From 2f94648c49415dc3b9ed610a77545ed9f4f99f26 Mon Sep 17 00:00:00 2001 From: Manuel Guenther <manuel.guenther@idiap.ch> Date: Mon, 11 May 2015 17:45:02 +0200 Subject: [PATCH] Added IVector algorithm --- bob/bio/gmm/algorithm/GMM.py | 3 +- bob/bio/gmm/algorithm/IVector.py | 210 +++++++++++++++++++ bob/bio/gmm/algorithm/__init__.py | 1 + bob/bio/gmm/config/algorithm/isv.py | 1 - bob/bio/gmm/config/algorithm/ivector.py | 10 + bob/bio/gmm/test/data/ivector_model.hdf5 | Bin 0 -> 2160 bytes bob/bio/gmm/test/data/ivector_projected.hdf5 | Bin 0 -> 2160 bytes bob/bio/gmm/test/data/ivector_projector.hdf5 | Bin 0 -> 19464 bytes bob/bio/gmm/test/test_algorithms.py | 133 +++++------- setup.py | 1 + 10 files changed, 282 insertions(+), 77 deletions(-) create mode 100644 bob/bio/gmm/algorithm/IVector.py create mode 100644 bob/bio/gmm/config/algorithm/ivector.py create mode 100644 bob/bio/gmm/test/data/ivector_model.hdf5 create mode 100644 bob/bio/gmm/test/data/ivector_projected.hdf5 create mode 100644 bob/bio/gmm/test/data/ivector_projector.hdf5 diff --git a/bob/bio/gmm/algorithm/GMM.py b/bob/bio/gmm/algorithm/GMM.py index d412abb..1f664ba 100644 --- a/bob/bio/gmm/algorithm/GMM.py +++ b/bob/bio/gmm/algorithm/GMM.py @@ -132,7 +132,8 @@ class GMM (Algorithm): """Save projector to file""" # Saves the UBM to file logger.debug(" .... Saving model to file '%s'", projector_file) - self.ubm.save(bob.io.base.HDF5File(projector_file, "w")) + hdf5 = projector_file if isinstance(projector_file, bob.io.base.HDF5File) else bob.io.base.HDF5File(projector_file, 'w') + self.ubm.save(hdf5) def train_projector(self, train_features, projector_file): diff --git a/bob/bio/gmm/algorithm/IVector.py b/bob/bio/gmm/algorithm/IVector.py new file mode 100644 index 0000000..90a36fb --- /dev/null +++ b/bob/bio/gmm/algorithm/IVector.py @@ -0,0 +1,210 @@ +#!/usr/bin/env python +# vim: set fileencoding=utf-8 : +# Laurent El Shafey <Laurent.El-Shafey@idiap.ch> + +import bob.core +import bob.io.base +import bob.learn.linear +import bob.learn.em + +import numpy + +from .GMM import GMM +from bob.bio.base.algorithm import Algorithm + +import logging +logger = logging.getLogger("bob.bio.gmm") + +class IVector (GMM): + """Tool for extracting I-Vectors""" + + def __init__( + self, + # IVector training + subspace_dimension_of_t, # T subspace dimension + tv_training_iterations = 25, # Number of EM iterations for the JFA training + update_sigma = True, + # parameters of the GMM + **kwargs + ): + """Initializes the local GMM tool with the given file selector object""" + # call base class constructor with its set of parameters + GMM.