D boolean array with the same shape and data type of + the input image representing the filtered image. - Returns: + """ - numpy.ndarray: A 2D boolean array with the same shape and data type of - the input image representing the filtered image. - - ''' - - raise NotImplemented('You must implement the __call__ slot') + raise NotImplemented("You must implement the __call__ slot") class NoFilter(Filter): - '''Applies no filtering on the input image, returning it without changes''' - - def __init__(self): - pass + """Applies no filtering on the input image, returning it without changes""" + def __init__(self): + pass - def __call__(self, image, mask): - '''Inputs image and mask and outputs the image, without changes + def __call__(self, image, mask): + """Inputs image and mask and outputs the image, without changes - Parameters: + Parameters: - image (numpy.ndarray): raw image to filter as 2D array of unsigned - 8-bit integers + image (numpy.ndarray): raw image to filter as 2D array of unsigned + 8-bit integers - mask (numpy.ndarray): mask to normalize as 2D array of booleans + mask (numpy.ndarray): mask to normalize as 2D array of booleans - Returns: + Returns: - numpy.ndarray: A 2D boolean array with the same shape and data type of - the input image representing the filtered image. + numpy.ndarray: A 2D boolean array with the same shape and data type of + the input image representing the filtered image. - ''' + """ - return image + return image class HistogramEqualization(Filter): - '''Applies histogram equalization on the input image inside the mask. - - In this implementation, only the pixels that lie inside the mask will be - used to calculate the histogram equalization parameters. Because of this - particularity, we don't use Bob's implementation for histogram equalization - and have one based exclusively on scikit-image. - ''' - + """Applies histogram equalization on the input image inside the mask. - def __init__(self): - pass + In this implementation, only the pixels that lie inside the mask will be + used to calculate the histogram equalization parameters. Because of this + particularity, we don't use Bob's implementation for histogram equalization + and have one based exclusively on scikit-image. + """ + def __init__(self): + pass - def __call__(self, image, mask): - '''Applies histogram equalization on the input image, returns filtered + def __call__(self, image, mask): + """Applies histogram equalization on the input image, returns filtered - Parameters: + Parameters: - image (numpy.ndarray): raw image to filter as 2D array of unsigned - 8-bit integers + image (numpy.ndarray): raw image to filter as 2D array of unsigned + 8-bit integers - mask (numpy.ndarray): mask to normalize as 2D array of booleans + mask (numpy.ndarray): mask to normalize as 2D array of booleans - Returns: + Returns: - numpy.ndarray: A 2D boolean array with the same shape and data type of - the input image representing the filtered image. + numpy.ndarray: A 2D boolean array with the same shape and data type of + the input image representing the filtered image. - ''' + """ - from skimage.exposure import equalize_hist - from skimage.exposure import rescale_intensity + from skimage.exposure import equalize_hist, rescale_intensity - retval = rescale_intensity(equalize_hist(image, mask=mask), out_range = (0, 255)) + retval = rescale_intensity( + equalize_hist(image, mask=mask), out_range=(0, 255) + ) - # make the parts outside the mask totally black - retval[~mask] = 0 + # make the parts outside the mask totally black + retval[~mask] = 0 - return retval + return retval diff --git a/bob/bio/vein/preprocessor/mask.py b/bob/bio/vein/preprocessor/mask.py index cf6cb51..7e1551d 100644 --- a/bob/bio/vein/preprocessor/mask.py +++ b/bob/bio/vein/preprocessor/mask.py @@ -1,9 +1,10 @@ #!/usr/bin/env python # vim: set fileencoding=utf-8 : -'''Base utilities for mask processing''' +"""Base utilities for mask processing""" import math + import numpy import scipy.ndimage import skimage.filters @@ -13,50 +14,52 @@ from .utils import poly_to_mask class Padder(object): - """A class that pads the input image returning a new object - + """A class that pads the input image returning a new object - Parameters: - padding_width (:py:obj:`int`, optional): How much padding (in pixels) to - add around the borders of the input image. We normally always keep this - value on its default (5 pixels). This parameter is always used before - normalizing the finger orientation. - - padding_constant (:py:obj:`int`, optional): What is the value of the pixels - added to the padding. This number should be a value between 0 and 255. - (From Pedro Tome: for UTFVP (high-quality samples), use 0. For the VERA - Fingervein database (low-quality samples), use 51 (that corresponds to - 0.2 in a float image with values between 0 and 1). This parameter is - always used before normalizing the finger orientation. + Parameters: - """ + padding_width (:py:obj:`int`, optional): How much padding (in pixels) to + add around the borders of the input image. We normally always keep this + value on its default (5 pixels). This parameter is always used before + normalizing the finger orientation. - def __init__(self, padding_width = 5, padding_constant = 51): + padding_constant (:py:obj:`int`, optional): What is the value of the pixels + added to the padding. This number should be a value between 0 and 255. + (From Pedro Tome: for UTFVP (high-quality samples), use 0. For the VERA + Fingervein database (low-quality samples), use 51 (that corresponds to + 0.2 in a float image with values between 0 and 1). This parameter is + always used before normalizing the finger orientation. - self.padding_width = padding_width - self.padding_constant = padding_constant + """ + def __init__(self, padding_width=5, padding_constant=51): - def __call__(self, image): - '''Inputs an image, returns a padded (larger) image + self.padding_width = padding_width + self.padding_constant = padding_constant - Parameters: + def __call__(self, image): + """Inputs an image, returns a padded (larger) image - image (numpy.ndarray): A 2D numpy array of type ``uint8`` with the - input image + Parameters: + image (numpy.ndarray): A 2D numpy array of type ``uint8`` with the + input image - Returns: - numpy.ndarray: A 2D numpy array of the same type as the input, but with - the extra padding + Returns: - ''' + numpy.ndarray: A 2D numpy array of the same type as the input, but with + the extra padding - return numpy.pad(image, self.padding_width, 'constant', - constant_values = self.padding_constant) + """ + return numpy.pad( + image, + self.padding_width, + "constant", + constant_values=self.padding_constant, + ) class Masker(object): @@ -68,412 +71,417 @@ class Masker(object): """ def __init__(self): - pass - + pass def __call__(self, image): - """Overwrite this method to implement your masking method + """Overwrite this method to implement your masking method - Parameters: + Parameters: - image (numpy.ndarray): A 2D numpy array of type ``uint8`` with the - input image + image (numpy.ndarray): A 2D numpy array of type ``uint8`` with the + input image - Returns: + Returns: - numpy.ndarray: A 2D numpy array of type boolean with the caculated - mask. ``True`` values correspond to regions where the finger is - situated + numpy.ndarray: A 2D numpy array of type boolean with the caculated + mask. ``True`` values correspond to regions where the finger is + situated - """ + """ - raise NotImplemented('You must implement the __call__ slot') + raise NotImplemented("You must implement the __call__ slot") class FixedMask(Masker): - """Implements masking using a fixed suppression of border pixels - - The defaults mask no lines from the image and returns a mask of the same size - of the original image where all values are ``True``. + """Implements masking using a fixed suppression of border pixels + The defaults mask no lines from the image and returns a mask of the same size + of the original image where all values are ``True``. - .. note:: - Before choosing values, note you're responsible for knowing what is the - orientation of images fed into this masker. + .. note:: + Before choosing values, note you're responsible for knowing what is the + orientation of images fed into this masker. - Parameters: - top (:py:class:`int`, optional): Number of lines to suppress from the top - of the image. The top of the image corresponds to ``y = 0``. + Parameters: - bottom (:py:class:`int`, optional): Number of lines to suppress from the - bottom of the image. The bottom of the image corresponds to ``y = - height``. + top (:py:class:`int`, optional): Number of lines to suppress from the top + of the image. The top of the image corresponds to ``y = 0``. - left (:py:class:`int`, optional): Number of lines to suppress from the left - of the image. The left of the image corresponds to ``x = 0``. + bottom (:py:class:`int`, optional): Number of lines to suppress from the + bottom of the image. The bottom of the image corresponds to ``y = + height``. - right (:py:class:`int`, optional): Number of lines to suppress from the - right of the image. The right of the image corresponds to ``x = width``. + left (:py:class:`int`, optional): Number of lines to suppress from the left + of the image. The left of the image corresponds to ``x = 0``. - """ + right (:py:class:`int`, optional): Number of lines to suppress from the + right of the image. The right of the image corresponds to ``x = width``. - def __init__(self, top=0, bottom=0, left=0, right=0): - self.top = top - self.bottom = bottom - self.left = left - self.right = right + """ + def __init__(self, top=0, bottom=0, left=0, right=0): + self.top = top + self.bottom = bottom + self.left = left + self.right = right - def __call__(self, image): - """Returns a big mask + def __call__(self, image): + """Returns a big mask - Parameters: + Parameters: - image (numpy.ndarray): A 2D numpy array of type ``uint8`` with the - input image + image (numpy.ndarray): A 2D numpy array of type ``uint8`` with the + input image - Returns: + Returns: - numpy.ndarray: A 2D numpy array of type boolean with the caculated - mask. ``True`` values correspond to regions where the finger is - situated + numpy.ndarray: A 2D numpy array of type boolean with the caculated + mask. ``True`` values correspond to regions where the finger is + situated - """ + """ - retval = numpy.zeros(image.shape, dtype='bool') - h, w = image.shape - retval[self.top:h-self.bottom, self.left:w-self.right] = True - return retval + retval = numpy.zeros(image.shape, dtype="bool") + h, w = image.shape + retval[self.top : h - self.bottom, self.left : w - self.right] = True + return retval class NoMask(FixedMask): - """Convenience: same as FixedMask()""" + """Convenience: same as FixedMask()""" - def __init__(self): - super(NoMask, self).__init__(0, 0, 0, 0) + def __init__(self): + super(NoMask, self).__init__(0, 0, 0, 0) class AnnotatedRoIMask(Masker): - """Devises the mask from the annotated RoI""" - - - def __init__(self): - pass + """Devises the mask from the annotated RoI""" + def __init__(self): + pass - def __call__(self, image): - """Returns a mask extrapolated from RoI annotations + def __call__(self, image): + """Returns a mask extrapolated from RoI annotations - Parameters: + Parameters: - image (bob.bio.vein.database.AnnotatedArray): A 2D numpy array of type - ``uint8`` with the input image containing an attribute called - ``metadata`` (a python dictionary). The ``metadata`` object just - contain a key called ``roi`` containing the annotated points + image (bob.bio.vein.database.AnnotatedArray): A 2D numpy array of type + ``uint8`` with the input image containing an attribute called + ``metadata`` (a python dictionary). The ``metadata`` object just + contain a key called ``roi`` containing the annotated points - Returns: + Returns: - numpy.ndarray: A 2D numpy array of type boolean with the caculated - mask. ``True`` values correspond to regions where the finger is - situated + numpy.ndarray: A 2D numpy array of type boolean with the caculated + mask. ``True`` values correspond to regions where the finger is + situated - """ + """ - return poly_to_mask(image.shape, image.metadata['roi']) + return poly_to_mask(image.shape, image.metadata["roi"]) class KonoMask(Masker): - """Estimates the finger region given an input NIR image using Kono et al. + """Estimates the finger region given an input NIR image using Kono et al. - This method is based on the work of M. Kono, H. Ueki and S. Umemura. - Near-infrared finger vein patterns for personal identification, Applied - Optics, Vol. 41, Issue 35, pp. 7429-7436 (2002). + This method is based on the work of M. Kono, H. Ueki and S. Umemura. + Near-infrared finger vein patterns for personal identification, Applied + Optics, Vol. 41, Issue 35, pp. 7429-7436 (2002). - Parameters: - - sigma (:py:obj:`float`, optional): The standard deviation of the gaussian - blur filter to apply for low-passing the input image (background - extraction). Defaults to ``5``. + Parameters: - padder (:py:class:`Padder`, optional): If passed, will pad the image before - evaluating the mask. The returned value will have the padding removed and - is, therefore, of the exact size of the input image. + sigma (:py:obj:`float`, optional): The standard deviation of the gaussian + blur filter to apply for low-passing the input image (background + extraction). Defaults to ``5``. - """ + padder (:py:class:`Padder`, optional): If passed, will pad the image before + evaluating the mask. The returned value will have the padding removed and + is, therefore, of the exact size of the input image. - def __init__(self, sigma=5, padder=Padder()): + """ - self.sigma = sigma - self.padder = padder + def __init__(self, sigma=5, padder=Padder()): + self.sigma = sigma + self.padder = padder - def __call__(self, image): - '''Inputs an image, returns a mask (numpy boolean array) + def __call__(self, image): + """Inputs an image, returns a mask (numpy boolean array) - Parameters: + Parameters: - image (numpy.ndarray): A 2D numpy array of type ``uint8`` with the - input image + image (numpy.ndarray): A 2D numpy array of type ``uint8`` with the + input image - Returns: + Returns: - numpy.ndarray: A 2D numpy array of type boolean with the caculated - mask. ``True`` values correspond to regions where the finger is - situated + numpy.ndarray: A 2D numpy array of type boolean with the caculated + mask. ``True`` values correspond to regions where the finger is + situated - ''' + """ - image = image if self.padder is None else self.padder(image) - if image.dtype == numpy.uint8: image = image.astype('float64')/255. + image = image if self.padder is None else self.padder(image) + if image.dtype == numpy.uint8: + image = image.astype("float64") / 255.0 - img_h,img_w = image.shape + img_h, img_w = image.shape - # Determine lower half starting point - if numpy.mod(img_h,2) == 0: - half_img_h = img_h/2 + 1 - else: - half_img_h = numpy.ceil(img_h/2) + # Determine lower half starting point + if numpy.mod(img_h, 2) == 0: + half_img_h = img_h / 2 + 1 + else: + half_img_h = numpy.ceil(img_h / 2) - #Construct filter kernel - winsize = numpy.ceil(4*self.sigma) + # Construct filter kernel + winsize = numpy.ceil(4 * self.sigma) - x = numpy.arange(-winsize, winsize+1) - y = numpy.arange(-winsize, winsize+1) - X, Y = numpy.meshgrid(x, y) + x = numpy.arange(-winsize, winsize + 1) + y = numpy.arange(-winsize, winsize + 1) + X, Y = numpy.meshgrid(x, y) - hy = (-Y/(2*math.pi*self.sigma**4)) * \ - numpy.exp(-(X**2 + Y**2)/(2*self.sigma**2)) + hy = (-Y / (2 * math.pi * self.sigma**4)) * numpy.exp( + -(X**2 + Y**2) / (2 * self.sigma**2) + ) - # Filter the image with the directional kernel - fy = scipy.ndimage.convolve(image, hy, mode='nearest') + # Filter the image with the directional kernel + fy = scipy.ndimage.convolve(image, hy, mode="nearest") - # Upper part of filtred image - img_filt_up = fy[0:half_img_h,:] - y_up = img_filt_up.argmax(axis=0) + # Upper part of filtred image + img_filt_up = fy[0:half_img_h, :] + y_up = img_filt_up.argmax(axis=0) - # Lower part of filtred image - img_filt_lo = fy[half_img_h-1:,:] - y_lo = img_filt_lo.argmin(axis=0) + # Lower