test.py 9.94 KB
Newer Older
Pedro TOME's avatar
Pedro TOME committed
1 2 3 4
#!/usr/bin/env python
# vim: set fileencoding=utf-8 :


5 6 7 8 9 10 11 12
"""Unit tests against references extracted from

Matlab code from Bram Ton available on the matlab central website:

https://www.mathworks.com/matlabcentral/fileexchange/35754-wide-line-detector

This code implements the detector described in [HDLTL10] (see the references in
the generated sphinx documentation)
Pedro TOME's avatar
Pedro TOME committed
13 14 15
"""

import os
16
import numpy
17
import numpy as np
18 19
import nose.tools

Pedro TOME's avatar
Pedro TOME committed
20 21
import pkg_resources

22 23
import bob.io.base
import bob.io.matlab
André Anjos's avatar
André Anjos committed
24
import bob.io.image
Pedro TOME's avatar
Pedro TOME committed
25 26


27 28 29 30 31 32
def F(parts):
  """Returns the test file path"""

  return pkg_resources.resource_filename(__name__, os.path.join(*parts))


33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
def _show_image(image):
  """Shows a single image

  Parameters:

    image (numpy.ndarray): A 2D numpy.ndarray compose of 8-bit unsigned
      integers containing the original image

  """

  from PIL import Image
  img = Image.fromarray(image)
  img.show()


48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
def _show_mask_over_image(image, mask, color='red'):
  """Plots the mask over the image of a finger, for debugging purposes

  Parameters:

    image (numpy.ndarray): A 2D numpy.ndarray compose of 8-bit unsigned
      integers containing the original image

    mask (numpy.ndarray): A 2D numpy.ndarray compose of boolean values
      containing the calculated mask

  """

  from PIL import Image
  img = Image.fromarray(image).convert(mode='RGBA')
  msk = Image.fromarray((~mask).astype('uint8')*80)
  red = Image.new('RGBA', img.size, color=color)
  img.paste(red, mask=msk)
  img.show()


69 70
def test_finger_crop():

André Anjos's avatar
André Anjos committed
71 72
  input_filename = F(('preprocessors', '0019_3_1_120509-160517.png'))
  output_img_filename  = F(('preprocessors',
73
    '0019_3_1_120509-160517_img_lee_huang.mat'))
André Anjos's avatar
André Anjos committed
74
  output_fvr_filename  = F(('preprocessors',
75 76 77 78
    '0019_3_1_120509-160517_fvr_lee_huang.mat'))

  img = bob.io.base.load(input_filename)

79
  from bob.bio.vein.preprocessor.FingerCrop import FingerCrop
80
  preprocess = FingerCrop(fingercontour='leemaskMatlab', padding_width=0)
81

82 83
  preproc, mask = preprocess(img)
  #_show_mask_over_image(preproc, mask)
84

85 86 87 88 89
  mask_ref = bob.io.base.load(output_fvr_filename).astype('bool')
  preproc_ref = bob.core.convert(bob.io.base.load(output_img_filename),
      numpy.uint8, (0,255), (0.0,1.0))

  assert numpy.mean(numpy.abs(mask - mask_ref)) < 1e-2
90

91
  # Very loose comparison!
92 93
  #_show_image(numpy.abs(preproc.astype('int16') - preproc_ref.astype('int16')).astype('uint8'))
  assert numpy.mean(numpy.abs(preproc - preproc_ref)) < 1.3e2
94 95


96
def test_max_curvature():
97 98 99

  #Maximum Curvature method against Matlab reference

André Anjos's avatar
André Anjos committed
100 101 102
  input_img_filename  = F(('extractors', 'miuramax_input_img.mat'))
  input_fvr_filename  = F(('extractors', 'miuramax_input_fvr.mat'))
  output_filename     = F(('extractors', 'miuramax_output.mat'))
103 104 105 106 107 108

  # Load inputs
  input_img = bob.io.base.load(input_img_filename)
  input_fvr = bob.io.base.load(input_fvr_filename)

  # Apply Python implementation
109
  from bob.bio.vein.extractor.MaximumCurvature import MaximumCurvature
110
  MC = MaximumCurvature(5)
111 112 113 114 115 116 117 118
  output_img = MC((input_img, input_fvr))