__init__(self, **kwargs) + + # call tool constructor to overwrite what was set before + Algorithm.__init__( + self, + performs_projection = True, + use_projected_features_for_enrollment = True, + requires_enroller_training = False, # not needed anymore because it's done while training the projector + split_training_features_by_client = False, + + subspace_dimension_of_t = subspace_dimension_of_t, + tv_training_iterations = tv_training_iterations, + update_sigma = update_sigma, + + multiple_model_scoring = None, + multiple_probe_scoring = None, + **kwargs + ) + + self.update_sigma = update_sigma + self.subspace_dimension_of_t = subspace_dimension_of_t + self.tv_training_iterations = tv_training_iterations + self.ivector_trainer = bob.learn.em.IVectorTrainer(update_sigma=update_sigma) + self.whitening_trainer = bob.learn.linear.WhiteningTrainer() + + + def _check_projected(self, feature): + """Checks that the features are appropriate""" + if not isinstance(feature, numpy.ndarray) or len(feature.shape) != 1 or feature.dtype != numpy.float64: + raise ValueError("The given feature is not appropriate") + if self.whitener is not None and feature.shape[0] != self.whitener.shape[1]: + raise ValueError("The given feature is expected to have %d elements, but it has %d" % (self.whitener.shape[1], feature.shape[0])) + + + def train_ivector(self, training_stats): + logger.info(" -> Training IVector enroller") + self.tv = bob.learn.em.IVectorMachine(self.ubm, self.subspace_dimension_of_t) + self.tv.variance_threshold = self.variance_threshold + + # train IVector model + bob.learn.em.train(self.ivector_trainer, self.tv, training_stats, self.tv_training_iterations, rng=self.rng) + + def train_whitening(self, training_features): + ivectors_matrix = numpy.vstack(training_features) + # create a Linear Machine + self.whitener = bob.learn.linear.Machine(ivectors_matrix.shape[1],ivectors_matrix.shape[1]) + # create the whitening trainer + self.whitening_trainer.train(ivectors_matrix, self.whitener) + + def train_projector(self, train_features, projector_file): + """Train Projector and Enroller at the same time""" + [self._check_feature(feature) for