part of filtred image + img_filt_lo = fy[half_img_h - 1 :, :] + y_lo = img_filt_lo.argmin(axis=0) - # Fill region between upper and lower edges - finger_mask = numpy.ndarray(image.shape, bool) - finger_mask[:,:] = False + # Fill region between upper and lower edges + finger_mask = numpy.ndarray(image.shape, bool) + finger_mask[:, :] = False - for i in range(0,img_w): - finger_mask[y_up[i]:y_lo[i]+image.shape[0]-half_img_h+2,i] = True + for i in range(0, img_w): + finger_mask[ + y_up[i] : y_lo[i] + image.shape[0] - half_img_h + 2, i + ] = True - if not self.padder: - return finger_mask - else: - w = self.padder.padding_width - return finger_mask[w:-w,w:-w] + if not self.padder: + return finger_mask + else: + w = self.padder.padding_width + return finger_mask[w:-w, w:-w] class LeeMask(Masker): - """Estimates the finger region given an input NIR image using Lee et al. + """Estimates the finger region given an input NIR image using Lee et al. - This method is based on the work of Finger vein recognition using - minutia-based alignment and local binary pattern-based feature extraction, - E.C. Lee, H.C. Lee and K.R. Park, International Journal of Imaging Systems - and Technology, Volume 19, Issue 3, September 2009, Pages 175--178, doi: - 10.1002/ima.20193 + This method is based on the work of Finger vein recognition using + minutia-based alignment and local binary pattern-based feature extraction, + E.C. Lee, H.C. Lee and K.R. Park, International Journal of Imaging Systems + and Technology, Volume 19, Issue 3, September 2009, Pages 175--178, doi: + 10.1002/ima.20193 - This code is based on the Matlab implementation by Bram Ton, available at: + This code is based on the Matlab implementation by Bram Ton, available at: - https://nl.mathworks.com/matlabcentral/fileexchange/35752-finger-region-localisation/content/lee_region.m + https://nl.mathworks.com/matlabcentral/fileexchange/35752-finger-region-localisation/content/lee_region.m - In this method, we calculate the mask of the finger independently for each - column of the input image. Firstly, the image is convolved with a [1,-1] - filter of size ``(self.filter_height, self.filter_width)``. Then, the upper and - lower parts of the resulting filtered image are separated. The location of - the maxima in the upper part is located. The same goes for the location of - the minima in the lower part. The mask is then calculated, per column, by - considering it starts in the point where the maxima is in the upper part and - goes up to the point where the minima is detected on the lower part. + In this method, we calculate the mask of the finger independently for each + column of the input image. Firstly, the image is convolved with a [1,-1] + filter of size ``(self.filter_height, self.filter_width)``. Then, the upper and + lower parts of the resulting filtered image are separated. The location of + the maxima in the upper part is located. The same goes for the location of + the minima in the lower part. The mask is then calculated, per column, by + considering it starts in the point where the maxima is in the upper part and + goes up to the point where the minima is detected on the lower part. - Parameters: - - filter_height (:py:obj:`int`, optional): Height of contour mask in pixels, - must be an even number + Parameters: - filter_width (:py:obj:`int`, optional): Width of the contour mask in pixels + filter_height (:py:obj:`int`, optional): Height of contour mask in pixels, + must be an even number - """ + filter_width (:py:obj:`int`, optional): Width of the contour mask in pixels - def __init__(self, filter_height = 4, filter_width = 40, padder=Padder()): - self.filter_height = filter_height - self.filter_width = filter_width - self.padder = padder + """ + def __init__(self, filter_height=4, filter_width=40, padder=Padder()): + self.filter_height = filter_height + self.filter_width = filter_width + self.padder = padder - def __call__(self, image): - '''Inputs an image, returns a mask (numpy boolean array) + def __call__(self, image): + """Inputs an image, returns a mask (numpy boolean array) - Parameters: + Parameters: - image (numpy.ndarray): A 2D numpy array of type ``uint8`` with the - input image + image (numpy.ndarray): A 2D numpy array of type ``uint8`` with the + input image - Returns: + Returns: - numpy.ndarray: A 2D numpy array of type boolean with the caculated - mask. ``True`` values correspond to regions where the finger is - situated + numpy.ndarray: A 2D numpy array of type boolean with the caculated + mask. ``True`` values correspond to regions where the finger is + situated - ''' + """ - image = image if self.padder is None else self.padder(image) - if image.dtype == numpy.uint8: image = image.astype('float64')/255. + image = image if self.padder is None else self.padder(image) + if image.dtype == numpy.uint8: + image = image.astype("float64") / 255.0 - img_h,img_w = image.shape + img_h, img_w = image.shape - # Determine lower half starting point - half_img_h = int(img_h/2) + # Determine lower half starting point + half_img_h = int(img_h / 2) - # Construct mask for filtering - mask = numpy.ones((self.filter_height,self.filter_width), dtype='float64') - mask[int(self.filter_height/2.):,:] = -1.0 + # Construct mask for filtering + mask = numpy.ones( + (self.filter_height, self.filter_width), dtype="float64" + ) + mask[int(self.filter_height / 2.0) :, :] = -1.0 - img_filt = scipy.ndimage.convolve(image, mask, mode='nearest') + img_filt = scipy.ndimage.convolve(image, mask, mode="nearest") - # Upper part of filtered image - img_filt_up = img_filt[:half_img_h,:] - y_up = img_filt_up.argmax(axis=0) + # Upper part of filtered image + img_filt_up = img_filt[:half_img_h, :] + y_up = img_filt_up.argmax(axis=0) - # Lower part of filtered image - img_filt_lo = img_filt[half_img_h:,:] - y_lo = img_filt_lo.argmin(axis=0) + # Lower part of filtered image + img_filt_lo = img_filt[half_img_h:, :] + y_lo = img_filt_lo.argmin(axis=0) - # Translation: for all columns of the input image, set to True all pixels - # of the mask from index where the maxima occurred in the upper part until - # the index where the minima occurred in the lower part. - finger_mask = numpy.zeros(image.shape, dtype='bool') - for i in range(img_filt.shape[1]): - finger_mask[y_up[i]:(y_lo[i]+img_filt_lo.shape[0]+1), i] = True + # Translation: for all columns of the input image, set to True all pixels + # of the mask from index where the maxima occurred in the upper part until + # the index where the minima occurred in the lower part. + finger_mask = numpy.zeros(image.shape, dtype="bool") + for i in range(img_filt.shape[1]): + finger_mask[ + y_up[i] : (y_lo[i] + img_filt_lo.shape[0] + 1), i + ] = True - if not self.padder: - return finger_mask - else: - w = self.padder.padding_width - return finger_mask[w:-w,w:-w] + if not self.padder: + return finger_mask + else: + w = self.padder.padding_width + return finger_mask[w:-w, w:-w] class TomesLeeMask(Masker): - """Estimates the finger region given an input NIR image using Lee et al. + """Estimates the finger region given an input NIR image using Lee et al. - This method is based on the work of Finger vein recognition using - minutia-based alignment and local binary pattern-based feature extraction, - E.C. Lee, H.C. Lee and K.R. Park, International Journal of Imaging Systems - and Technology, Volume 19, Issue 3, September 2009, Pages 175--178, doi: - 10.1002/ima.20193 + This method is based on the work of Finger vein recognition using + minutia-based alignment and local binary pattern-based feature extraction, + E.C. Lee, H.C. Lee and K.R. Park, International Journal of Imaging Systems + and Technology, Volume 19, Issue 3, September 2009, Pages 175--178, doi: + 10.1002/ima.20193 - This code is a variant of the Matlab implementation by Bram Ton, available - at: + This code is a variant of the Matlab implementation by Bram Ton, available + at: - https://nl.mathworks.com/matlabcentral/fileexchange/35752-finger-region-localisation/content/lee_region.m + https://nl.mathworks.com/matlabcentral/fileexchange/35752-finger-region-localisation/content/lee_region.m - In this variant from Pedro Tome, the technique of filtering the image with - a horizontal filter is also applied on the vertical axis. The objective is to - find better limits on the horizontal axis in case finger images show the - finger tip. If that is not your case, you may use the original variant - :py:class:`LeeMask` above. + In this variant from Pedro Tome, the technique of filtering the image with + a horizontal filter is also applied on the vertical axis. The objective is to + find better limits on the horizontal axis in case finger images show the + finger tip. If that is not your case, you may use the original variant + :py:class:`LeeMask` above. - Parameters: - - filter_height (:py:obj:`int`, optional): Height of contour mask in pixels, - must be an even number + Parameters: - filter_width (:py:obj:`int`, optional): Width of the contour mask in pixels + filter_height (:py:obj:`int`, optional): Height of contour mask in pixels, + must be an even number - """ + filter_width (:py:obj:`int`, optional): Width of the contour mask in pixels - def __init__(self, filter_height = 4, filter_width = 40, padder=Padder()): - self.filter_height = filter_height - self.filter_width = filter_width - self.padder = padder + """ + def __init__(self, filter_height=4, filter_width=40, padder=Padder()): + self.filter_height = filter_height + self.filter_width = filter_width + self.padder = padder - def __call__(self, image): - '''Inputs an image, returns a mask (numpy boolean array) + def __call__(self, image): + """Inputs an image, returns a mask (numpy boolean array) - Parameters: + Parameters: - image (numpy.ndarray): A 2D numpy array of type ``uint8`` with the - input image + image (numpy.ndarray): A 2D numpy array of type ``uint8`` with the + input image - Returns: + Returns: - numpy.ndarray: A 2D numpy array of type boolean with the caculated - mask. ``True`` values correspond to regions where the finger is - situated + numpy.ndarray: A 2D numpy array of type boolean with the caculated + mask. ``True`` values correspond to regions where the finger is + situated - ''' + """ - image = image if self.padder is None else self.padder(image) - if image.dtype == numpy.uint8: image = image.astype('float64')/255. + image = image if self.padder is None else self.padder(image) + if image.dtype == numpy.uint8: + image = image.astype("float64") / 255.0 - img_h,img_w = image.shape + img_h, img_w = image.shape - # Determine lower half starting point - half_img_h = img_h/2 - half_img_w = img_w/2 + # Determine lower half starting point + half_img_h = img_h / 2 + half_img_w = img_w / 2 - # Construct mask for filtering (up-bottom direction) - mask = numpy.ones((self.filter_height, self.filter_width), dtype='float64') - mask[int(self.filter_height/2.):,:] = -1.0 + # Construct mask for filtering (up-bottom direction) + mask = numpy.ones( + (self.filter_height, self.filter_width), dtype="float64" + ) + mask[int(self.filter_height / 2.0) :, :] = -1.0 - img_filt = scipy.ndimage.convolve(image, mask, mode='nearest') + img_filt = scipy.ndimage.convolve(image, mask, mode="nearest") - # Upper part of filtred image - img_filt_up = img_filt[:int(half_img_h),:] - y_up = img_filt_up.argmax(axis=0) + # Upper part of filtred image + img_filt_up = img_filt[: int(half_img_h), :] + y_up = img_filt_up.argmax(axis=0) - # Lower part of filtred image - img_filt_lo = img_filt[int(half_img_h):,:] - y_lo = img_filt_lo.argmin(axis=0) + # Lower part of filtred image + img_filt_lo = img_filt[int(half_img_h) :, :] + y_lo = img_filt_lo.argmin(axis=0) - img_filt = scipy.ndimage.convolve(image, mask.T, mode='nearest') + img_filt = scipy.ndimage.convolve(image, mask.T, mode="nearest") - # Left part of filtered image - img_filt_lf = img_filt[:,:int(half_img_w)] - y_lf = img_filt_lf.argmax(axis=1) + # Left part of filtered image + img_filt_lf = img_filt[:, : int(half_img_w)] + y_lf = img_filt_lf.argmax(axis=1) - # Right part of filtred image - img_filt_rg = img_filt[:,int(half_img_w):] - y_rg = img_filt_rg.argmin(axis=1) + # Right part of filtred image + img_filt_rg = img_filt[:, int(half_img_w) :] + y_rg = img_filt_rg.argmin(axis=1) - finger_mask = numpy.zeros(image.shape, dtype='bool') + finger_mask = numpy.zeros(image.shape, dtype="bool") - for i in range(0,y_up.size): - finger_mask[y_up[i]:y_lo[i]+img_filt_lo.shape[0]+1,i] = True + for i in range(0, y_up.size): + finger_mask[y_up[i] : y_lo[i] + img_filt_lo.shape[0] + 1, i] = True - # Left region - for i in range(0,y_lf.size): - finger_mask[i,0:y_lf[i]+1] = False + # Left region + for i in range(0, y_lf.size): + finger_mask[i, 0 : y_lf[i] + 1] = False - # Right region has always the finger ending, crop the padding with the - # meadian - finger_mask[:,int(numpy.median(y_rg)+img_filt_rg.shape[1]):] = False + # Right region has always the finger ending, crop the padding with the + # meadian + finger_mask[:, int(numpy.median(y_rg) + img_filt_rg.shape[1]) :] = False - if not self.padder: - return finger_mask - else: - w = self.padder.padding_width - return finger_mask[w:-w,w:-w] + if not self.padder: + return finger_mask + else: + w = self.padder.padding_width + return finger_mask[w:-w, w:-w] diff --git a/bob/bio/vein/preprocessor/normalize.py b/bob/bio/vein/preprocessor/normalize.py index 0fce4cb..f047c1f 100644 --- a/bob/bio/vein/preprocessor/normalize.py +++ b/bob/bio/vein/preprocessor/normalize.py @@ -1,185 +1,188 @@ #!/usr/bin/env python # vim: set fileencoding=utf-8 : -'''Base utilities for normalization''' +"""Base utilities for normalization""" import math + import numpy + from PIL import Image class Normalizer(object): - '''Objects of this class normalize the input image orientation and scale''' - - - def __init__(self): - pass - + """Objects of this class normalize the input image orientation and scale""" - def __call__(self, image, mask): - '''Inputs image and mask and outputs a normalized version of those + def __init__(self): + pass + def __call__(self, image, mask): + """Inputs image and mask and outputs a normalized version of those - Parameters: - image (numpy.ndarray): raw image to normalize as 2D array of unsigned - 8-bit integers + Parameters: - mask (numpy.ndarray): mask to normalize as 2D array of booleans + image (numpy.ndarray): raw image to normalize as 2D array of unsigned + 8-bit integers + mask (numpy.ndarray): mask to normalize as 2D array of booleans - Returns: - numpy.ndarray: A 2D boolean array with the same shape and data type of - the input image representing the newly aligned image. + Returns: - numpy.ndarray: A 2D boolean array with the same shape and data type of - the input mask representing the newly aligned mask. + numpy.ndarray: A 2D boolean array with the same shape and data type of + the input image representing the newly aligned image. - ''' + numpy.ndarray: A 2D boolean array with the same shape and data type of + the input mask representing the newly aligned mask. - raise NotImplemented('You must implement the __call__ slot') + """ + raise NotImplemented("You must implement the __call__ slot") class NoNormalization(Normalizer): - '''Trivial implementation with no normalization''' + """Trivial implementation with no normalization""" + def __init__(self): + pass - def __init__(self): - pass + def __call__(self, image, mask): + """Returns the input parameters, without changing them - def __call__(self, image, mask): - '''Returns the input parameters, without changing them + Parameters: + image (numpy.ndarray): raw image to normalize as 2D array of unsigned + 8-bit integers - Parameters: + mask (numpy.ndarray): mask to normalize as 2D array of booleans - image (numpy.ndarray): raw image to normalize as 2D array of unsigned - 8-bit integers - mask (numpy.ndarray): mask to normalize as 2D array of booleans + Returns: + numpy.ndarray: A 2D boolean array with the same shape and data type of + the input image representing the newly aligned image. - Returns: + numpy.ndarray: A 2D boolean array with the same shape and data type of + the input mask representing the newly aligned mask. - numpy.ndarray: A 2D boolean array with the same shape