diff --git a/bob/bio/gmm/algorithm/IVector_BioHash.py b/bob/bio/gmm/algorithm/IVector_BioHash.py index 008c0790a8daa20ee7a42a074ec03fbfa2f9b736..72fb47ed5af4e253457ddb859a38905a6c269905 100644 --- a/bob/bio/gmm/algorithm/IVector_BioHash.py +++ b/bob/bio/gmm/algorithm/IVector_BioHash.py @@ -8,17 +8,6 @@ import numpy import bob.bio.base import scipy -def load_algorithm(algorithm): - if algorithm is None: - raise ValueError("Please provide the name of a valid algorithm.") - elif isinstance(algorithm, str): - algorithm = bob.bio.base.load_resource(algorithm, 'algorithm') - elif isinstance(algorithm, Algorithm): - algorithm = algorithm - else: - raise ValueError("The provided algorithm type is not understood.") - - return algorithm class IVector_BioHash (IVector): @@ -29,18 +18,18 @@ class IVector_BioHash (IVector): IVector.__init__( self, requires_seed = True, - subspace_dimension_of_t = subspace_dimension_of_t, # dim of ivector - try setting to 400 + subspace_dimension_of_t = subspace_dimension_of_t, # dimension of ivector update_sigma = True, tv_training_iterations = 25, # Number of EM iterations for the TV training number_of_gaussians = 256, training_threshold = 0.0, - use_lda = use_lda, # F - use_wccn = use_wccn, # F - use_plda = use_plda, # F + use_lda = use_lda, + use_wccn = use_wccn, + use_plda = use_plda, lda_dim = 50, - plda_dim_F = 10, # remove + plda_dim_F = 10, plda_dim_G = 50, - plda_training_iterations = 200, # remove + plda_training_iterations = 200, **kwargs) # Initializing attributes of child class, IVector_BioHash self.length = length