feature in train_features] + + # train UBM + data = numpy.vstack(train_features) + self.train_ubm(data) + del data + + # train IVector + logger.info(" -> Projecting training data") + training_stats = [self.project_ubm(feature) for feature in train_features] + # train IVector + self.train_ivector(training_stats) + + # project training i-vectors + whitening_train_data = [self.project_ivec(stats) for stats in training_stats] + self.train_whitening(whitening_train_data) + + # save + self.save_projector(projector_file) + + def save_projector(self, projector_file): + # Save the IVector base AND the UBM AND the whitening into the same file + hdf5file = bob.io.base.HDF5File(projector_file, "w") + hdf5file.create_group('Projector') + hdf5file.cd('Projector') + self.save_ubm(hdf5file) + + hdf5file.cd('/') + hdf5file.create_group('Enroller') + hdf5file.cd('Enroller') + self.tv.save(hdf5file) + + hdf5file.cd('/') + hdf5file.create_group('Whitener') + hdf5file.cd('Whitener') + self.whitener.save(hdf5file) + + + def load_tv(self, tv_file): + hdf5file = bob.io.base.HDF5File(tv_file) + self.tv = bob.learn.em.IVectorMachine(hdf5file) + # add UBM model from base class + self.tv.ubm = self.ubm + + def load_whitening(self, whitening_file): + hdf5file = bob.io.base.HDF5File(whitening_file) + self.whitener = bob.learn.linear.Machine(hdf5file) + + + def load_projector(self, projector_file): + """Load the GMM and the ISV model from the same HDF5 file""" + hdf5file = bob.io.base.HDF5File(projector_file) + + # Load Projector + hdf5file.cd('/Projector') + self.load_ubm(hdf5file) + + # Load Enroller + hdf5file.cd('/Enroller') + self.load_tv(hdf5file) + + # Load Whitening + hdf5file.cd('/Whitener') + self.load_whitening(hdf5file) + + + def project_ivec(self, gmm_stats): + return self.tv.project(gmm_stats) + + def project_whitening(self, ivector): + whitened = self.whitener.forward(ivector) + return whitened / numpy.linalg.norm(whitened) + + ####################################################### + ############## IVector projection ##################### + def project(self, feature_array): + """Computes GMM statistics against a UBM, then corresponding Ux vector""" + self._check_feature(feature_array) + # project UBM + projected_ubm = self.project_ubm(feature_array) + # project I-Vector + ivector = self.project_ivec(projected_ubm) + # whiten I-Vector + return self.project_whitening(ivector) + + ####################################################### + ################## ISV model enroll #################### + def write_feature(self, data, feature_file): + """Saves the feature, which is the (whitened) I-Vector.""" + bob.bio.base.save(data, feature_file) + + def read_feature(self, feature_file): + """Read the type of features that we require, namely i-vectors (stored as simple numpy arrays)""" + return bob.bio.base.load(feature_file) + + + + ####################################################### + ################## Model Enrollment ################### + def enroll(self, enroll_features): + """Performs IVector enrollment""" + [self._check_projected(feature) for feature in enroll_features] + model = numpy.mean(numpy.vstack(enroll_features), axis=0) + return model + + + ###################################################### + ################ Feature comparison ################## + def read_model(self, model_file): + """Reads the whitened i-vector that holds the model""" + return bob.bio.base.load(model_file) + + def read_probe(self, probe_file): + """read probe file which is an i-vector""" + return bob.bio.base.load(probe_file) + + def score(self, model, probe): + """Computes the score for the given model and the given probe.""" + self._check_projected(model) + self._check_projected(probe) + return numpy.dot(model/numpy.linalg.norm(model), probe/numpy.linalg.norm(probe)) + + + def score_for_multiple_probes(self, model, probes): + """This function computes the score between the given model and several given probe files.""" + [self._check_projected(probe) for probe in probes] + probe = numpy.mean(numpy.vstack(probes), axis=0) + return self.score(model, probe) diff --git a/bob/bio/gmm/algorithm/__init__.py b/bob/bio/gmm/algorithm/__init__.py index dff2ced..e302963 100644 --- a/bob/bio/gmm/algorithm/__init__.py +++ b/bob/bio/gmm/algorithm/__init__.py @@ -1,3 +1,4 @@ from .GMM import GMM, GMMRegular from .JFA import JFA from .ISV import ISV +from .IVector import IVector diff --git a/bob/bio/gmm/config/algorithm/isv.py b/bob/bio/gmm/config/algorithm/isv.py index 24a8be4..3ae069d 100644 --- a/bob/bio/gmm/config/algorithm/isv.py +++ b/bob/bio/gmm/config/algorithm/isv.py @@ -1,7 +1,6 @@ #!