and data type of - the input image representing the newly aligned image. - - numpy.ndarray: A 2D boolean array with the same shape and data type of - the input mask representing the newly aligned mask. - - ''' - - return image, mask + """ + return image, mask class HuangNormalization(Normalizer): - '''Simple finger normalization from Huang et. al - - Based on B. Huang, Y. Dai, R. Li, D. Tang and W. Li, Finger-vein - authentication based on wide line detector and pattern normalization, - Proceedings on 20th International Conference on Pattern Recognition (ICPR), - 2010. + """Simple finger normalization from Huang et. al - This implementation aligns the finger to the centre of the image using an - affine transformation. Elliptic projection which is described in the - referenced paper is **not** included. + Based on B. Huang, Y. Dai, R. Li, D. Tang and W. Li, Finger-vein + authentication based on wide line detector and pattern normalization, + Proceedings on 20th International Conference on Pattern Recognition (ICPR), + 2010. - In order to defined the affine transformation to be performed, the - algorithm first calculates the center for each edge (column wise) and - calculates the best linear fit parameters for a straight line passing - through those points. - ''' + This implementation aligns the finger to the centre of the image using an + affine transformation. Elliptic projection which is described in the + referenced paper is **not** included. - def __init__(self, padding_width=5, padding_constant=51): - self.padding_width = padding_width - self.padding_constant = padding_constant + In order to defined the affine transformation to be performed, the + algorithm first calculates the center for each edge (column wise) and + calculates the best linear fit parameters for a straight line passing + through those points. + """ + def __init__(self, padding_width=5, padding_constant=51): + self.padding_width = padding_width + self.padding_constant = padding_constant - def __call__(self, image, mask): - '''Inputs image and mask and outputs a normalized version of those + def __call__(self, image, mask): + """Inputs image and mask and outputs a normalized version of those - Parameters: + Parameters: - image (numpy.ndarray): raw image to normalize as 2D array of unsigned - 8-bit integers + image (numpy.ndarray): raw image to normalize as 2D array of unsigned + 8-bit integers - mask (numpy.ndarray): mask to normalize as 2D array of booleans + mask (numpy.ndarray): mask to normalize as 2D array of booleans - Returns: + Returns: - numpy.ndarray: A 2D boolean array with the same shape and data type of - the input image representing the newly aligned image. + numpy.ndarray: A 2D boolean array with the same shape and data type of + the input image representing the newly aligned image. - numpy.ndarray: A 2D boolean array with the same shape and data type of - the input mask representing the newly aligned mask. + numpy.ndarray: A 2D boolean array with the same shape and data type of + the input mask representing the newly aligned mask. - ''' + """ - img_h, img_w = image.shape + img_h, img_w = image.shape - # Calculates the mask edges along the columns - edges = numpy.zeros((2, mask.shape[1]), dtype=int) + # Calculates the mask edges along the columns + edges = numpy.zeros((2, mask.shape[1]), dtype=int) - edges[0,:] = mask.argmax(axis=0) # get upper edges - edges[1,:] = len(mask) - numpy.flipud(mask).argmax(axis=0) - 1 + edges[0, :] = mask.argmax(axis=0) # get upper edges + edges[1, :] = len(mask) - numpy.flipud(mask).argmax(axis=0) - 1 - bl = edges.mean(axis=0) #baseline - x = numpy.arange(0, edges.shape[1]) - A = numpy.vstack([x, numpy.ones(len(x))]).T + bl = edges.mean(axis=0) # baseline + x = numpy.arange(0, edges.shape[1]) + A = numpy.vstack([x, numpy.ones(len(x))]).T - # Fit a straight line through the base line points - w = numpy.linalg.lstsq(A,bl)[0] # obtaining the parameters + # Fit a straight line through the base line points + w = numpy.linalg.lstsq(A, bl)[0] # obtaining the parameters - angle = -1*math.atan(w[0]) # Rotation - tr = img_h/2 - w[1] # Translation - scale = 1.0 # Scale + angle = -1 * math.atan(w[0]) # Rotation + tr = img_h / 2 - w[1] # Translation + scale = 1.0 # Scale - #Affine transformation parameters - sx=sy=scale - cosine = math.cos(angle) - sine = math.sin(angle) + # Affine transformation parameters + sx = sy = scale + cosine = math.cos(angle) + sine = math.sin(angle) - a = cosine/sx - b = -sine/sy - #b = sine/sx - c = 0 #Translation in x + a = cosine / sx + b = -sine / sy + # b = sine/sx + c = 0 # Translation in x - d = sine/sx - e = cosine/sy - f = tr #Translation in y - #d = -sine/sy - #e = cosine/sy - #f = 0 + d = sine / sx + e = cosine / sy + f = tr # Translation in y + # d = -sine/sy + # e = cosine/sy + # f = 0 - g = 0 - h = 0 - #h=tr - i = 1 + g = 0 + h = 0 + # h=tr + i = 1 - T = numpy.matrix([[a,b,c],[d,e,f],[g,h,i]]) - Tinv = numpy.linalg.inv(T) - Tinvtuple = (Tinv[0,0],Tinv[0,1], Tinv[0,2], Tinv[1,0],Tinv[1,1],Tinv[1,2]) + T = numpy.matrix([[a, b, c], [d, e, f], [g, h, i]]) + Tinv = numpy.linalg.inv(T) + Tinvtuple = ( + Tinv[0, 0], + Tinv[0, 1], + Tinv[0, 2], + Tinv[1, 0], + Tinv[1, 1], + Tinv[1, 2], + ) - def _afftrans(img): - '''Applies the affine transform on the resulting image''' + def _afftrans(img): + """Applies the affine transform on the resulting image""" - t = Image.fromarray(img.astype('uint8')) - w, h = t.size #pillow image is encoded w, h - w += 2*self.padding_width - h += 2*self.padding_width - t = t.transform( - (w,h), - Image.AFFINE, - Tinvtuple, - resample=Image.BICUBIC, - fill=self.padding_constant) + t = Image.fromarray(img.astype("uint8")) + w, h = t.size # pillow image is encoded w, h + w += 2 * self.padding_width + h += 2 * self.padding_width + t = t.transform( + (w, h), + Image.AFFINE, + Tinvtuple, + resample=Image.BICUBIC, + fill=self.padding_constant, + ) - return numpy.array(t).astype(img.dtype) + return numpy.array(t).astype(img.dtype) - return _afftrans(image), _afftrans(mask) + return _afftrans(image), _afftrans(mask) diff --git a/bob/bio/vein/preprocessor/preprocessor.py b/bob/bio/vein/preprocessor/preprocessor.py index d93c401..c172f13 100644 --- a/bob/bio/vein/preprocessor/preprocessor.py +++ b/bob/bio/vein/preprocessor/preprocessor.py @@ -2,95 +2,93 @@ # vim: set fileencoding=utf-8 : import bob.io.base -from bob.bio.base.preprocessor import Preprocessor as BasePreprocessor +from bob.bio.base.preprocessor import Preprocessor as BasePreprocessor -class Preprocessor (BasePreprocessor): - """ - Extracts the mask and pre-processes fingervein images. - In this implementation, the finger image is (in this order): +class Preprocessor(BasePreprocessor): + """ + Extracts the mask and pre-processes fingervein images. - #. The image is pre-cropped to remove obvious non-finger image parts - #. The mask is extrapolated from the image using one of our - :py:class:`Masker`'s concrete implementations - #. The image is normalized with one of our :py:class:`Normalizer`'s - #. The image is filtered with one of our :py:class:`Filter`'s + In this implementation, the finger image is (in this order): + #. The image is pre-cropped to remove obvious non-finger image parts + #. The mask is extrapolated from the image using one of our + :py:class:`Masker`'s concrete implementations + #. The image is normalized with one of our :py:class:`Normalizer`'s + #. The image is filtered with one of our :py:class:`Filter`'s - Parameters: - crop (:py:class:`Cropper`): An object that will perform pre-cropping on - the input image before a mask can be estimated. It removes parts of the - image which are surely not part of the finger region you'll want to - consider for the next steps. + Parameters: - mask (:py:class:`Masker`): An object representing a Masker instance which - will extrapolate the mask from the input image. + crop (:py:class:`Cropper`): An object that will perform pre-cropping on + the input image before a mask can be estimated. It removes parts of the + image which are surely not part of the finger region you'll want to + consider for the next steps. - normalize (:py:class:`Normalizer`): An object representing a Normalizer - instance which will normalize the input image and its mask returning a - new image mask pair. + mask (:py:class:`Masker`): An object representing a Masker instance which + will extrapolate the mask from the input image. - filter (:py:class:`Filter`): An object representing a Filter instance will - will filter the input image and return a new filtered image. The filter - instance also receives the extrapolated mask so it can, if desired, only - apply the filtering operation where the mask has a value of ``True`` + normalize (:py:class:`Normalizer`): An object representing a Normalizer + instance which will normalize the input image and its mask returning a + new image mask pair. - """ + filter (:py:class:`Filter`): An object representing a Filter instance will + will filter the input image and return a new filtered image. The filter + instance also receives the extrapolated mask so it can, if desired, only + apply the filtering operation where the mask has a value of ``True`` + """ - def __init__(self, crop, mask, normalize, filter, **kwargs): + def __init__(self, crop, mask, normalize, filter, **kwargs): - BasePreprocessor.__init__(self, - crop = crop, - mask = mask, - normalize = normalize, - filter = filter, - **kwargs + BasePreprocessor.__init__( + self, + crop=crop, + mask=mask, + normalize=normalize, + filter=filter, + **kwargs ) - self.crop = crop - self.mask = mask - self.normalize = normalize - self.filter = filter + self.crop = crop + self.mask = mask + self.normalize = normalize + self.filter = filter + def __call__(self, data, annotations=None): + """Reads the input image or (image, mask) and prepares for fex. - def __call__(self, data, annotations=None): - """Reads the input image or (image, mask) and prepares for fex. - - Parameters: - - data (numpy.ndarray): An 2D numpy array containing a gray-scaled image - with dtype ``uint8``. The image maybe annotated with an RoI. + Parameters: + data (numpy.ndarray): An 2D numpy array containing a gray-scaled image + with dtype ``uint8``. The image maybe annotated with an RoI. - Returns: - numpy.ndarray: The image, preprocessed and normalized + Returns: - numpy.ndarray: A mask, of the same size of the image, indicating where - the valid data for the object is. - - """ + numpy.ndarray: The image, preprocessed and normalized - data = self.crop(data) - mask = self.mask(data) - data, mask = self.normalize(data, mask) - data = self.filter(data, mask) - return data, mask + numpy.ndarray: A mask, of the same size of the image, indicating where + the valid data for the object is. + """ - def write_data(self, data, filename): - '''Overrides the default method implementation to handle our tuple''' + data = self.crop(data) + mask = self.mask(data) + data, mask = self.normalize(data, mask) + data = self.filter(data, mask) + return data, mask - f = h5py.File(filename, 'w') - f.set('image', data[0]) - f.set('mask', data[1]) + def write_data(self, data, filename): + """Overrides the default method implementation to handle our tuple""" + f = h5py.File(filename, "w") + f.set("image", data[0]) + f.set("mask", data[1]) - def read_data(self, filename): - '''Overrides the default method implementation to handle our tuple''' + def read_data(self, filename): + """Overrides the default method implementation to handle our tuple""" - f = h5py.File(filename, 'r') - return f.read('image'), f.read('mask') + f = h5py.File(filename, "r") + return f.read("image"), f.read("mask") diff --git a/bob/bio/vein/preprocessor/utils.py b/bob/bio/vein/preprocessor/utils.py index c55b6ca..b4de161 100644 --- a/bob/bio/vein/preprocessor/utils.py +++ b/bob/bio/vein/preprocessor/utils.py @@ -7,233 +7,235 @@ import numpy def assert_points(area, points): - """Checks all points fall within the determined shape region, inclusively + """Checks all points fall within the determined shape region, inclusively - This assertion function, test all points given in ``points`` fall within a - certain area provided in ``area``. + This assertion function, test all points given in ``points`` fall within a + certain area provided in ``area``. - Parameters: + Parameters: - area (tuple): A tuple containing the size of the limiting area where the - points should all be in. + area (tuple): A tuple containing the size of the limiting area where the + points should all be in. - points (numpy.ndarray): A 2D numpy ndarray with any number of rows (points) - and 2 columns (representing ``y`` and ``x`` coordinates respectively), or - any type convertible to this format. This array contains the points that - will be checked for conformity. In case one of the points doesn't fall - into the determined area an assertion is raised. + points (numpy.ndarray): A 2D numpy ndarray with any number of rows (points) + and 2 columns (representing ``y`` and ``x`` coordinates respectively), or + any type convertible to this format. This array contains the points that + will be checked for conformity. In case one of the points doesn't fall + into the determined area an assertion is raised. - Raises: + Raises: - AssertionError: In case one of the input points does not fall within the - area defined. + AssertionError: In case one of the input points does not fall within the + area defined. - """ + """ - for k in points: - assert 0 <= k[0] < area[0] and 0 <= k[1] < area[1], \ - "Point (%d, %d) is not inside the region determined by area " \ - "(%d, %d)" % (k[0], k[1], area[0], area[1]) + for k in points: + assert 0 <= k[0] < area[0] and 0 <= k[1] < area[1], ( + "Point (%d, %d) is not inside the region determined by area " + "(%d, %d)" % (k[0], k[1], area[0], area[1]) + ) def fix_points(area, points): - """Checks/fixes all points so they fall within the determined shape region + """Checks/fixes all points so they fall within the determined shape region - Points which are lying outside the determined area will be brought into the - area by moving the offending coordinate to the border of the said area. + Points which are lying outside the determined area will be brought into the + area by moving the offending coordinate to the border of the said area. - Parameters: + Parameters: - area (tuple): A tuple containing the size of the limiting area where the - points should all be in. + area (tuple): A tuple containing the size of the limiting area where the + points should all be in. - points (numpy.ndarray): A 2D :py:class:`numpy.ndarray` with any number of - rows (points) and 2 columns (representing ``y`` and ``x`` coordinates - respectively), or any type convertible to this format. This array - contains the points that will be checked/fixed for conformity. In case - one of the points doesn't fall into the determined area, it is silently - corrected so it does. + points (numpy.ndarray): A 2D :py:class:`numpy.ndarray` with any number of + rows (points) and 2 columns (representing ``y`` and ``x`` coordinates + respectively), or any type convertible to this format. This array + contains the points that will be checked/fixed for conformity. In case + one of the points doesn't fall into the determined area, it is silently + corrected so it does. - Returns: + Returns: - numpy.ndarray: A **new** array of points with corrected coordinates + numpy.ndarray: A **new** array of points with corrected coordinates - """ + """ - retval = numpy.array(points).copy() + retval = numpy.array(points).copy() - retval[retval<0] = 0 #floor at 0 for both axes - y, x = retval[:,0], retval[:,1] - y[y>=area[0]] = area[0] - 1 - x[x>=area[1]] = area[1] - 1 + retval[retval < 0] = 0 # floor at 0 for both axes + y, x = retval[:, 0], retval[:, 1] + y[y >= area[0]] = area[0] - 1 + x[x >= area[1]] = area[1] - 1 - return retval + return retval def poly_to_mask(shape, points): - """Generates a binary mask from a set of 2D points + """Generates a binary mask from a set of 2D points - Parameters: + Parameters: - shape (tuple): A tuple containing the size of the output mask in height and - width, for Bob compatibility ``(y, x)``. + shape (tuple): A tuple containing the size of the output mask in height