  # Load Matlab reference
  output_img_ref = bob.io.base.load(output_filename)

  # Compare output of python's implementation to matlab reference
  # (loose comparison!)
  assert numpy.mean(numpy.abs(output_img - output_img_ref)) < 8e-3
Pedro TOME's avatar
Pedro TOME committed
119 120


121
def test_repeated_line_tracking():
122 123 124

  #Repeated Line Tracking method against Matlab reference

André Anjos's avatar
André Anjos committed
125 126 127
  input_img_filename  = F(('extractors', 'miurarlt_input_img.mat'))
  input_fvr_filename  = F(('extractors', 'miurarlt_input_fvr.mat'))
  output_filename     = F(('extractors', 'miurarlt_output.mat'))
128 129 130 131 132 133

  # Load inputs
  input_img = bob.io.base.load(input_img_filename)
  input_fvr = bob.io.base.load(input_fvr_filename)

  # Apply Python implementation
134
  from bob.bio.vein.extractor.RepeatedLineTracking import RepeatedLineTracking
135 136 137 138 139 140 141 142 143 144 145
  RLT = RepeatedLineTracking(3000, 1, 21, False)
  output_img = RLT((input_img, input_fvr))

  # Load Matlab reference
  output_img_ref = bob.io.base.load(output_filename)

  # Compare output of python's implementation to matlab reference
  # (loose comparison!)
  assert numpy.mean(numpy.abs(output_img - output_img_ref)) < 0.5


146
def test_wide_line_detector():
147 148 149

  #Wide Line Detector method against Matlab reference

André Anjos's avatar
André Anjos committed
150 151 152
  input_img_filename  = F(('extractors', 'huangwl_input_img.mat'))
  input_fvr_filename  = F(('extractors', 'huangwl_input_fvr.mat'))
  output_filename     = F(('extractors', 'huangwl_output.mat'))
153 154 155 156 157 158

  # Load inputs
  input_img = bob.io.base.load(input_img_filename)
  input_fvr = bob.io.base.load(input_fvr_filename)

  # Apply Python implementation
159
  from bob.bio.vein.extractor.WideLineDetector import WideLineDetector
160 161 162 163 164 165 166 167 168 169 170 171
  WL = WideLineDetector(5, 1, 41, False)
  output_img = WL((input_img, input_fvr))

  # Load Matlab reference
  output_img_ref = bob.io.base.load(output_filename)

  # Compare output of python's implementation to matlab reference
  assert numpy.allclose(output_img, output_img_ref)


def test_miura_match():

André Anjos's avatar
André Anjos committed
172 173 174 175 176
  #Match Ratio method against Matlab reference

  template_filename = F(('algorithms', '0001_2_1_120509-135338.mat'))
  probe_gen_filename = F(('algorithms', '0001_2_2_120509-135558.mat'))
  probe_imp_filename = F(('algorithms', '0003_2_1_120509-141255.mat'))
177 178 179 180 181

  template_vein = bob.io.base.load(template_filename)
  probe_gen_vein = bob.io.base.load(probe_gen_filename)
  probe_imp_vein = bob.io.base.load(probe_imp_filename)

182
  from bob.bio.vein.algorithm.MiuraMatch import MiuraMatch
183 184 185 186 187 188 189
  MM = MiuraMatch(ch=18, cw=28)
  score_gen = MM.score(template_vein, probe_gen_vein)

  assert numpy.isclose(score_gen, 0.382689335394127)

  score_imp = MM.score(template_vein, probe_imp_vein)
  assert numpy.isclose(score_imp, 0.172906739278421)
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321


def test_assert_points():

  # Tests that point assertion works as expected
  from ..preprocessor import utils

  area = (10, 5)
  inside = [(0,0), (3,2), (9, 4)]
  utils.assert_points(area, inside) #should not raise

  def _check_outside(point):
    # should raise, otherwise it is an error
    try:
      utils.assert_points(area, [point])
    except AssertionError as e:
      assert str(point) in str(e)
    else:
      raise AssertionError("Did not assert %s is outside of %s" % (point, area))

  outside = [(-1, 0), (10, 0), (0, 5), (10, 5), (15,12)]
  for k in outside: _check_outside(k)


def test_fix_points():