/usr/bin/env python import bob.bio.gmm -import numpy algorithm = bob.bio.gmm.algorithm.ISV( # ISV parameters diff --git a/bob/bio/gmm/config/algorithm/ivector.py b/bob/bio/gmm/config/algorithm/ivector.py new file mode 100644 index 0000000..ec07b80 --- /dev/null +++ b/bob/bio/gmm/config/algorithm/ivector.py @@ -0,0 +1,10 @@ +import bob.bio.gmm + +algorithm = bob.bio.gmm.algorithm.IVector( + # IVector parameters + subspace_dimension_of_t = 400, + update_sigma = True, + tv_training_iterations = 3, # Number of EM iterations for the TV training + # GMM parameters + number_of_gaussians = 512, +) diff --git a/bob/bio/gmm/test/data/ivector_model.hdf5 b/bob/bio/gmm/test/data/ivector_model.hdf5 new file mode 100644 index 0000000000000000000000000000000000000000..1c2349f4f18926d1be88f569c215ed8665d480ef GIT binary patch literal 2160 zcmeD5aB<`1lHy_j0S*oZ76t(j3y%LoK>-Iu2+I8r;W02IKpBisx&unDV1h6h89<PM zK?1^M5QLhKt}Z0V)s=yPkpX5tjD~7sFkpeOpw57BM#&Kq0v@i80U*ytfCvT#Xewf0 zH~~#(P+^9|qN2n~22e_Zh<HFKvPnh;HU@Co1`{B2At{-W5h4Jy9!4`WNPyJ~D%dkX z(y9Z42{(hue`bgiSQ$9L@=Q!jU;{Xy>X{i6Aj;uBgQypRngUWRd^#YMfuRB-F+gOn upT7$zM?)RUpaAvP06AyW+R+dg4S_)%0`>e%ik@PR?5{cm>Q?-Dz8?TbqBybu literal 0 HcmV?d00001 diff --git a/bob/bio/gmm/test/data/ivector_projected.hdf5 b/bob/bio/gmm/test/data/ivector_projected.hdf5 new file mode 100644 index 0000000000000000000000000000000000000000..013da29abc64fdda1a5b85eb737886147b0f18ed GIT binary patch literal 2160 zcmeD5aB<`1lHy_j0S*oZ76t(j3y%LoK>-Iu2+I8r;W02IKpBisx&unDV1h6h89<PM zK?1^M5QLhKt}Z0V)s=yPkpX5tjD~7sFkpeOpw57BM#&Kq0v@i80U*ytfCvT#Xewf0 zH~~#(P+^9|qN2n~22e_Zh<HFKvPnh;HU@Co1`{B2At{-W5h4Jy9!4`WNPyJ~D%dkX z(y9Z42{(hue`bgiSQ$9L@=Q!jU;{Xy>X{i6Aj;uBgQypRngUWRd^#YMfuRB-F+gOn upT7$zM?)RUpaAvP06AyW+R+dg4S_)%0uQwuD|n{8+<%BUtn8in<NW|#XF56n literal 0 HcmV?d00001 diff --git a/bob/bio/gmm/test/data/ivector_projector.hdf5 b/bob/bio/gmm/test/data/ivector_projector.hdf5 new file mode 100644 index 0000000000000000000000000000000000000000..726988762bbdfdb51d6f62493a41e3be3c4fa3dd GIT binary patch literal 19464 zcmeD5aB<`1lHy_j0S*oZ76t(j3y%Lo0f!Gn2+I8r;W02IKpBisx&unDV1h6h89<PM zK?1^M5QLhKt}Z0V)s=yPkpX5tjD~7sc)$u_X+Wq^a)gC|hpS@%$jcERf`Ng-0!p8N zrZXs)A)qKfD>b<!zX&Senpc#clamVLGK6PjmZat(_^@=V09B7pfl@C>4SM?ZV1}s7 zfTl}A>DPh-qTT~SjgliQ1klqjC{2NapaYtIKx`1sjn9iuPb@7i&P>cJW?*0d@iX%Z zN=rZ-Fdr^!08tO;8$$TyshQ~+Fy#!ve*P|u49xKIS3wk{3RKcU=nj1dy#lP8fdQIK z85E%D8|F^*^bRYBZ^%LP!