and + width, for Bob compatibility ``(y, x)``. - points (list): A list of tuples containing the polygon points that form a - region on the target mask. A line connecting these points will be drawn - and all the points in the mask that fall on or within the polygon line, - will be set to ``True``. All other points will have a value of ``False``. + points (list): A list of tuples containing the polygon points that form a + region on the target mask. A line connecting these points will be drawn + and all the points in the mask that fall on or within the polygon line, + will be set to ``True``. All other points will have a value of ``False``. - Returns: + Returns: - numpy.ndarray: A 2D numpy ndarray with ``dtype=bool`` with the mask - generated with the determined shape, using the points for the polygon. + numpy.ndarray: A 2D numpy ndarray with ``dtype=bool`` with the mask + generated with the determined shape, using the points for the polygon. - """ - from PIL import Image, ImageDraw + """ + from PIL import Image, ImageDraw - # n.b.: PIL images are (x, y), while Bob shapes are represented in (y, x)! - mask = Image.new('L', (shape[1], shape[0])) + # n.b.: PIL images are (x, y), while Bob shapes are represented in (y, x)! + mask = Image.new("L", (shape[1], shape[0])) - # converts whatever comes in into a list of tuples for PIL - fixed = tuple(map(tuple, numpy.roll(fix_points(shape, points), 1, 1))) + # converts whatever comes in into a list of tuples for PIL + fixed = tuple(map(tuple, numpy.roll(fix_points(shape, points), 1, 1))) - # draws polygon - ImageDraw.Draw(mask).polygon(fixed, fill=255) + # draws polygon + ImageDraw.Draw(mask).polygon(fixed, fill=255) - return numpy.array(mask, dtype=bool) + return numpy.array(mask, dtype=bool) def mask_to_image(mask, dtype=numpy.uint8): - """Converts a binary (boolean) mask into an integer or floating-point image + """Converts a binary (boolean) mask into an integer or floating-point image - This function converts a boolean binary mask into an image of the desired - type by setting the points where ``False`` is set to 0 and points where - ``True`` is set to the most adequate value taking into consideration the - destination data type ``dtype``. Here are support types and their ranges: + This function converts a boolean binary mask into an image of the desired + type by setting the points where ``False`` is set to 0 and points where + ``True`` is set to the most adequate value taking into consideration the + destination data type ``dtype``. Here are support types and their ranges: - * numpy.uint8: ``[0, (2^8)-1]`` - * numpy.uint16: ``[0, (2^16)-1]`` - * numpy.uint32: ``[0, (2^32)-1]`` - * numpy.uint64: ``[0, (2^64)-1]`` - * numpy.float32: ``[0, 1.0]`` (fixed) - * numpy.float64: ``[0, 1.0]`` (fixed) + * numpy.uint8: ``[0, (2^8)-1]`` + * numpy.uint16: ``[0, (2^16)-1]`` + * numpy.uint32: ``[0, (2^32)-1]`` + * numpy.uint64: ``[0, (2^64)-1]`` + * numpy.float32: ``[0, 1.0]`` (fixed) + * numpy.float64: ``[0, 1.0]`` (fixed) - All other types are currently unsupported. + All other types are currently unsupported. - Parameters: + Parameters: - mask (numpy.ndarray): A 2D numpy ndarray with boolean data type, containing - the mask that will be converted into an image. + mask (numpy.ndarray): A 2D numpy ndarray with boolean data type, containing + the mask that will be converted into an image. - dtype (numpy.dtype): A valid numpy data-type from the list above for the - resulting image + dtype (numpy.dtype): A valid numpy data-type from the list above for the + resulting image - Returns: + Returns: - numpy.ndarray: With the designated data type, containing the binary image - formed from the mask. + numpy.ndarray: With the designated data type, containing the binary image + formed from the mask. - Raises: + Raises: - TypeError: If the type is not supported by this function + TypeError: If the type is not supported by this function - """ + """ - dtype = numpy.dtype(dtype) - retval = mask.astype(dtype) + dtype = numpy.dtype(dtype) + retval = mask.astype(dtype) - if dtype in (numpy.uint8, numpy.uint16, numpy.uint32, numpy.uint64): - retval[retval == 1] = numpy.iinfo(dtype).max + if dtype in (numpy.uint8, numpy.uint16, numpy.uint32, numpy.uint64): + retval[retval == 1] = numpy.iinfo(dtype).max - elif dtype in (numpy.float32, numpy.float64): - pass + elif dtype in (numpy.float32, numpy.float64): + pass - else: - raise TypeError("Data type %s is unsupported" % dtype) + else: + raise TypeError("Data type %s is unsupported" % dtype) - return retval + return retval def show_image(image): - """Shows a single image using :py:meth:`PIL.Image.Image.show` + """Shows a single image using :py:meth:`PIL.Image.Image.show` - .. warning:: + .. warning:: - This function opens a new window. You must be operating interactively in a - windowing system for it to work properly. + This function opens a new window. You must be operating interactively in a + windowing system for it to work properly. - Parameters: + Parameters: - image (numpy.ndarray): A 2D numpy.ndarray compose of 8-bit unsigned - integers containing the original image + image (numpy.ndarray): A 2D numpy.ndarray compose of 8-bit unsigned + integers containing the original image - """ + """ - from PIL import Image - img = Image.fromarray(image) - img.show() + from PIL import Image + img = Image.fromarray(image) + img.show() -def draw_mask_over_image(image, mask, color='red'): - """Plots the mask over the image of a finger, for debugging purposes - Parameters: +def draw_mask_over_image(image, mask, color="red"): + """Plots the mask over the image of a finger, for debugging purposes - image (numpy.ndarray): A 2D numpy.ndarray compose of 8-bit unsigned - integers containing the original image + Parameters: - mask (numpy.ndarray): A 2D numpy.ndarray compose of boolean values - containing the calculated mask + image (numpy.ndarray): A 2D numpy.ndarray compose of 8-bit unsigned + integers containing the original image + mask (numpy.ndarray): A 2D numpy.ndarray compose of boolean values + containing the calculated mask - Returns: - PIL.Image: An image in PIL format + Returns: - """ + PIL.Image: An image in PIL format - from PIL import Image + """ - img = Image.fromarray(image).convert(mode='RGBA') - msk = Image.fromarray((~mask).astype('uint8')*80) - red = Image.new('RGBA', img.size, color=color) - img.paste(red, mask=msk) + from PIL import Image - return img + img = Image.fromarray(image).convert(mode="RGBA") + msk = Image.fromarray((~mask).astype("uint8") * 80) + red = Image.new("RGBA", img.size, color=color) + img.paste(red, mask=msk) + return img -def show_mask_over_image(image, mask, color='red'): - """Plots the mask over the image of a finger using :py:meth:`PIL.Image.Image.show` - .. warning:: +def show_mask_over_image(image, mask, color="red"): + """Plots the mask over the image of a finger using :py:meth:`PIL.Image.Image.show` - This function opens a new window. You must be operating interactively in a - windowing system for it to work properly. + .. warning:: - Parameters: + This function opens a new window. You must be operating interactively in a + windowing system for it to work properly. - image (numpy.ndarray): A 2D numpy.ndarray compose of 8-bit unsigned - integers containing the original image + Parameters: - mask (numpy.ndarray): A 2D numpy.ndarray compose of boolean values - containing the calculated mask + image (numpy.ndarray): A 2D numpy.ndarray compose of 8-bit unsigned + integers containing the original image - """ + mask (numpy.ndarray): A 2D numpy.ndarray compose of boolean values + containing the calculated mask - draw_mask_over_image(image, mask, color).show() + """ + + draw_mask_over_image(image, mask, color).show() def jaccard_index(a, b): - """Calculates the intersection over union for two masks + """Calculates the intersection over union for two masks This function calculates the Jaccard index: @@ -259,84 +261,84 @@ def jaccard_index(a, b): """ - return (a & b).sum().astype(float) / (a | b).sum().astype(float) + return (a & b).sum().astype(float) / (a | b).sum().astype(float) def intersect_ratio(a, b): - """Calculates the intersection ratio between the ground-truth and a probe + """Calculates the intersection ratio between the ground-truth and a probe - This function calculates the intersection ratio between a ground-truth mask - (:math:`A`; probably generated from an annotation) and a probe mask - (:math:`B`), returning the ratio of overlap when the probe is compared to the - ground-truth data: + This function calculates the intersection ratio between a ground-truth mask + (:math:`A`; probably generated from an annotation) and a probe mask + (:math:`B`), returning the ratio of overlap when the probe is compared to the + ground-truth data: - .. math:: + .. math:: - R(A,B) = \\frac{|A \\cap B|}{|A|} + R(A,B) = \\frac{|A \\cap B|}{|A|} - So, if the probe occupies the entirety of the ground-truth data, then the - output of this function is ``1.0``, otherwise, if areas are exclusive, then - this function returns ``0.0``. The output of this function should be analyzed - against the output of :py:func:`intersect_ratio_of_complement`, which - provides the complementary information about the intersection of the areas - being analyzed. + So, if the probe occupies the entirety of the ground-truth data, then the + output of this function is ``1.0``, otherwise, if areas are exclusive, then + this function returns ``0.0``. The output of this function should be analyzed + against the output of :py:func:`intersect_ratio_of_complement`, which + provides the complementary information about the intersection of the areas + being analyzed. - Parameters: + Parameters: - a (numpy.ndarray): A 2D numpy array with dtype :py:obj:`bool`, that - corresponds to the **ground-truth object** + a (numpy.ndarray): A 2D numpy array with dtype :py:obj:`bool`, that + corresponds to the **ground-truth object** - b (numpy.ndarray): A 2D numpy array with dtype :py:obj:`bool`, that - corresponds to the probe object that will be compared to the ground-truth + b (numpy.ndarray): A 2D numpy array with dtype :py:obj:`bool`, that + corresponds to the probe object that will be compared to the ground-truth - Returns: + Returns: - float: The floating point number that corresponds to the overlap ratio. The - float value lies inside the interval :math:`[0, 1]`. + float: The floating point number that corresponds to the overlap ratio. The + float value lies inside the interval :math:`[0, 1]`. - """ + """ - return (a & b).sum().astype(float) / a.sum().astype(float) + return (a & b).sum().astype(float) / a.sum().astype(float) def intersect_ratio_of_complement(a, b): - """Calculates the intersection ratio between the complement of ground-truth and a probe + """Calculates the intersection ratio between the complement of ground-truth and a probe - This function calculates the intersection ratio between *the complement* of a - ground-truth mask (:math:`A`; probably generated from an annotation) and a - probe mask (:math:`B`), returning the ratio of overlap when the probe is - compared to the ground-truth data: + This function calculates the intersection ratio between *the complement* of a + ground-truth mask (:math:`A`; probably generated from an annotation) and a + probe mask (:math:`B`), returning the ratio of overlap when the probe is + compared to the ground-truth data: - .. math:: + .. math:: - R(A,B) = \\frac{|A^c \\cap B|}{|A|} = B \\setminus A + R(A,B) = \\frac{|A^c \\cap B|}{|A|} = B \\setminus A - So, if the probe is totally inside the ground-truth data, then the output of - this function is ``0.0``, otherwise, if areas are exclusive for example, then - this function outputs greater than zero. The output of this function should - be analyzed against the output of :py:func:`intersect_ratio`, which provides - the complementary information about the intersection of the areas being - analyzed. + So, if the probe is totally inside the ground-truth data, then the output of + this function is ``0.0``, otherwise, if areas are exclusive for example, then + this function outputs greater than zero. The output of this function should + be analyzed against the output of :py:func:`intersect_ratio`, which provides + the complementary information about the intersection of the areas being + analyzed. - Parameters: + Parameters: - a (numpy.ndarray): A 2D numpy array with dtype :py:obj:`bool`, that - corresponds to the **ground-truth object** + a (numpy.ndarray): A 2D numpy array with dtype :py:obj:`bool`, that + corresponds to the **ground-truth object** - b (numpy.ndarray): A 2D numpy array with dtype :py:obj:`bool`, that - corresponds to the probe object that will be compared to the ground-truth + b (numpy.ndarray): A 2D numpy array with dtype :py:obj:`bool`, that + corresponds to the probe object that will be compared to the ground-truth - Returns: + Returns: - float: The floating point number that corresponds to the overlap ratio - between the probe area and the *complement* of the ground-truth area. - There are no bounds for the float value on the right side: - :math:`[0, +\\infty)`. + float: The floating point number that corresponds to the overlap ratio + between the probe area and the *complement* of the ground-truth area. + There are no bounds for the float value on the right side: + :math:`[0, +\\infty)`. - """ + """ - return ((~a) & b).sum().astype(float) / a.sum().astype(float) + return ((~a) & b).sum().astype(float) / a.sum().astype(float) diff --git a/bob/bio/vein/script/blame.py b/bob/bio/vein/script/blame.py index 2ba1c18..2423684 100644 --- a/bob/bio/vein/script/blame.py +++ b/bob/bio/vein/script/blame.py @@ -36,6 +36,7 @@ Examples: import os import sys + import numpy import bob.extension.log @@ -45,88 +46,117 @@ logger = bob.extension.log.setup("bob.bio.vein") def main(user_input=None): - if user_input is not None: - argv = user_input - else: - argv = sys.argv[1:] - - import docopt - import pkg_resources - - completions = dict( - prog=os.path.basename(sys.argv[0]), - version=pkg_resources.require('bob.bio.base')[0].version - ) - - args = docopt.docopt( - __doc__ % completions, - argv=argv, - version=completions['version'], - ) - - # Sets-up logging - verbosity = int(args['--verbose']) - bob.extension.log.set_verbosity_level(logger, verbosity) - - # validates number of cases - cases = int(args['--cases']) - - # generates a huge - from bob.bio.base.score.load import load_score, get_negatives_positives - scores = [] - names = {} - - length = 0 - for k in args['<score-file>']: - model = os.path.splitext(os.path.basename(k))[0] - length = max(length, len(model)) - - for k in args['<score-file>']: - model = os.path.splitext(os.path.basename(k))[0] - names[model] = k - logger.info("Loading score file `%s' for model `%s'..." % (k, model)) - s = load_score(k) - - # append a column with the model name - m = numpy.array(len(s)*[model], dtype='<U%d' % length) - new_dt = numpy.dtype(s.dtype.descr + [('model', m.dtype.descr)]) - sp = numpy.zeros(s.shape, dtype=new_dt) - sp['claimed_id'] = s['claimed_id'] - sp['real_id'] = s['real_id'] - sp['test_label'] = s['test_label'] - sp['score'] = s['score'] - sp['model'] = m - - # stack into the existing scores set - scores.append(sp) - - scores = numpy.concatenate(scores) - genuines = scores[scores['claimed_id'] == scores['real_id']] - genuines.sort(order='score') #ascending - impostors = scores[scores['claimed_id'] != scores['real_id']] - impostors.sort(order='score') #ascending - - # print - print('The %d worst genuine scores:' % cases) - for k in range(cases): - print(' %d. model %s -> %s (%f)' % (k+1, genuines[k]['model'][0], - genuines[k]['test_label'], genuines[k]['score'])) - - print('The %d best genuine scores:' % cases) - for k in range(cases): - pos = len(genuines)-k-1 - print(' %d. model %s -> %s (%f)' % (k+1, genuines[pos]['model'][0], - genuines[pos]['test_label'], genuines[pos]['score'])) - - print('The %d worst impostor scores:' % cases) - for k in range(cases): - pos = len(impostors)-k-1 - print(' %d. model %s -> %s (%f)' % (k+1, impostors[pos]['model'][0], - impostors[pos]['test_label'], impostors[pos]['score'])) - - print('The %d best impostor scores:' % cases) - for k in