  # Tests that point clipping works as expected
  from ..preprocessor import utils

  area = (10, 5)
  inside = [(0,0), (3,2), (9, 4)]
  fixed = utils.fix_points(area, inside)
  assert numpy.array_equal(inside, fixed), '%r != %r' % (inside, fixed)

  fixed = utils.fix_points(area, [(-1, 0)])
  assert numpy.array_equal(fixed, [(0, 0)])

  fixed = utils.fix_points(area, [(10, 0)])
  assert numpy.array_equal(fixed, [(9, 0)])

  fixed = utils.fix_points(area, [(0, 5)])
  assert numpy.array_equal(fixed, [(0, 4)])

  fixed = utils.fix_points(area, [(10, 5)])
  assert numpy.array_equal(fixed, [(9, 4)])

  fixed = utils.fix_points(area, [(15, 12)])
  assert numpy.array_equal(fixed, [(9, 4)])


def test_poly_to_mask():

  # Tests we can generate a mask out of a polygon correctly
  from ..preprocessor import utils

  area = (10, 9) #10 rows, 9 columns
  polygon = [(2, 2), (2, 7), (7, 7), (7, 2)] #square shape, (y, x) format
  mask = utils.poly_to_mask(area, polygon)
  nose.tools.eq_(mask.dtype, numpy.bool)

  # This should be the output:
  expected = numpy.array([
      [False, False, False, False, False, False, False, False, False],
      [False, False, False, False, False, False, False, False, False],
      [False, False, True,  True,  True,  True,  True,  True,  False],
      [False, False, True,  True,  True,  True,  True,  True,  False],
      [False, False, True,  True,  True,  True,  True,  True,  False],
      [False, False, True,  True,  True,  True,  True,  True,  False],
      [False, False, True,  True,  True,  True,  True,  True,  False],
      [False, False, True,  True,  True,  True,  True,  True,  False],
      [False, False, False, False, False, False, False, False, False],
      [False, False, False, False, False, False, False, False, False],
      ])
  assert numpy.array_equal(mask, expected)

  polygon = [(3, 2), (5, 7), (8, 7), (7, 3)] #trapezoid, (y, x) format
  mask = utils.poly_to_mask(area, polygon)
  nose.tools.eq_(mask.dtype, numpy.bool)

  # This should be the output:
  expected = numpy.array([
      [False, False, False, False, False, False, False, False, False],
      [False, False, False, False, False, False, False, False, False],
      [False, False, False, False, False, False, False, False, False],
      [False, False, True,  False, False, False, False, False, False],
      [False, False, True,  True,  True,  False, False, False, False],
      [False, False, False, True,  True,  True,  True,  True,  False],
      [False, False, False, True,  True,  True,  True,  True,  False],
      [False, False, False, True,  True,  True,  True,  True,  False],
      [False, False, False, False, False, False, False, True,  False],
      [False, False, False, False, False, False, False, False, False],
      ])
  assert numpy.array_equal(mask, expected)


def test_mask_to_image():

  # Tests we can correctly convert a boolean array into an image
  # that makes sense according to the data types
  from ..preprocessor import utils

  sample = numpy.array([False, True])
  nose.tools.eq_(sample.dtype, numpy.bool)

  def _check_uint(n):
    conv = utils.mask_to_image(sample, 'uint%d' % n)
    nose.tools.eq_(conv.dtype, getattr(numpy, 'uint%d' % n))
    target = [0, (2**n)-1]
    assert numpy.array_equal(conv, target), '%r != %r' % (conv, target)

  _check_uint(8)
  _check_uint(16)
  _check_uint(32)
  _check_uint(64)

  def _check_float(n):
    conv = utils.mask_to_image(sample, 'float%d' % n)
    nose.tools.eq_(conv.dtype, getattr(numpy, 'float%d' % n))
    assert numpy.array_equal(conv, [0, 1.0]), '%r != %r' % (conv, target)

  _check_float(32)
  _check_float(64)
  _check_float(128)


  # This should be unsupported
  try:
    conv = utils.mask_to_image(sample, 'int16')
  except TypeError as e:
    assert 'int16' in str(e)
  else:
    raise AssertionError('Conversion to int16 did not trigger a TypeError')