_>{NgYb7aK<ME@GBU6+fc*$2K;Z`|5f~XE0uT};4)HNF zg8*2)00%5gApye5zyTI#VqyYo;b4#e^O+eNI3YS=F#zESL1P4@Som~6C<8+SL}GwR zNV;NWfTe>8LJ$Xm+zDdsfbwsMfOv@V`UjK`Q#V5fBEJKgj$ppmV26m~A|avAz|bIw zO9ez6R^C?VLHL7>gjHX<P>0>$re-c?xX@lBy;X&2{X_dD?kAJ?WZ&E0YEw~N<+X4B zv)H{c_bra@H|O}P%9nC>f7IQ1A5ZAq*#FeaDRZslWqYk_M*lA#o47xl-S8D-_MQFZ za_g^WzFM>2TbfO?R_Ubutrfm2m$RJP-x&E)#**o*eZsrN{H(jS*!M~uI(0$#jlK7@ zvwYQeciT6G39Q|Dc=G-}eU`wWo7e0&rX<&K_CMPHHA~biFzNArvG)3XCe`=sOG6Tu zE83jcuf;p3#V_NA{nLY$t2IPU*gKyrGe0o@f&H?1nl_fI$L!DFIs0yv$Rqo`_u_x? zik`Bsp1eg}`|WD`lhJl7rpaBf&*gn)#u$6XeoDaKi^p!<*negF3Cl{3S@wQ+Dw@`n zAKx$dpeL?+?X~^ub_qClJUDCbvQ%Zo!=SGHZFhKn>rXzlKS+6|^^uk5>_w8cs+Bcw z+uwe(*8BSU1@=phY}@>~^TGbv%-!s7QxEKSny*nN!**-`Tq}PI!#xTPs&n@znoLl1 zP@H>8M@C1{VNr0>jit8~97^_C+N_LLbkO12x6V0U!Qtqy_c_O1<s5DXT}%3OQqkeR zfP)#sbOi^Sl!}6@;R+5y3z-a556L=Qh_(_~tE=F!eCLiwlV-~~1UW^>msBe_yqME4 z-$z}+p*`H_qiTw*gUgpW#T`o(9BxK@T;=~=!C`jT)Ajre@(wb`p7vVbk##UT*^$M- zspzo(Wz>vIISLLR%Qk)UwN`Ra>M481T_x|p`rF9+qldf$w^;kK8#fglc-}^8C;m}% z$haJ`M!-qlVP?jnh?#!!4qJ{L%u}mXbl{NsGvnKCMTd_~$A7L(RCJKK;pL(GSHYpY zL0{*bgrY+k>%|3{-xVAVm42D|^@yUw##y@i=B-n7kPK)2tbRh#;V?&IdG!TZ2akL2 zOP!e&94rjuUE~=Q99HlP{)}Q)a5(j83e)FD3J!_W*i8TDC^!TMh@Y@xS9JKZ^5Z4n zBnSIZnzrFk;%R$gqh*={tQ^@>x+QN{(i!_&frIyxAHUci-noC;ZqEz$r{?f-#>~BC zFT}IpTTbYD`@_HHDFrXvy5IEri=~^J6ZU(`E(!OXcV)k*)*j3E*^Bm<^-On9&ADU$ z-RQmMS>?0)(^Mo+PdR>a|DD{tkGub@vJZW^<?YRLNB3(!6=Pp#etm!5?{v4Nd9U{W zo>^`-L*?}Tb9UF*=Xk8#A3o{*l^4tB+Y4+=t((mE$UZXh>}h_%2li<v8k6sL-`JnD z{Y2?5*Q@r|m$jR)*5BQKHX<Nuo&Jga*|YgmjE(N>pY396X)@#7emM!*Aocb|`(HS0 zC=XnJ!G3Mz+6@}>&+MPks9x&Jamv1b%MR1H_UrrO=9%?qJbY}wZG!*K*TPrrZB%>I zXFfk>?{H}G+ZnAV?I$i3n|>tf^8TG!y^IAC=k1@L)sTE}=!X5jzT++H9IEzj+xa+E zf7u25JAVt_I$k+$-@Wbh|K1Dh?H|s%os`{l$bNOqt*%pL=j``srv6v`Ea$-B@?&W) zhk}FcizCmM{gHPNIFPnji%G$uAm()A-3<y3mF2%2ZF3YIdREI7M7zp6v|RO%2wbM< zurpj?hlrHC!(|pO*`4d;92~v0Iye*L9lBl?emOQ#$)RJJ=qJzZ@(vNwl1%sJ$~ru% zDcqUoE$^_(MN3Lyznp{HwojW1{1hCHXkX&J8=&Z*dXX=IVWFbK&X}ulwjQz$i>hAy zjQl6>V5_}3y!EEMgV7;@ysz2{4x2e|FDcEHcSzjv+kR2Eg2S4p7K?Ra6&;vNe&-y# zE$?uEz2%Olw!A~mDM6K8kCYsu)FgVkvXmUIe=In2VWFY}_dEN4&b0~-B8!$jI(AIn z!G62Y%Jl{c4zb44oHI2P92PZBe;&oA;Bek!?r+&`@(#D%&iSV0C^|$tEc;|LN!o$4 zr}Xl%NO^}m{-<gug%uofZmri}Z>Qw&yt{&{^p}D|Y<4?S_*+GX!vDe&RuT#hQHQr0 z9#li5@2~8FdN0N9+q2Ys&*(0B054w_c=W81xR_^uz~T3Dz4;0DkZSb<oDRRxwc=i| z5~MN4z`$_xv6goB^mqGzu0ALK?7ae99HNhbAt^seFDEszC{Hgjxg@hJu_QA;PtOs- z^h`<3E6FUWgsCT$rhU7zV@S0tarL*++mnR)+X-Tjn84MqhschS!!-n8{p}4<4}u4e z7#J8{NJ9j0r8D&Y2rhN#{bq=%p#C5Jej==XhS8v&IU@rDgP?