range(cases): - print(' %d. model %s -> %s (%f)' % (k+1, impostors[k]['model'][0], - impostors[k]['test_label'], impostors[k]['score'])) - - return 0 + if user_input is not None: + argv = user_input + else: + argv = sys.argv[1:] + + import docopt + import pkg_resources + + completions = dict( + prog=os.path.basename(sys.argv[0]), + version=pkg_resources.require("bob.bio.base")[0].version, + ) + + args = docopt.docopt( + __doc__ % completions, + argv=argv, + version=completions["version"], + ) + + # Sets-up logging + verbosity = int(args["--verbose"]) + bob.extension.log.set_verbosity_level(logger, verbosity) + + # validates number of cases + cases = int(args["--cases"]) + + # generates a huge + from bob.bio.base.score.load import get_negatives_positives, load_score + + scores = [] + names = {} + + length = 0 + for k in args["<score-file>"]: + model = os.path.splitext(os.path.basename(k))[0] + length = max(length, len(model)) + + for k in args["<score-file>"]: + model = os.path.splitext(os.path.basename(k))[0] + names[model] = k + logger.info("Loading score file `%s' for model `%s'..." % (k, model)) + s = load_score(k) + + # append a column with the model name + m = numpy.array(len(s) * [model], dtype="<U%d" % length) + new_dt = numpy.dtype(s.dtype.descr + [("model", m.dtype.descr)]) + sp = numpy.zeros(s.shape, dtype=new_dt) + sp["claimed_id"] = s["claimed_id"] + sp["real_id"] = s["real_id"] + sp["test_label"] = s["test_label"] + sp["score"] = s["score"] + sp["model"] = m + + # stack into the existing scores set + scores.append(sp) + + scores = numpy.concatenate(scores) + genuines = scores[scores["claimed_id"] == scores["real_id"]] + genuines.sort(order="score") # ascending + impostors = scores[scores["claimed_id"] != scores["real_id"]] + impostors.sort(order="score") # ascending + + # print + print("The %d worst genuine scores:" % cases) + for k in range(cases): + print( + " %d. model %s -> %s (%f)" + % ( + k + 1, + genuines[k]["model"][0], + genuines[k]["test_label"], + genuines[k]["score"], + ) + ) + + print("The %d best genuine scores:" % cases) + for k in range(cases): + pos = len(genuines) - k - 1 + print( + " %d. model %s -> %s (%f)" + % ( + k + 1, + genuines[pos]["model"][0], + genuines[pos]["test_label"], + genuines[pos]["score"], + ) + ) + + print("The %d worst impostor scores:" % cases) + for k in range(cases): + pos = len(impostors) - k - 1 + print( + " %d. model %s -> %s (%f)" + % ( + k + 1, + impostors[pos]["model"][0], + impostors[pos]["test_label"], + impostors[pos]["score"], + ) + ) + + print("The %d best impostor scores:" % cases) + for k in range(cases): + print( + " %d. model %s -> %s (%f)" + % ( + k + 1, + impostors[k]["model"][0], + impostors[k]["test_label"], + impostors[k]["score"], + ) + ) + + return 0 diff --git a/bob/bio/vein/script/compare_rois.py b/bob/bio/vein/script/compare_rois.py index 6539717..9f94384 100644 --- a/bob/bio/vein/script/compare_rois.py +++ b/bob/bio/vein/script/compare_rois.py @@ -43,172 +43,177 @@ Example: """ -import os -import sys import fnmatch import operator +import os +import sys import numpy import bob.extension.log + logger = bob.extension.log.setup("bob.bio.vein") import bob.io.base def make_catalog(d): - """Returns a catalog dictionary containing the file stems available in ``d`` + """Returns a catalog dictionary containing the file stems available in ``d`` - Parameters: + Parameters: - d (str): A path representing a directory that will be scanned for .hdf5 - files + d (str): A path representing a directory that will be scanned for .hdf5 + files - Returns + Returns - list: A list of stems, from the directory ``d``, that represent files of - type HDF5 in that directory. Each file should contain two objects: - ``image`` and ``mask``. + list: A list of stems, from the directory ``d``, that represent files of + type HDF5 in that directory. Each file should contain two objects: + ``image`` and ``mask``. - """ + """ - logger.info("Scanning directory `%s'..." % d) - retval = [] - for path, dirs, files in os.walk(d): - basedir = os.path.relpath(path, d) - logger.debug("Scanning sub-directory `%s'..." % basedir) - candidates = fnmatch.filter(files, '*.hdf5') - if not candidates: continue - logger.debug("Found %d files" % len(candidates)) - retval += [os.path.join(basedir, k) for k in candidates] - logger.info("Found a total of %d files at `%s'" % (len(retval), d)) - return sorted(retval) + logger.info("Scanning directory `%s'..." % d) + retval = [] + for path, dirs, files in os.walk(d): + basedir = os.path.relpath(path, d) + logger.debug("Scanning sub-directory `%s'..." % basedir) + candidates = fnmatch.filter(files, "*.hdf5") + if not candidates: + continue + logger.debug("Found %d files" % len(candidates)) + retval += [os.path.join(basedir, k) for k in candidates] + logger.info("Found a total of %d files at `%s'" % (len(retval), d)) + return sorted(retval) def sort_table(table, cols): - """Sorts a table by multiple columns + """Sorts a table by multiple columns - Parameters: + Parameters: - table (:py:class:`list` of :py:class:`list`): Or tuple of tuples, where - each inner list represents a row + table (:py:class:`list` of :py:class:`list`): Or tuple of tuples, where + each inner list represents a row - cols (list, tuple): Specifies the column numbers to sort by e.g. (1,0) - would sort by column 1, then by column 0 + cols (list, tuple): Specifies the column numbers to sort by e.g. (1,0) + would sort by column 1, then by column 0 - Returns: + Returns: - list: of lists, with the table re-ordered as you see fit. + list: of lists, with the table re-ordered as you see fit. - """ + """ - for col in reversed(cols): - table = sorted(table, key=operator.itemgetter(col)) - return table + for col in reversed(cols): + table = sorted(table, key=operator.itemgetter(col)) + return table def mean_std_for_column(table, column): - """Calculates the mean and standard deviation for the column in question + """Calculates the mean and standard deviation for the column in question - Parameters: + Parameters: - table (:py:class:`list` of :py:class:`list`): Or tuple of tuples, where - each inner list represents a row + table (:py:class:`list` of :py:class:`list`): Or tuple of tuples, where + each inner list represents a row - col (int): The number of the column from where to extract the data for - calculating the mean and the standard-deviation. + col (int): The number of the column from where to extract the data for + calculating the mean and the standard-deviation. - Returns: + Returns: - float: mean + float: mean - float: (unbiased) standard deviation + float: (unbiased) standard deviation - """ + """ - z = numpy.array([k[column] for k in table]) - return z.mean(), z.std(ddof=1) + z = numpy.array([k[column] for k in table]) + return z.mean(), z.std(ddof=1) def main(user_input=None): - if user_input is not None: - argv = user_input - else: - argv = sys.argv[1:] - - import docopt - import pkg_resources - - completions = dict( - prog=os.path.basename(sys.argv[0]), - version=pkg_resources.require('bob.bio.vein')[0].version - ) - - args = docopt.docopt( - __doc__ % completions, - argv=argv, - version=completions['version'], - ) - - # Sets-up logging - verbosity = int(args['--verbose']) - bob.extension.log.set_verbosity_level(logger, verbosity) - - # Catalogs - gt = make_catalog(args['<ground-truth>']) - db = make_catalog(args['<database>']) - - if gt != db: - raise RuntimeError("Ground-truth and database have different files!") - - # Calculate all metrics required - from ..preprocessor import utils - metrics = [] - for k in gt: - gt_file = os.path.join(args['<ground-truth>'], k) - db_file = os.path.join(args['<database>'], k) - gt_roi = h5py.File(gt_file).read('mask') - db_roi = h5py.File(db_file).read('mask') - metrics.append(( - k, - utils.jaccard_index(gt_roi, db_roi), - utils.intersect_ratio(gt_roi, db_roi), - utils.intersect_ratio_of_complement(gt_roi, db_roi), - )) - logger.info("%s: JI = %.5g, M1 = %.5g, M2 = %5.g" % metrics[-1]) - - # Print statistics - names = ( - (1, 'Jaccard index'), - (2, 'Intersection ratio (m1)'), - (3, 'Intersection ratio of complement (m2)'), - ) - print("Statistics:") - for k, name in names: - mean, std = mean_std_for_column(metrics, k) - print(name + ': ' + '%.2e +- %.2e' % (mean, std)) - - # Print worst cases, if the user asked so - if args['--annotate'] is not None: - N = int(args['--annotate']) - if N <= 0: - raise docopt.DocoptExit("Argument to --annotate should be >0") - - print("Worst cases by metric:") + if user_input is not None: + argv = user_input + else: + argv = sys.argv[1:] + + import docopt + import pkg_resources + + completions = dict( + prog=os.path.basename(sys.argv[0]), + version=pkg_resources.require("bob.bio.vein")[0].version, + ) + + args = docopt.docopt( + __doc__ % completions, + argv=argv, + version=completions["version"], + ) + + # Sets-up logging + verbosity = int(args["--verbose"]) + bob.extension.log.set_verbosity_level(logger, verbosity) + + # Catalogs + gt = make_catalog(args["<ground-truth>"]) + db = make_catalog(args["<database>"]) + + if gt != db: + raise RuntimeError("Ground-truth and database have different files!") + + # Calculate all metrics required + from ..preprocessor import utils + + metrics = [] + for k in gt: + gt_file = os.path.join(args["<ground-truth>"], k) + db_file = os.path.join(args["<database>"], k) + gt_roi = h5py.File(gt_file).read("mask") + db_roi = h5py.File(db_file).read("mask") + metrics.append( + ( + k, + utils.jaccard_index(gt_roi, db_roi), + utils.intersect_ratio(gt_roi, db_roi), + utils.intersect_ratio_of_complement(gt_roi, db_roi), + ) + ) + logger.info("%s: JI = %.5g, M1 = %.5g, M2 = %5.g" % metrics[-1]) + + # Print statistics + names = ( + (1, "Jaccard index"), + (2, "Intersection ratio (m1)"), + (3, "Intersection ratio of complement (m2)"), + ) + print("Statistics:") for k, name in names: - print(name + ':') - - if k in (1,2): - worst = sort_table(metrics, (k,))[:N] - else: - worst = reversed(sort_table(metrics, (k,))[-N:]) - - for n, l in enumerate(worst): - fname = os.path.join(args['<database>'], l[0]) - print(' %d. [%.2e] %s' % (n, l[k], fname)) + mean, std = mean_std_for_column(metrics, k) + print(name + ": " + "%.2e +- %.2e" % (mean, std)) + + # Print worst cases, if the user asked so + if args["--annotate"] is not None: + N = int(args["--annotate"]) + if N <= 0: + raise docopt.DocoptExit("Argument to --annotate should be >0") + + print("Worst cases by metric:") + for k, name in names: + print(name + ":") + + if k in (1, 2): + worst = sort_table(metrics, (k,))[:N] + else: + worst = reversed(sort_table(metrics, (k,))[-N:]) + + for n, l in enumerate(worst): + fname = os.path.join(args["<database>"], l[0]) + print(" %d. [%.2e] %s" % (n, l[k], fname)) diff --git a/bob/bio/vein/script/validate.py b/bob/bio/vein/script/validate.py index e619c1d..aa46ac7 100644 --- a/bob/bio/vein/script/validate.py +++ b/bob/bio/vein/script/validate.py @@ -2,247 +2,256 @@ # vim: set fileencoding=utf-8 : -'''Utilities for command-line option validation''' +"""Utilities for command-line option validation""" -import os import glob -import schema import logging +import os + +import schema + logger = logging.getLogger(__name__) def setup_logger(name, level): - '''Sets up and checks a verbosity level respects min and max boundaries + """Sets up and checks a verbosity level respects min and max boundaries + + Parameters: - Parameters: + name (str): The name of the logger to setup - name (str): The name of the logger to setup + v (int): A value indicating the verbosity that must be set - v (int): A value indicating the verbosity that must be set + Returns: - Returns: + logging.Logger: A standard Python logger that can be used to log messages - logging.Logger: A standard Python logger that can be used to log messages + Raises: - Raises: + schema.SchemaError: If the verbosity level exceeds the maximum allowed of 4 - schema.SchemaError: If the verbosity level exceeds the maximum allowed of 4 + """ - ''' + import bob.extension.log - import bob.extension.log - logger = bob.extension.log.setup(name) + logger = bob.extension.log.setup(name) - if not (0 <= level < 4): - raise schema.SchemaError("there can be only up to 3 -v's in a command-line") + if not (0 <= level < 4): + raise schema.SchemaError( + "there can be only up to 3 -v's in a command-line" + ) - # Sets-up logging - bob.extension.log.set_verbosity_level(logger, level) + # Sets-up logging + bob.extension.log.set_verbosity_level(logger, level) - return logger + return logger def make_dir(p): - '''Checks if a path exists, if it doesn't, creates it + """Checks if a path exists, if it doesn't, creates it - Parameters: + Parameters: - p (str): The path to check + p (str): The path to check - Returns + Returns - bool: ``True``, always + bool: ``True``, always - ''' + """ - if not os.path.exists(p): - logger.info("Creating directory `%s'...", p) - os.makedirs(p) + if not os.path.exists(p): + logger.info("Creating directory `%s'...", p) + os.makedirs(p) - return True + return True def check_path_does_not_exist(p): - '''Checks if a path exists, if it does, raises an exception + """Checks if a path exists, if it does, raises an exception - Parameters: + Parameters: - p (str): The path to check + p (str): The path to check - Returns: + Returns: - bool: ``True``, always + bool: ``True``, always - Raises: + Raises: - schema.SchemaError: if the path exists + schema.SchemaError: if the path exists - ''' + """ - if os.path.exists(p): - raise schema.SchemaError("path to {} exists".format(p)) + if os.path.exists(p): + raise schema.SchemaError("path to {} exists".format(p)) - return True + return True def check_path_exists(p): - '''Checks if a path exists, if it doesn't, raises an exception + """Checks if a path exists, if it doesn't, raises an exception - Parameters: + Parameters: - p (str): The path to check + p (str): The path to check - Returns: + Returns: - bool: ``True``, always + bool: ``True``, always - Raises: + Raises: - schema.SchemaError: if the path doesn't exist + schema.SchemaError: if the path doesn't exist - ''' + """ - if not os.path.exists(p): - raise schema.SchemaError("path to {} does not exist".format(p)) + if not os.path.exists(p): + raise schema.SchemaError("path to {} does not exist".format(p)) - return True + return True def check_model_does_not_exist(p): - '''Checks if the path to any potential model file does not exist + """Checks if the path to any potential model file does not exist - Parameters: + Parameters: - p (str): The path to check + p (str): The path to check - Returns: + Returns: - bool: ``True``, always + bool: ``True``, always - Raises: + Raises: - schema.SchemaError: if the path exists + schema.SchemaError: if the path exists - ''' + """ - files = glob.glob(p + '.*') - if files: - raise schema.SchemaError("{} already exists".format(files)) + files = glob.glob(p + ".*") + if files: + raise schema.SchemaError("{} already exists".format(files)) - return True + return True def open_multipage_pdf_file(s): - '''Returns an opened matplotlib multi-page file + """Returns an opened matplotlib multi-page file + + + Parameters: + p (str): The path to the file to open - Parameters: - p (str): The path to the file to open + Returns: + matplotlib.backends.backend_pdf.PdfPages: with the handle to the multipage + PDF file - Returns: - matplotlib.backends.backend_pdf.PdfPages: with the handle to the multipage - PDF file + Raises: + schema.SchemaError: if the path exists - Raises: + """ + import matplotlib.pyplot as mpl - schema.SchemaError: if the path exists + from matplotlib.backends.backend_pdf import PdfPages - ''' - import matplotlib.pyplot as mpl - from matplotlib.backends.backend_pdf import PdfPages - return PdfPages(s) + return PdfPages(s) class validate_protocol(object): - '''Validates the protocol for a given database + """Validates the protocol for a given database - Parameters: + Parameters: - name (str): The name of the database to validate the protocol for + name (str): The name of the database to validate the protocol for - Raises: + Raises: - schema.SchemaError: if the database is not supported + schema.SchemaError: if the database is not supported - ''' + """ - def __init__(self, name): + def __init__(self, name): - self.dbname = name + self.dbname = name - if name == 'fv3d': - import bob.db.fv3d - self.valid_names = bob.db.fv3d.Database().protocol_names() - elif name == 'verafinger': - import bob.db.verafinger - self.valid_names = bob.db.verafinger.Database().protocol_names() - else: - raise schema.SchemaError("do not support database {}".format(name)) + if name == "fv3d": + import bob.db.fv3d + self.valid_names = bob.db.fv3d.Database().protocol_names() + elif name == "verafinger": + import bob.db.verafinger - def __call__(self, name): + self.valid_names = bob.db.verafinger.Database().protocol_names() + else: + raise schema.SchemaError("do not support database {}".format(name)) - if name not in self.valid_names: - msg = "{} is not a valid protocol for database {}" - raise schema.SchemaError(msg.format(name, self.dbname)) + def __call__(self, name): - return True + if name not in self.valid_names: + msg = "{} is not a valid protocol for database {}" + raise schema.SchemaError(msg.format(name, self.dbname)) + + return True class validate_group(object): - '''Validates the group for a given database + """Validates the group for a given database - Parameters: + Parameters: - name (str): The name of the database to validate the group for + name (str): The name of the database to validate the group for - Raises: + Raises: - schema.SchemaError: if the database is not supported + schema.SchemaError: if the database is not supported - ''' + """ - def __init__(self, name): + def __init__(self, name): - self.dbname = name + self.dbname = name - if name == 'fv3d': - import bob.db.fv3d - self.valid_names = bob.db.fv3d.Database().groups() - elif name == 'verafinger': - import bob.db.verafinger - self.valid_names = bob.db.verafinger.Database().groups() - else: - raise schema.SchemaError("do not support database {}".format(name)) + if name == "fv3d": + import bob.db.fv3d + self.valid_names = bob.db.fv3d.Database().groups() + elif name == "verafinger": + import bob.db.verafinger - def __call__(self, name): + self.valid_names = bob.db.verafinger.Database().groups() + else: + raise schema.SchemaError("do not support database {}".format(name)) - if name not in self.valid_names: - msg = "{} is not a valid group for database {}" - raise schema.SchemaError(msg.format(name, self.dbname)) + def __call__(self, name): - return True + if name not in self.valid_names: + msg = "{} is not a valid group for database {}" + raise schema.SchemaError(msg.format(name, self.dbname)) + + return True diff --git a/bob/bio/vein/script/view_sample.py b/bob/bio/vein/script/view_sample.py index fb87366..4dccc88 100644 --- a/bob/bio/vein/script/view_sample.py +++ b/bob/bio/vein/script/view_sample.py @@ -46,208 +46,221 @@ Examples: import os import sys +import docopt import numpy - import schema -import docopt import bob.extension.log + logger = bob.extension.log.setup("bob.bio.vein") import matplotlib.pyplot as mpl -from ..preprocessor import utils import bob.io.base -import bob.io.base + +from ..preprocessor import utils def save_figures(title, image, mask, image_pp, binary): - '''Saves individual images on a directory + """Saves individual images on a directory + + Parameters: - Parameters: + title (str): A title for this plot - title (str): A title for this plot + image (numpy.ndarray): The original image representing the finger vein (2D + array with dtype = ``uint8``) - image (numpy.ndarray): The original image representing the finger vein (2D - array with dtype = ``uint8``) + mask (numpy.ndarray): A 2D boolean array with the same size of the original + image containing the pixels in which the image is valid (``True``) or + invalid (``False``). - mask (numpy.ndarray): A 2D boolean array with the same size of the original - image containing the pixels in which the image is valid (``True``) or - invalid (``False``). + image_pp (numpy.ndarray): A version of the original image, pre-processed by + one of the available algorithms - image_pp (numpy.ndarray): A version of the original image, pre-processed by - one of the available algorithms + binary (numpy.ndarray): A binarized version of the original image in which + all pixels (should) represent vein (``True``) or not-vein (``False``) - binary (numpy.ndarray): A binarized version of the original image in which - all pixels (should) represent vein (``True``) or not-vein (``False``) + """ - ''' + os.makedirs(title) + bob.io.base.save(image, os.path.join(title, "original.png")) - os.makedirs(title) - bob.io.base.save(image, os.path.join(title, 'original.png')) + # add preprocessed image + from ..preprocessor import utils - # add preprocessed image - from ..preprocessor import utils - img = utils.draw_mask_over_image(image_pp, mask) - img = numpy.array(img).transpose(2,0,1) - bob.io.base.save(img[:3], os.path.join(title, 'preprocessed.png')) + img = utils.draw_mask_over_image(image_pp, mask) + img = numpy.array(img).transpose(2, 0, 1) + bob.io.base.save(img[:3], os.path.join(title, "preprocessed.png")) - # add binary image - bob.io.base.save(binary.astype('uint8')*255, os.path.join(title, - 'binarized.png')) + # add binary image + bob.io.base.save( + binary.astype("uint8") * 255, os.path.join(title, "binarized.png") + ) def proof_figure(title, image, mask, image_pp, binary=None): - '''Builds a proof canvas out of individual images + """Builds a proof canvas out of individual images - Parameters: + Parameters: - title (str): A title for this plot + title (str): A title for this plot - image (numpy.ndarray): The original image representing the finger vein (2D - array with dtype = ``uint8``) + image (numpy.ndarray): The original image representing the finger vein (2D + array with dtype = ``uint8``) - mask (numpy.ndarray): A 2D boolean array with the same size of the original - image containing the pixels in which the image is valid (``True``) or - invalid (``False``). + mask (numpy.ndarray): A 2D boolean array with the same size of the original + image containing the pixels in which the image is valid (``True``) or + invalid (``False``). - image_pp (numpy.ndarray): A version of the original image, pre-processed by - one of the available algorithms + image_pp (numpy.ndarray): A version of the original image, pre-processed by + one of the available algorithms - binary (numpy.ndarray, Optional): A binarized version of the original image - in which all pixels (should) represent vein (``True``) or not-vein - (``False``) + binary (numpy.ndarray, Optional): A binarized version of the original image + in which all pixels (should) represent vein (``True``) or not-vein + (``False``) - Returns: + Returns: - matplotlib.pyplot.Figure: A figure canvas containing the proof for the - particular sample on the database + matplotlib.pyplot.Figure: A figure canvas containing the proof for the + particular sample on the database - ''' + """ - fig = mpl.figure(figsize=(6,9), dpi=100) + fig = mpl.figure(figsize=(6, 9), dpi=100) - images = 3 if binary is not None else 2 + images = 3 if binary is not None else 2 - # add original image - mpl.subplot(images, 1, 1) - mpl.title('%s - original' % title) - mpl.imshow(image, cmap="gray") + # add original image + mpl.subplot(images, 1, 1) + mpl.title("%s - original" % title) + mpl.imshow(image, cmap="gray") - # add preprocessed image - from ..preprocessor import utils - img = utils.draw_mask_over_image(image_pp, mask) - mpl.subplot(images, 1, 2) - mpl.title('Preprocessed') - mpl.imshow(img) + # add preprocessed image + from ..preprocessor import utils - if binary is not None: - # add binary image - mpl.subplot(3, 1, 3) - mpl.title('Binarized') - mpl.imshow(binary.astype('uint8')*255, cmap="gray") + img = utils.draw_mask_over_image(image_pp, mask) + mpl.subplot(images, 1, 2) + mpl.title("Preprocessed") + mpl.imshow(img) + + if binary is not None: + # add binary image + mpl.subplot(3, 1, 3) + mpl.title("Binarized") + mpl.imshow(binary.astype("uint8") * 255, cmap="gray") - return fig + return fig def validate(args): - '''Validates command-line arguments, returns parsed values + """Validates command-line arguments, returns parsed values - This function uses :py:mod:`schema` for validating :py:mod:`docopt` - arguments. Logging level is not checked by this procedure (actually, it is - ignored) and must be previously setup as some of the elements here may use - logging for outputing information. + This function uses :py:mod:`schema` for validating :py:mod:`docopt` + arguments. Logging level is not checked by this procedure (actually, it is + ignored) and must be previously setup as some of the elements here may use + logging for outputing information. - Parameters: + Parameters: - args (dict): Dictionary of arguments as defined by the help message and - returned by :py:mod:`docopt` + args (dict): Dictionary of arguments as defined by the help message and + returned by :py:mod:`docopt` - Returns + Returns - dict: Validate dictionary with the same keys as the input and with values - possibly transformed by the validation procedure + dict: Validate dictionary with the same keys as the input and with values + possibly transformed by the validation procedure - Raises: + Raises: - schema.SchemaError: in case one of the checked options does not validate. + schema.SchemaError: in case one of the checked options does not validate. - ''' + """ - valid_databases = ('fv3d', 'verafinger') + valid_databases = ("fv3d", "verafinger") - sch = schema.Schema({ - '<database>': schema.And(lambda n: n in valid_databases, - error='<database> must be one of %s' % ', '.join(valid_databases)), - str: object, #ignores strings we don't care about - }, ignore_extra_keys=True) + sch = schema.Schema( + { + "<database>": schema.And( + lambda n: n in valid_databases, + error="<database> must be one of %s" + % ", ".join(valid_databases), + ), + str: object, # ignores strings we don't care about + }, + ignore_extra_keys=True, + ) - return sch.validate(args) + return sch.validate(args) def main(user_input=None): - if user_input is not None: - argv = user_input - else: - argv = sys.argv[1:] - - import pkg_resources - - completions = dict( - prog=os.path.basename(sys.argv[0]), - version=pkg_resources.require('bob.bio.vein')[0].version - ) - - args = docopt.docopt( - __doc__ % completions, - argv=argv, - version=completions['version'], - ) - - try: - from .validate import setup_logger - logger = setup_logger('bob.bio.vein', args['--verbose']) - args = validate(args) - except schema.SchemaError as e: - sys.exit(e) - - if args['<database>'] == 'fv3d': - from bob.bio.vein.config.fv3d import database as db - elif args['<database>'] == 'verafinger': - from bob.bio.vein.config.verafinger import database as db - - database_replacement = "%s/.bob_bio_databases.txt" % os.environ["HOME"] - db.replace_directories(database_replacement) - all_files = db.objects() - - # Loads the image, the mask and save it to a PNG file - for stem in args['<stem>']: - f = [k for k in all_files if k.path == stem] - if len(f) == 0: - raise RuntimeError('File with stem "%s" does not exist on "%s"' % \ - (stem, args['<database>'])) - f = f[0] - image = f.load(db.original_directory, db.original_extension) - pp_name = f.make_path(os.path.join(args['<processed>'], 'preprocessed'), - extension='.hdf5') - pp = h5py.File(pp_name) - mask = pp.read('mask') - image_pp = pp.read('image') - try: - binary = f.load(os.path.join(args['<processed>'], 'extracted')) - binary = numpy.rot90(binary, k=1) - except: - binary = None - fig = proof_figure(stem, image, mask, image_pp, binary) - if args['--save']: - save_figures(args['--save'], image, mask, image_pp, binary) + if user_input is not None: + argv = user_input else: - mpl.show() - print('Close window to continue...') + argv = sys.argv[1:] + + import pkg_resources + + completions = dict( + prog=os.path.basename(sys.argv[0]), + version=pkg_resources.require("bob.bio.vein")[0].version, + ) + + args = docopt.docopt( + __doc__ % completions, + argv=argv, + version=completions["version"], + ) + + try: + from .validate import setup_logger + + logger = setup_logger("bob.bio.vein", args["--verbose"]) + args = validate(args) + except schema.SchemaError as e: + sys.exit(e) + + if args["<database>"] == "fv3d": + from bob.bio.vein.config.fv3d import database as db + elif args["<database>"] == "verafinger": + from bob.bio.vein.config.verafinger import database as db + + database_replacement = "%s/.bob_bio_databases.txt" % os.environ["HOME"] + db.replace_directories(database_replacement) + all_files = db.objects() + + # Loads the image, the mask and save it to a PNG file + for stem in args["<stem>"]: + f = [k for k in all_files if k.path == stem] + if len(f) == 0: + raise RuntimeError( + 'File with stem "%s" does not exist on "%s"' + % (stem, args["<database>"]) + ) + f = f[0] + image = f.load(db.original_directory, db.original_extension) + pp_name = f.make_path( + os.path.join(args["<processed>"], "preprocessed"), extension=".hdf5" + ) + pp = h5py.File(pp_name) + mask = pp.read("mask") + image_pp = pp.read("image") + try: + binary = f.load(os.path.join(args["<processed>"], "extracted")) + binary = numpy.rot90(binary, k=1) + except: + binary = None + fig = proof_figure(stem, image, mask, image_pp, binary) + if args["--save"]: + save_figures(args["--save"], image, mask, image_pp, binary) + else: + mpl.show() + print("Close window to continue...") diff --git a/bob/bio/vein/tests/test_databases.py b/bob/bio/vein/tests/test_databases.py index a16755c..d06a2fb 100644 --- a/bob/bio/vein/tests/test_databases.py +++ b/bob/bio/vein/tests/test_databases.py @@ -2,17 +2,21 @@ # vim: set fileencoding=utf-8 : # Thu May 24 10:41:42 CEST 2012 +import os + from nose.plugins.skip import SkipTest import bob.bio.base -from bob.bio.base.test.utils import db_available + from bob.bio.base.test.test_database_implementations import check_database -import os +from bob.bio.base.test.utils import db_available from bob.extension.download import get_file def test_verafinger_contactless(): - from bob.bio.vein.database.verafinger_contactless import VerafingerContactless + from bob.bio.vein.database.verafinger_contactless import ( + VerafingerContactless, + ) # Getting the absolute path urls = VerafingerContactless.urls() @@ -25,36 +29,54 @@ def test_verafinger_contactless(): pass # nom - nom_parameters = {'N_dev': 65, - 'N_eval': 68, - 'N_session_references': 2, - 'N_session_probes': 3, - 'N_hands': 2, - } - - protocols_parameters = {'nom': nom_parameters, - } + nom_parameters = { + "N_dev": 65, + "N_eval": 68, + "N_session_references": 2, + "N_session_probes": 3, + "N_hands": 2, + } + + protocols_parameters = { + "nom": nom_parameters, + } def _check_protocol(p, parameters, eval=False): database = VerafingerContactless(protocol=p) - assert len(database.references(group="dev")) == \ - parameters['N_dev'] * parameters['N_hands'] * parameters['N_session_references'] - assert len(database.probes(group="dev")) == \ - parameters['N_dev'] * parameters['N_hands'] * parameters['N_session_probes'] + assert ( + len(database.references(group="dev")) + == parameters["N_dev"] + * parameters["N_hands"] + * parameters["N_session_references"] + ) + assert ( + len(database.probes(group="dev")) + == parameters["N_dev"] + * parameters["N_hands"] + * parameters["N_session_probes"] + ) if eval: - assert len(database.references(group="eval")) == \ - parameters['N_eval'] * parameters['N_hands'] * parameters['N_session_references'] - assert len(database.probes(group="eval")) == \ - parameters['N_eval'] * parameters['N_hands'] * parameters['N_session_probes'] + assert ( + len(database.references(group="eval")) + == parameters["N_eval"] + * parameters["N_hands"] + * parameters["N_session_references"] + ) + assert ( + len(database.probes(group="eval")) + == parameters["N_eval"] + * parameters["N_hands"] + * parameters["N_session_probes"] + ) return p checked_protocols = [] checked_protocols.append( - _check_protocol("nom", protocols_parameters['nom'], eval=True) + _check_protocol("nom", protocols_parameters["nom"], eval=True) ) for p in VerafingerContactless.protocols(): @@ -76,157 +98,256 @@ def test_utfvp(): N_SUBJECTS, N_FINGERS, N_SESSIONS = 60, 6, 4 # nom - nom_parameters = {'N_train': 10, - 'N_dev': 18, - 'N_eval': 32, - 'N_session': N_SESSIONS // 2, - 'N_session_training': N_SESSIONS, - 'N_fingers': 6, - 'N_fingers_training': 6, - } + nom_parameters = { + "N_train": 10, + "N_dev": 18, + "N_eval": 32, + "N_session": N_SESSIONS // 2, + "N_session_training": N_SESSIONS, + "N_fingers": 6, + "N_fingers_training": 6, + } # full - full_parameters = {'N_train': 0, - 'N_dev': N_SUBJECTS, - 'N_eval': 0, - 'N_session': N_SESSIONS, - 'N_fingers': 6, - } + full_parameters = { + "N_train": 0, + "N_dev": N_SUBJECTS, + "N_eval": 0, + "N_session": N_SESSIONS, + "N_fingers": 6, + } # 1vsall - onevsall_parameters = {'N_train': 35, - 'N_dev': 65, - 'N_eval': 0, - 'N_session': N_SESSIONS, - 'N_session_training': N_SESSIONS, - 'N_fingers': 5, - 'N_fingers_training': 1, - } + onevsall_parameters = { + "N_train": 35, + "N_dev": 65, + "N_eval": 0, + "N_session": N_SESSIONS, + "N_session_training": N_SESSIONS, + "N_fingers": 5, + "N_fingers_training": 1, + } # subnom - subnom_parameters = {'N_train': 10, - 'N_dev': 18, - 'N_eval': 32, - 'N_session': N_SESSIONS // 2, - 'N_session_training': N_SESSIONS, - 'N_fingers': 1, - 'N_fingers_training': 1, - } + subnom_parameters = { + "N_train": 10, + "N_dev": 18, + "N_eval": 32, + "N_session": N_SESSIONS // 2, + "N_session_training": N_SESSIONS, + "N_fingers": 1, + "N_fingers_training": 1, + } # subfull - subfull_parameters = {'N_train': 0, - 'N_dev': N_SUBJECTS, - 'N_eval': 0, - 'N_session': N_SESSIONS, - 'N_fingers': 1, - } - - protocols_parameters = {'nom': nom_parameters, - 'full': full_parameters, - '1vsall': onevsall_parameters, - 'subnom': subnom_parameters, - 'subfull': subfull_parameters, - } + subfull_parameters = { + "N_train": 0, + "N_dev": N_SUBJECTS, + "N_eval": 0, + "N_session": N_SESSIONS, + "N_fingers": 1, + } + + protocols_parameters = { + "nom": nom_parameters, + "full": full_parameters, + "1vsall": onevsall_parameters, + "subnom": subnom_parameters, + "subfull": subfull_parameters, + } def _check_protocol(p, parameters, train=False, eval=False): database = UtfvpDatabase(protocol=p) if train: - assert len(database.background_model_samples()) == \ - parameters['N_train'] * parameters['N_fingers_training'] * parameters['N_session_training'] - - assert len(database.references(group="dev")) == \ - parameters['N_dev'] * parameters['N_fingers'] * parameters['N_session'] - assert len(database.probes(group="dev")) == \ - parameters['N_dev'] * parameters['N_fingers'] * parameters['N_session'] + assert ( + len(database.background_model_samples()) + == parameters["N_train"] + * parameters["N_fingers_training"] + * parameters["N_session_training"] + ) + + assert ( + len(database.references(group="dev")) + == parameters["N_dev"] + * parameters["N_fingers"] + * parameters["N_session"] + ) + assert ( + len(database.probes(group="dev")) + == parameters["N_dev"] + * parameters["N_fingers"] + * parameters["N_session"] + ) if eval: - assert len(database.references(group="eval")) == \ - parameters['N_eval'] * parameters['N_fingers'] * parameters['N_session'] - assert len(database.probes(group="eval")) == \ - parameters['N_eval'] * parameters['N_fingers'] * parameters['N_session'] + assert ( + len(database.references(group="eval")) + == parameters["N_eval"] + * parameters["N_fingers"] + * parameters["N_session"] + ) + assert ( + len(database.probes(group="eval")) + == parameters["N_eval"] + * parameters["N_fingers"] + * parameters["N_session"] + ) return p checked_protocols = [] checked_protocols.append( - _check_protocol("nom", protocols_parameters['nom'], train=True, eval=True) + _check_protocol( + "nom", protocols_parameters["nom"], train=True, eval=True + ) ) checked_protocols.append( - _check_protocol("full", protocols_parameters['full'], train=False, eval=False) + _check_protocol( + "full", protocols_parameters["full"], train=False, eval=False + ) ) checked_protocols.append( - _check_protocol("1vsall", protocols_parameters['1vsall'], train=True, eval=False) + _check_protocol( + "1vsall", protocols_parameters["1vsall"], train=True, eval=False + ) ) checked_protocols.append( - _check_protocol("nomLeftIndex", protocols_parameters['subnom'], train=True, eval=True) + _check_protocol( + "nomLeftIndex", + protocols_parameters["subnom"], + train=True, + eval=True, + ) ) checked_protocols.append( - _check_protocol("nomLeftMiddle", protocols_parameters['subnom'], train=True, eval=True) + _check_protocol( + "nomLeftMiddle", + protocols_parameters["subnom"], + train=True, + eval=True, + ) ) checked_protocols.append( - _check_protocol("nomLeftRing", protocols_parameters['subnom'], train=True, eval=True) + _check_protocol( + "nomLeftRing", protocols_parameters["subnom"], train=True, eval=True + ) ) checked_protocols.append( - _check_protocol("nomRightIndex", protocols_parameters['subnom'], train=True, eval=True) + _check_protocol( + "nomRightIndex", + protocols_parameters["subnom"], + train=True, + eval=True, + ) ) checked_protocols.append( - _check_protocol("nomRightMiddle", protocols_parameters['subnom'], train=True, eval=True) + _check_protocol( + "nomRightMiddle", + protocols_parameters["subnom"], + train=True, + eval=True, + ) ) checked_protocols.append( - _check_protocol("nomRightRing", protocols_parameters['subnom'], train=True, eval=True) + _check_protocol( + "nomRightRing", + protocols_parameters["subnom"], + train=True, + eval=True, + ) ) checked_protocols.append( - _check_protocol("fullLeftIndex", protocols_parameters['subfull'], train=False, eval=False) + _check_protocol( + "fullLeftIndex", + protocols_parameters["subfull"], + train=False, + eval=False, + ) ) checked_protocols.append( - _check_protocol("fullLeftMiddle", protocols_parameters['subfull'], train=False, eval=False) + _check_protocol( + "fullLeftMiddle", + protocols_parameters["subfull"], + train=False, + eval=False, + ) ) checked_protocols.append( - _check_protocol("fullLeftRing", protocols_parameters['subfull'], train=False, eval=False) + _check_protocol( + "fullLeftRing", + protocols_parameters["subfull"], + train=False, + eval=False, + ) ) checked_protocols.append( - _check_protocol("fullRightIndex", protocols_parameters['subfull'], train=False, eval=False) + _check_protocol( + "fullRightIndex", + protocols_parameters["subfull"], + train=False, + eval=False, + ) ) checked_protocols.append( - _check_protocol("fullRightMiddle", protocols_parameters['subfull'], train=False, eval=False) + _check_protocol( + "fullRightMiddle", + protocols_parameters["subfull"], + train=False, + eval=False, + ) ) checked_protocols.append( - _check_protocol("fullRightRing", protocols_parameters['subfull'], train=False, eval=False) + _check_protocol( + "fullRightRing", + protocols_parameters["subfull"], + train=False, + eval=False, + ) ) for p in UtfvpDatabase.protocols(): assert p in checked_protocols, "Protocol {} untested".format(p) -@db_available('verafinger') +@db_available("verafinger") def test_verafinger(): - module = bob.bio.base.load_resource('verafinger', 'config', - preferred_package='bob.bio.vein') + module = bob.bio.base.load_resource( + "verafinger", "config", preferred_package="bob.bio.vein" + ) try: - check_database(module.database, protocol='Fifty', groups=('dev', - 'eval')) + check_database( + module.database, protocol="Fifty", groups=("dev", "eval") + ) except IOError as e: raise SkipTest( - "The database could not queried; probably the db.sql3 file is missing. Here is the error: '%s'" % e) + "The database could not queried; probably the db.sql3 file is missing. Here is the error: '%s'" + % e + ) -@db_available('fv3d') +@db_available("fv3d") def test_fv3d(): - module = bob.bio.base.load_resource('fv3d', 'config', - preferred_package='bob.bio.vein') + module = bob.bio.base.load_resource( + "fv3d", "config", preferred_package="bob.bio.vein" + ) try: - check_database(module.database, protocol='central', groups=('dev',)) + check_database(module.database, protocol="central", groups=("dev",)) except IOError as e: raise SkipTest( - "The database could not queried; probably the db.sql3 file is missing. Here is the error: '%s'" % e) + "The database could not queried; probably the db.sql3 file is missing. Here is the error: '%s'" + % e + ) -@db_available('putvein') +@db_available("putvein") def test_putvein(): - module = bob.bio.base.load_resource('putvein', 'config', - preferred_package='bob.bio.vein') + module = bob.bio.base.load_resource( + "putvein", "config", preferred_package="bob.bio.vein" + ) try: - check_database(module.database, protocol='wrist-LR_1', groups=('dev',)) + check_database(module.database, protocol="wrist-LR_1", groups=("dev",)) except IOError as e: raise SkipTest( - "The database could not queried; probably the db.sql3 file is missing. Here is the error: '%s'" % e) + "The database could not queried; probably the db.sql3 file is missing. Here is the error: '%s'" + % e + ) diff --git a/bob/bio/vein/tests/test_tools.py b/bob/bio/vein/tests/test_tools.py index dda3ac2..01abd10 100644 --- a/bob/bio/vein/tests/test_tools.py +++ b/bob/bio/vein/tests/test_tools.py @@ -13,11 +13,12 @@ the generated sphinx documentation) """ import os -import numpy -import nose.tools -import pkg_resources import h5py +import nose.tools +import numpy +import pkg_resources + import bob.io.base from ..preprocessor import utils as preprocessor_utils @@ -82,8 +83,8 @@ def test_masking(): # tests if the masking stage at preprocessors work as planned - from ..preprocessor.mask import FixedMask, NoMask, AnnotatedRoIMask from ..database import AnnotatedArray + from ..preprocessor.mask import AnnotatedRoIMask, FixedMask, NoMask shape = (17, 20) test_image = numpy.random.randint(0, 1000, size=shape, dtype=int) @@ -141,11 +142,11 @@ def test_preprocessor(): img = bob.io.base.load(input_filename) from ..preprocessor import ( - Preprocessor, - NoCrop, - LeeMask, HuangNormalization, + LeeMask, + NoCrop, NoFilter, + Preprocessor, ) processor = Preprocessor( @@ -180,7 +181,9 @@ def test_max_curvature(): mask = mask.T mask = mask.astype("bool") - vt_ref = numpy.array(h5py.File(F(("extractors", "mc_vt_matlab.hdf5")))["Vt"]) + vt_ref = numpy.array( + h5py.File(F(("extractors", "mc_vt_matlab.hdf5")))["Vt"] + ) vt_ref = vt_ref.T g_ref = numpy.array(h5py.File(F(("extractors", "mc_g_matlab.hdf5")))["G"]) g_ref = g_ref.T @@ -212,7 +215,8 @@ def test_max_curvature(): # We require no more than 30 pixels (from a total of 63'840) are different # between ours and the matlab implementation assert numpy.abs(bin_ref - bina).sum() < 30, ( - "Binarized image differs from reference by %s" % numpy.abs(bin_ref - bina).sum() + "Binarized image differs from reference by %s" + % numpy.abs(bin_ref - bina).sum() ) @@ -225,11 +229,11 @@ def test_max_curvature_HE(): # Preprocess the data and apply Histogram Equalization postprocessing (same parameters as in maximum_curvature.py configuration file + postprocessing) from ..preprocessor import ( - Preprocessor, - NoCrop, - LeeMask, - HuangNormalization, HistogramEqualization, + HuangNormalization, + LeeMask, + NoCrop, + Preprocessor, ) processor = Preprocessor( @@ -283,11 +287,11 @@ def test_repeated_line_tracking_HE(): # Preprocess the data and apply Histogram Equalization postprocessing (same parameters as in repeated_line_tracking.py configuration file + postprocessing) from ..preprocessor import ( - Preprocessor, - NoCrop, - LeeMask, - HuangNormalization, HistogramEqualization, + HuangNormalization, + LeeMask, + NoCrop, + Preprocessor, ) processor = Preprocessor( @@ -308,7 +312,10 @@ def test_repeated_line_tracking_HE(): # Width of profile PROFILE_WIDTH = 21 RLT = RepeatedLineTracking( - iterations=NUMBER_ITERATIONS, r=DISTANCE_R, profile_w=PROFILE_WIDTH, seed=0 + iterations=NUMBER_ITERATIONS, + r=DISTANCE_R, + profile_w=PROFILE_WIDTH, + seed=0, ) extr_data = RLT(preproc_data) @@ -347,11 +354,11 @@ def test_wide_line_detector_HE(): # Preprocess the data and apply Histogram Equalization postprocessing (same parameters as in wide_line_detector.py configuration file + postprocessing) from ..preprocessor import ( - Preprocessor, - NoCrop, - LeeMask, - HuangNormalization, HistogramEqualization, + HuangNormalization, + LeeMask, + NoCrop, + Preprocessor, ) processor = Preprocessor( @@ -437,7 +444,9 @@ def test_assert_points(): except AssertionError as e: assert str(point) in str(e) else: - raise AssertionError("Did not assert %s is outside of %s" % (point, area)) + raise AssertionError( + "Did not assert %s is outside of %s" % (point, area) + ) outside = [(-1, 0), (10, 0), (0, 5), (10, 5), (15, 12)] for k in outside: @@ -525,7 +534,7 @@ def test_mask_to_image(): def _check_uint(n): conv = preprocessor_utils.mask_to_image(sample, "uint%d" % n) nose.tools.eq_(conv.dtype, getattr(numpy, "uint%d" % n)) - target = [0, (2 ** n) - 1] + target = [0, (2**n) - 1] assert numpy.array_equal(conv, target), "%r != %r" % (conv, target) _check_uint(8) @@ -571,16 +580,20 @@ def test_jaccard_index(): nose.tools.eq_(preprocessor_utils.jaccard_index(a, a), 1.0) nose.tools.eq_(preprocessor_utils.jaccard_index(b, b), 1.0) nose.tools.eq_( - preprocessor_utils.jaccard_index(a, numpy.ones(a.shape, dtype=bool)), 2.0 / 4.0 + preprocessor_utils.jaccard_index(a, numpy.ones(a.shape, dtype=bool)), + 2.0 / 4.0, ) nose.tools.eq_( - preprocessor_utils.jaccard_index(a, numpy.zeros(a.shape, dtype=bool)), 0.0 + preprocessor_utils.jaccard_index(a, numpy.zeros(a.shape, dtype=bool)), + 0.0, ) nose.tools.eq_( - preprocessor_utils.jaccard_index(b, numpy.ones(b.shape, dtype=bool)), 3.0 / 4.0 + preprocessor_utils.jaccard_index(b, numpy.ones(b.shape, dtype=bool)), + 3.0 / 4.0, ) nose.tools.eq_( - preprocessor_utils.jaccard_index(b, numpy.zeros(b.shape, dtype=bool)), 0.0 + preprocessor_utils.jaccard_index(b, numpy.zeros(b.shape, dtype=bool)), + 0.0, ) @@ -605,19 +618,25 @@ def test_intersection_ratio(): nose.tools.eq_(preprocessor_utils.intersect_ratio(a, a), 1.0) nose.tools.eq_(preprocessor_utils.intersect_ratio(b, b), 1.0) nose.tools.eq_( - preprocessor_utils.intersect_ratio(a, numpy.ones(a.shape, dtype=bool)), 1.0 + preprocessor_utils.intersect_ratio(a, numpy.ones(a.shape, dtype=bool)), + 1.0, ) nose.tools.eq_( - preprocessor_utils.intersect_ratio(a, numpy.zeros(a.shape, dtype=bool)), 0 + preprocessor_utils.intersect_ratio(a, numpy.zeros(a.shape, dtype=bool)), + 0, ) nose.tools.eq_( - preprocessor_utils.intersect_ratio(b, numpy.ones(b.shape, dtype=bool)), 1.0 + preprocessor_utils.intersect_ratio(b, numpy.ones(b.shape, dtype=bool)), + 1.0, ) nose.tools.eq_( - preprocessor_utils.intersect_ratio(b, numpy.zeros(b.shape, dtype=bool)), 0 + preprocessor_utils.intersect_ratio(b, numpy.zeros(b.shape, dtype=bool)), + 0, ) - nose.tools.eq_(preprocessor_utils.intersect_ratio_of_complement(a, b), 1.0 / 2.0) + nose.tools.eq_( + preprocessor_utils.intersect_ratio_of_complement(a, b), 1.0 / 2.0 + ) nose.tools.eq_(preprocessor_utils.intersect_ratio_of_complement(a, a), 0.0) nose.tools.eq_(preprocessor_utils.intersect_ratio_of_complement(b, b), 0.0) nose.tools.eq_( diff --git a/doc/api.rst b/doc/api.rst index e3940b5..52d1274 100644 --- a/doc/api.rst +++ b/doc/api.rst @@ -62,4 +62,3 @@ Matching Algorithms ------------------- .. automodule:: bob.bio.vein.algorithm - diff --git a/doc/conf.py b/doc/conf.py index b06ed27..8673212 100644 --- a/doc/conf.py +++ b/doc/conf.py @@ -1,32 +1,32 @@ #!