*vw5R95V8YE{@*mp& z#@%0>0L|AKAnh>g88G{c6>zzMV8Hr`@bNlH{H}oY{{o=n6u4Bw3hEnDxKu#IVWZhA z#36iKB&?j+0qa=eQaC{3gz5=cdV<m9r>h@a5HAkybVa}LNZ=U`;Q=coU^MyZ;{-1x zJYYE$!W(Sm4x#h`3kMiY`gq+1BEw;DjMqV82{fLZo0^yhqRSGCG86NXQz0_B@i2aT zNk&m>aYlYl3TVhVJw7kLC>NwYFCKXu8WwJ_`9Fv$)FTPC?;M~7Hk6{C#iJ$-i4efm zzB>V}06}vepfn1r&IO?J&IXPU@4?b7uJ)aTJ4Bs@CxnKPgvu4D^$akY{BrgNw0s%d z^)Pz-ZiO~1q_ESlTEjpdyF5%3*1p@J0~5hc!`gQpirD30qOfveh7wF<aMAQjR}TCT zpAYVIMZfS^p*$4AV|4tSw&Ulp@O|CH_a;c}ul?cI&X267$L_xvklD6p*OmR#zL++> zY+!Vl-pbPdjCHL&(~)_R=O(VR|IyFgQX0N*f78Zm`kIZm_P@`4buO#&!+sX&^o$?x zKkWCqZ+|&_@hAJ@#p`8fRb1cSayaW^;O-yxHRjv3H?L+p(0@hG>~O|Y`}SyNzSa^Z zhxTimQv(#f?ytFhxtGO_!Qo)e?|V%a`|TMm=RACJmf--?t2g!)r!UxliI+L@y@}aD z-}Ona)s?^Yru#D*59~W<|NhvXb#-~a_A97<I=*1jM|;f|%^RlQV0PHAd49sT155Wa zPwsDy@I11A=VJ4_-}u=bDuX8dysmb~zR+~(&G&~d?~gN*_dU4ls{OB*l@*0&9@}>< z<k5F1_`QGUE)kn6$!rdh-_~~CuK2Z|aeXag1j}9fM{z1%byk=5pKiT=@KEZ~{WrMJ zrbKA`+Arr<<+rbe!GUS7*QEcK@9t-HiQ`>kaMk|Ge)idK4&1PpE-|<@?aEjCk2}lC zLl?6guyau=))wS&&^@zAl&|}PeQnk<+3*FY_B%@{=!Vt*-G8a7<^Ex%!}k4COl%7| zZ|^T*V(-vZf4-k*SI{}9nP2T6s!Wkt&--%!wy>uk`Y!S~tUmeV(TT*@`z78O{=IYi z*Zz!`tF%jse%p&Z|MBhTi{19liJVUw?tR){ujIhU7WHO-$0z+)h0DI!FTGONu}R{> z{@MQ*MDt&MzW>(yDQagq84ffA&6qE7V6y$^wPD^yM}F-OUw(P1T-0y-^F<6d`?bH@ z^IU!Y<?|%w0|l4)Ef$vZI!x<Y`|0S1WA=NmZQEFV;IsXg<dlUW2|w-QnBRx4<o#mb znzQJ&=8ntun{G~+Bs-1E!P1K9m=?<cdnJn%i7NKL_j9eC_l--Q(P2^R*V?G-2kjqb zwr8I&Vm)wGB7W|*=hyZ#lsG!xZF_3JE!FW8AI}E+<O3VEr@B3{7nd~d2$|08pqu^W zxW{8AhvSn1^YjmXwr|$sQ%Sw^*1q^+ZKg59hyB7YJUW|~KC?I8m?LHP@xA>7!#bza z?oanW_50Q%EBVa+gX&^g>rbETm+3$4I-K}y|HaHemaNB&2ZVQ?V9F7DX20)X&idr5 zU+w3y8l(o;-nZxeUSjx5kNLo}e&w!n-iP*=ee`FXJN1+Og4oPSJU1B~j&dEJquO$H z{}YS6nT~nC>?i1RA5Px*eE;P2bM*rHzU@CysU-IG;0OC~f0wYp1>fvH#=j8_|Nnab z)CoTxZ4WuI{|nEg>^prA?f3U`Fy!vMV;|<ts{7#Gd;5vWJ<_cg*d6rN#Z9?p_|;xd zY`M<|t5f@v7bc_?EW5P7Fs<vV@`)?<cJB`Il>OhfUx{n-lp>?2_B)nbcp&xnyS<f} z1M9NWj0f5)?nvE~erR9CZ?fpS&NTapUY<w4PWfkle9oLD_3l^qKMY@gce)Li!<3MP zJpmE__v`Ea>i%u>aQ~+N<>vzy|KEQl-9|v%h|wYX&|86BOpo?!YQz@zefVjwymLZp z&&j|0KTMRa*E!C5fY%`HA8#$=f$js5w=A>Y?4PuIN1J&4$Nit)1~r6KF&@}z{%Gk- zQN{yvH?QB<;&Oez=ILD5UB7<XM_u%uv~kLZ{hFLNr9$Suv#-yKR(9XW=pesQKq5+I z>;8A8>hAgCKkOe_x0s!n{(b+11Ao)|1D@JneEn8->Ne&Bdt8psJ$>qx{h9@?6Z?aH z?60tYu`c5Vy94*v`@7#Wzt}%_%T~=R^`G{KlyLeBF8pUdAtlJ6KYg0L_QM@EkJ6so zYi~cm-2Iltp(3~Pb(jXT!