/usr/bin/env python # vim: set fileencoding=utf-8 : +import glob import os import sys -import glob -import pkg_resources +import pkg_resources # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. -needs_sphinx = '1.3' +needs_sphinx = "1.3" # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [ - 'sphinx.ext.todo', - 'sphinx.ext.coverage', - 'sphinx.ext.ifconfig', - 'sphinx.ext.autodoc', - 'sphinx.ext.autosummary', - 'sphinx.ext.doctest', - 'sphinx.ext.graphviz', - 'sphinx.ext.intersphinx', - 'sphinx.ext.napoleon', - 'sphinx.ext.viewcode', - 'sphinx.ext.mathjax', - ] + "sphinx.ext.todo", + "sphinx.ext.coverage", + "sphinx.ext.ifconfig", + "sphinx.ext.autodoc", + "sphinx.ext.autosummary", + "sphinx.ext.doctest", + "sphinx.ext.graphviz", + "sphinx.ext.intersphinx", + "sphinx.ext.napoleon", + "sphinx.ext.viewcode", + "sphinx.ext.mathjax", +] # Be picky about warnings nitpicky = False @@ -35,13 +35,13 @@ nitpicky = False nitpick_ignore = [] # Allows the user to override warnings from a separate file -if os.path.exists('nitpick-exceptions.txt'): - for line in open('nitpick-exceptions.txt'): +if os.path.exists("nitpick-exceptions.txt"): + for line in open("nitpick-exceptions.txt"): if line.strip() == "" or line.startswith("#"): continue dtype, target = line.split(None, 1) target = target.strip() - try: # python 2.x + try: # python 2.x target = unicode(target) except NameError: pass @@ -57,25 +57,27 @@ autosummary_generate = True numfig = True # If we are on OSX, the 'dvipng' path maybe different -dvipng_osx = '/opt/local/libexec/texlive/binaries/dvipng' -if os.path.exists(dvipng_osx): pngmath_dvipng = dvipng_osx +dvipng_osx = "/opt/local/libexec/texlive/binaries/dvipng" +if os.path.exists(dvipng_osx): + pngmath_dvipng = dvipng_osx # Add any paths that contain templates here, relative to this directory. -templates_path = ['_templates'] +templates_path = ["_templates"] # The suffix of source filenames. -source_suffix = '.rst' +source_suffix = ".rst" # The encoding of source files. -#source_encoding = 'utf-8-sig' +# source_encoding = 'utf-8-sig' # The master toctree document. -master_doc = 'index' +master_doc = "index" # General information about the project. -project = u'bob.bio.vein' +project = "bob.bio.vein" import time -copyright = u'%s, Idiap Research Institute' % time.strftime('%Y') + +copyright = "%s, Idiap Research Institute" % time.strftime("%Y") # Grab the setup entry distribution = pkg_resources.require(project)[0] @@ -91,42 +93,42 @@ release = distribution.version # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. -#language = None +# language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: -#today = '' +# today = '' # Else, today_fmt is used as the format for a strftime call. -#today_fmt = '%B %d, %Y' +# today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. -exclude_patterns = ['links.rst'] +exclude_patterns = ["links.rst"] # The reST default role (used for this markup: `text`) to use for all documents. -#default_role = None +# default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. -#add_function_parentheses = True +# add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). -#add_module_names = True +# add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. -#show_authors = False +# show_authors = False # The name of the Pygments (syntax highlighting) style to use. -pygments_style = 'sphinx' +pygments_style = "sphinx" # A list of ignored prefixes for module index sorting. -#modindex_common_prefix = [] +# modindex_common_prefix = [] # Some variables which are useful for generated material -project_variable = project.replace('.', '_') -short_description = u'Vein Recognition Library' -owner = [u'Idiap Research Institute'] +project_variable = project.replace(".", "_") +short_description = "Vein Recognition Library" +owner = ["Idiap Research Institute"] # -- Options for HTML output --------------------------------------------------- @@ -134,80 +136,81 @@ owner = [u'Idiap Research Institute'] # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. import sphinx_rtd_theme -html_theme = 'sphinx_rtd_theme' + +html_theme = "sphinx_rtd_theme" # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. -#html_theme_options = {} +# html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". -#html_title = None +# html_title = None # A shorter title for the navigation bar. Default is the same as html_title. -#html_short_title = project_variable +# html_short_title = project_variable # The name of an image file (relative to this directory) to place at the top # of the sidebar. -html_logo = 'img/logo.png' +html_logo = "img/logo.png" # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. -html_favicon = 'img/favicon.ico' +html_favicon = "img/favicon.ico" # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". -#html_static_path = ['_static'] +# html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. -#html_last_updated_fmt = '%b %d, %Y' +# html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. -#html_use_smartypants = True +# html_use_smartypants = True # Custom sidebar templates, maps document names to template names. -#html_sidebars = {} +# html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. -#html_additional_pages = {} +# html_additional_pages = {} # If false, no module index is generated. -#html_domain_indices = True +# html_domain_indices = True # If false, no index is generated. -#html_use_index = True +# html_use_index = True # If true, the index is split into individual pages for each letter. -#html_split_index = False +# html_split_index = False # If true, links to the reST sources are added to the pages. -#html_show_sourcelink = True +# html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. -#html_show_sphinx = True +# html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. -#html_show_copyright = True +# html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. -#html_use_opensearch = '' +# html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). -#html_file_suffix = None +# html_file_suffix = None # Output file base name for HTML help builder. -htmlhelp_basename = project_variable + u'_doc' +htmlhelp_basename = project_variable + "_doc" # -- Post configuration -------------------------------------------------------- @@ -217,31 +220,36 @@ rst_epilog = """ .. |project| replace:: Bob .. |version| replace:: %s .. |current-year| date:: %%Y -""" % (version,) +""" % ( + version, +) # Default processing flags for sphinx -autoclass_content = 'class' -autodoc_member_order = 'bysource' +autoclass_content = "class" +autodoc_member_order = "bysource" autodoc_default_options = { - "members": True, - "undoc-members": True, - "show-inheritance": True, + "members": True, + "undoc-members": True, + "show-inheritance": True, } # For inter-documentation mapping: from bob.extension.utils import link_documentation, load_requirements + sphinx_requirements = "extra-intersphinx.txt" if os.path.exists(sphinx_requirements): - intersphinx_mapping = link_documentation(additional_packages=load_requirements(sphinx_requirements)) + intersphinx_mapping = link_documentation( + additional_packages=load_requirements(sphinx_requirements) + ) else: intersphinx_mapping = link_documentation() # Add scikit-image link -skimage_version = pkg_resources.require('scikit-image')[0].version -skimage_version = '.'.join(skimage_version.split('.')[:2]) -intersphinx_mapping['http://scikit-image.org/docs/%s.x' % skimage_version] = \ - None +skimage_version = pkg_resources.require("scikit-image")[0].version +skimage_version = ".".join(skimage_version.split(".")[:2]) +intersphinx_mapping[ + "http://scikit-image.org/docs/%s.x" % skimage_version +] = None # Add PIL link -intersphinx_mapping['http://pillow.readthedocs.io/en/stable'] = None - +intersphinx_mapping["http://pillow.readthedocs.io/en/stable"] = None diff --git a/doc/extra-intersphinx.txt b/doc/extra-intersphinx.txt index d8654aa..fdc793e 100644 --- a/doc/extra-intersphinx.txt +++ b/doc/extra-intersphinx.txt @@ -1 +1 @@ -python \ No newline at end of file +python diff --git a/doc/nitpick-exceptions.txt b/doc/nitpick-exceptions.txt index 76075ec..3cb8398 100644 --- a/doc/nitpick-exceptions.txt +++ b/doc/nitpick-exceptions.txt @@ -3,4 +3,4 @@ py:obj list py:class list py:exc TypeError py:exc ValueError -py:exc AssertionError \ No newline at end of file +py:exc AssertionError diff --git a/matlab/compare.py b/matlab/compare.py index 78360a2..3abc531 100644 --- a/matlab/compare.py +++ b/matlab/compare.py @@ -5,45 +5,52 @@ # against matlab references you just extracted import numpy + import bob.io.base + from bob.bio.vein.extractor import MaximumCurvature # Load inputs -image = bob.io.base.load('../bob/bio/vein/tests/extractors/image.hdf5') -image = image.T.astype('float64')/255. -region = bob.io.base.load('../bob/bio/vein/tests/extractors/mask.hdf5') -region = region.T.astype('bool') +image = bob.io.base.load("../bob/bio/vein/tests/extractors/image.hdf5") +image = image.T.astype("float64") / 255.0 +region = bob.io.base.load("../bob/bio/vein/tests/extractors/mask.hdf5") +region = region.T.astype("bool") # Loads matlab references -kappa_matlab = bob.io.base.load('mc_kappa_matlab.hdf5') -kappa_matlab = kappa_matlab.transpose(2,1,0) -V_matlab = bob.io.base.load('mc_v_matlab.hdf5') -V_matlab = V_matlab.transpose(2,1,0) -Vt_matlab = bob.io.base.load('mc_vt_matlab.hdf5') +kappa_matlab = bob.io.base.load("mc_kappa_matlab.hdf5") +kappa_matlab = kappa_matlab.transpose(2, 1, 0) +V_matlab = bob.io.base.load("mc_v_matlab.hdf5") +V_matlab = V_matlab.transpose(2, 1, 0) +Vt_matlab = bob.io.base.load("mc_vt_matlab.hdf5") Vt_matlab = Vt_matlab.T -Cd_matlab = bob.io.base.load('mc_cd_matlab.hdf5') -Cd_matlab = Cd_matlab.transpose(2,1,0) -G_matlab = bob.io.base.load('mc_g_matlab.hdf5') +Cd_matlab = bob.io.base.load("mc_cd_matlab.hdf5") +Cd_matlab = Cd_matlab.transpose(2, 1, 0) +G_matlab = bob.io.base.load("mc_g_matlab.hdf5") G_matlab = G_matlab.T # Apply Python implementation from bob.bio.vein.extractor.MaximumCurvature import MaximumCurvature + MC = MaximumCurvature(3) -kappa = MC.detect_valleys(image, region) #OK -Vt = MC.eval_vein_probabilities(kappa) #OK -Cd = MC.connect_centres(Vt) #OK -G = numpy.amax(Cd, axis=2) #OK +kappa = MC.detect_valleys(image, region) # OK +Vt = MC.eval_vein_probabilities(kappa) # OK +Cd = MC.connect_centres(Vt) # OK +G = numpy.amax(Cd, axis=2) # OK # Compare outputs for k in range(4): - print('Comparing kappa[%d]: %s' % (k, - numpy.abs(kappa[...,k]-kappa_matlab[...,k]).sum())) + print( + "Comparing kappa[%d]: %s" + % (k, numpy.abs(kappa[..., k] - kappa_matlab[..., k]).sum()) + ) -print('Comparing Vt: %s' % numpy.abs(Vt-Vt_matlab).sum()) +print("Comparing Vt: %s" % numpy.abs(Vt - Vt_matlab).sum()) for k in range(4): - print('Comparing Cd[%d]: %s' % (k, - numpy.abs(Cd[2:-3,2:-3,k]-Cd_matlab[2:-3,2:-3,k]).sum())) + print( + "Comparing Cd[%d]: %s" + % (k, numpy.abs(Cd[2:-3, 2:-3, k] - Cd_matlab[2:-3, 2:-3, k]).sum()) + ) -print('Comparing G: %s' % numpy.abs(G[2:-3,2:-3]-G_matlab[2:-3,2:-3]).sum()) +print("Comparing G: %s" % numpy.abs(G[2:-3, 2:-3] - G_matlab[2:-3, 2:-3]).sum()) diff --git a/matlab/lib/miura_match.m b/matlab/lib/miura_match.m index ccc0406..1b6d496 100644 --- a/matlab/lib/miura_match.m +++ b/matlab/lib/miura_match.m @@ -1,6 +1,6 @@ function score = miura_match(I, R, cw, ch) % This is the matching procedure described by Miura et al. in their paper. -% A small difference is that this matching function calculates the match +% A small difference is that this matching function calculates the match % ratio instead of the mismatch ratio. % Parameters: @@ -13,7 +13,7 @@ function score = miura_match(I, R, cw, ch) % score - Value between 0 and 0.5, larger value is better match % Reference: -% Feature extraction of finger vein patterns based on iterative line +% Feature extraction of finger vein patterns based on iterative line % tracking and its application to personal identification % N. Miura, A. Nagasaka, and T. Miyatake % Syst. Comput. Japan 35 (7 June 2004), pp. 61--71 @@ -38,15 +38,13 @@ score = Nmm/(sum(sum(R(ch+1:h-ch, cw+1:w-cw))) + sum(sum(I(t0:t0+h-2*ch-1, s0:s0 % %% Bram Test % Ipad = zeros(h+2*ch,w+2*cw); % Ipad(ch+1:ch+h,cw+1:cw+w) = I; -% +% % Nm = conv2(Ipad, rot90(R,2), 'valid'); -% +% % % Maximum value of match % [Nmm,mi] = max(Nm(:)); % (what about multiple maximum values ?) % [t0,s0] = ind2sub(size(Nm),mi); -% +% % % Normalize % score = Nmm/(sum(sum(R(ch+1:h-ch, cw+1:w-cw))) + sum(sum(Ipad(t0:t0+h-2*ch-1, s0:s0+w-2*cw-1)))); % %score = max(max(normxcorr2(R(ch+1:h-ch, cw+1:w-cw),I))); - - diff --git a/matlab/lib/miura_repeated_line_tracking.m b/matlab/lib/miura_repeated_line_tracking.m index 08b3eb5..22a36d5 100644 --- a/matlab/lib/miura_repeated_line_tracking.m +++ b/matlab/lib/miura_repeated_line_tracking.m @@ -12,7 +12,7 @@ function veins = miura_repeated_line_tracking(img, fvr, iterations, r, W) % veins - Vein image % Reference: -% Feature extraction of finger vein patterns based on repeated line +% Feature extraction of finger vein patterns based on repeated line % tracking and its application to personal identification % N. Miura, A. Nagasaka, and T. Miyatake % Machine Vision and Applications, Volume 15, Number 4 (2004), pp. 194--203 @@ -55,22 +55,22 @@ a = a(1:iterations); % Limit to number of iterations for it = 1:size(ys,1) xc = xs(it); % Current tracking point, x yc = ys(it); % Current tracking point, y - + % Determine the moving-direction attributes % Going left or right ? if rand() >= 0.5 Dlr = -1; % Going left else - Dlr = 1; % Going right + Dlr = 1; % Going right end % Going up or down ? if rand() >= 0.5 Dud = -1; % Going up else - Dud = 1; % Going down + Dud = 1; % Going down end - + % Initialize locus-positition table Tc Tc = false(size(img)); @@ -84,7 +84,7 @@ for it = 1:size(ys,1) if Rnd < p_lr % Going left or right Nr(:,2+Dlr) = true; - elseif (Rnd >= p_lr) && (Rnd < p_lr + p_ud) + elseif (Rnd >= p_lr) && (Rnd < p_lr + p_ud) % Going up or down Nr(2+Dud,:) = true; else @@ -95,7 +95,7 @@ for it = 1:size(ys,1) tmp = find( ~Tc(yc-1:yc+1,xc-1:xc+1) & Nr & fvr(yc-1:yc+1,xc-1:xc+1) ); Nc =[xc + bla(tmp,1), yc + bla(tmp,2)]; - + if size(Nc,1)==0 Vl=-1; continue @@ -104,7 +104,7 @@ for it = 1:size(ys,1) %% Detect dark line direction near current tracking point Vdepths = zeros(size(Nc,1),1); % Valley depths for i = 1:size(Nc,1) - % Horizontal or vertical + % Horizontal or vertical if Nc(i,2) == yc % Horizontal plane yp = Nc(i,2); @@ -134,7 +134,7 @@ for it = 1:size(ys,1) 2*img(yp,xp) + ... img(yp, xp - hW); end - + % Oblique directions if ((Nc(i,1) > xc) && (Nc(i,2) < yc)) || ((Nc(i,1) < xc) && (Nc(i,2) > yc)) % Diagonal, up / @@ -162,7 +162,7 @@ for it = 1:size(ys,1) xp = Nc(i,1) + ro; yp = Nc(i,2) + ro; end - + Vdepths(i) = img(yp + hWo, xp - hWo) - ... 2*img(yp,xp) + ... img(yp - hWo, xp + hWo); @@ -177,10 +177,10 @@ for it = 1:size(ys,1) % Increase value of tracking space Tr(yc, xc) = Tr(yc, xc) + 1; %writeVideo(writerObj,Tr); - + % Move tracking point xc = Nc(index, 1); - yc = Nc(index, 2); + yc = Nc(index, 2); end end -veins = Tr; \ No newline at end of file +veins = Tr; diff --git a/matlab/lib/miura_usage.m b/matlab/lib/miura_usage.m index 51c815c..ad1b8db 100644 --- a/matlab/lib/miura_usage.m +++ b/matlab/lib/miura_usage.m @@ -3,7 +3,7 @@ img = im2double(imread('finger.png')); % Read the image img = imresize(img,0.5); % Downscale image -% Get the valid region, this is a binary mask which indicates the region of +% Get the valid region, this is a binary mask which indicates the region of % the finger. For quick testing it is possible to use something like: % fvr = ones(size(img)); % The lee_region() function can be found here: @@ -16,7 +16,7 @@ v_max_curvature = miura_max_curvature(img,fvr,sigma); % Binarise the vein image md = median(v_max_curvature(v_max_curvature>0)); -v_max_curvature_bin = v_max_curvature > md; +v_max_curvature_bin = v_max_curvature > md; %% Extract veins using repeated line tracking method max_iterations = 3000; r=1; W=17; % Parameters @@ -24,7 +24,7 @@ v_repeated_line = miura_repeated_line_tracking(img,fvr,max_iterations,r,W); % Binarise the vein image md = median(v_repeated_line(v_repeated_line>0)); -v_repeated_line_bin = v_repeated_line > md; +v_repeated_line_bin = v_repeated_line > md; %% Match cw = 80; ch=30; @@ -57,10 +57,10 @@ subplot(3,2,3) title('Binarised veins extracted by maximum curvature method') subplot(3,2,4) imshow(overlay_max_curvature) - title('Maximum curvature method') + title('Maximum curvature method') subplot(3,2,5) imshow(v_repeated_line_bin) title('Binarised veins extracted by repeated line tracking method') subplot(3,2,6) imshow(overlay_repeated_line) - title('Repeated line tracking method') \ No newline at end of file + title('Repeated line tracking method') diff --git a/setup.py b/setup.py index f9e3d9e..8be30a3 100644 --- a/setup.py +++ b/setup.py @@ -1,11 +1,11 @@ #!/usr/bin/env python # vim: set fileencoding=utf-8 : -from setuptools import setup, dist +from setuptools import dist, setup dist.Distribution(dict(setup_requires=["bob.extension"])) -from bob.extension.utils import load_requirements, find_packages +from bob.extension.utils import find_packages, load_requirements install_requires = load_requirements() -- GitLab