<Gj+Dl)tO*>AbGX}#+8TlPKEe|{HO^KgGb@#Y$d!n^k7 z^5N@t)c>=OZk4;)xBK`0dCv>#IM!d<|MkL&IZ|OS?N{~ZUkKd#&Hj?mr`*i5zwFOc zeksst{%*h6%9-o>CkBUP3D4hic|Pv<ygg^a-H8ADQ<wh|VU_y}oyURH*dvJ~)E;7l z1_q2Kzu&O}+N9=ynh2pr-uTW2BEw;Hd<T+3NFxcQXV|(Z7)^e9-T{qAC<S%qU`x-0 z#=8uRAr6O)XFzzP<VXnt*mxIg{X2N^F9QR^3Fx|ASUBXyhk%*6@x__xxrq$e#&tmo zVD$uS{U%5Z8^+A15FLz65EG)Hnqc`9olkzg6;Op3y#Qr}G-kfdfGDFA2^sHVhR)S8 zFen(|w-{FHRG8pb2g}zTw)oWz7g@}71qlJzdTLlYg3;usqYhI@m|cJ+Q7{)X9S!U} z`8Ag)wqGp@4t6fbdER9xI(%hw6Iaw%bg-H7VQ$W41qZoO#%rqniVhoCvMt^>DmX0L z@Nd1xVmXJm8l~du2NfN>=Kr7abf<!Y?wuEkHF63Lp$n|Ho>(R8Fylba&GYsO4zu)6 zPV`HVbEvh_;&x6@aCnn&{Ii9yf`jPQ;9c5FWgXTvHi)IHQE+gRbQV7IP{HBB6qUsm zKJpGsU*x*`UdlSKKJCA(@KM3ROjFC%sae5cPEYm0$C*kFC-WXy^sbY4F#heN8yG0> zz#{eVc&L?<!zw?$-R4qC4u9>B<jk;;cktQ1%I+?oyu*|o0VZ$46&)D%{Q4QNQqdvf ztcqxGm7>G{bAFEeyowH;+P8Ndmr!&#_S`x<>6n6p@#ZU=OlK-ObaqsC#cxz}xYjCn z?&Uj02jf2rY)#L|Iw)*h_Gr^qd55GPmEL+Q1qadCCCqPb$~$bT_vyc}SiwQ>`(aM6 zC<TZAQ*HU2^c5YJ9G1U!)Ii>0_v3SB&b#Ct_=7cGb^nleXk4LPo};4RkYOwH^5Px^ zhi7}gA6V?I=<uQ1&DHv`oI~EZCB-FY6&+%^mhE-hDd%vbM9hC)m7K%JzmJc9jF5Ne zyK9$P-KXTR_2tA@5&z{KW-GX^vwa}zP&`*I#>Pb6VT=0q*Po}#Ijpli^CR0|!C|7; z%k_(b6dgA4WcH|aD>^LNkuENCM%Lk*v2gNQ2?dAv2hU22Sri<O?r#qG&!OPpa_Ub8 zXS}>a=Dkf;5(NqlO*5H~g?K7D>^QqAetEpS!=~4B6@4w_9hjUh7Ce5f<S;FJziv>A zl0%p3@5~LG6&=`jvTo^5QE<4KzbC{YT*0BnaE)Cli-N;;*1f9LfeH?{w@Ur^V4&bI z|8-Ep(wXuOHcg!Cyv!6Gj8C<lSu$JNVV~D=lcibm4&vU&n3PV*J6z3N8fN0D<PaI~ z^#&)8q65G3p)UKMiVi}RnkIVJ<YB}2;Jh|UjE2By2#kinXb9jA0YdE|NNXFkz7S#t z`R$<-&?f2N9^WC<A70=D2?t1T1i~IAM@|T!_lIHo{BEGNJiu#~;)_d@pg{xSr(~8v z`LNxxNtubosl^Noh*ka&1+aVv%{1`y3()tu@-RRwW@O-C;9-zpC`&CW&dkqa0PX)| z0UHHbfdK2@z|6&@@vk3-bz)#N`Q^X`sF$D=*o_Q>e*G{5blnIn+|bwQz{W*5+@K!9 zK|y+(3=A)vaVUTa!%E2sj!*#{6s#Qj;etcK01FeUUtsA8Mw6ee9zYWml!E$uu=Tew z!vhk7uyHL|IN+km51$XvfPs_;(BQ$6@8~<Og&7`@90Dt^(8Gaz{|i8OY(s+q8UTYW zeGqDY9PolT99BL+c%$S<2?6x>2P`#5psg3pOo4<5tiFP^Qy`+GlZ5gq%pMpG8mR`c yg&7#YXEos7Pox0NmymK0<}%ED2|Kw7rea`e$ap-c)dg|K2DI>ph>ntkLI41f<xLC# literal 0 HcmV?d00001 diff --git a/bob/bio/gmm/test/test_algorithms.py b/bob/bio/gmm/test/test_algorithms.py index b358496..ae933d7 100644 --- a/bob/bio/gmm/test/test_algorithms.py +++ b/bob/bio/gmm/test/test_algorithms.py @@ -326,80 +326,63 @@ def test_jfa(): # assert abs(jfa1.score_for_multiple_probes(model, [probe, probe]) - reference_score) < 1e-5, jfa1.score_for_multiple_probes(model, [probe, probe]) -""" - def test10_ivector(self): - # NOTE: This test will fail when it is run solely. Please always run all Tool tests in order to assure that they work. - # read input - feature = facereclib.utils.load(self.input_dir('dct_blocks.hdf5')) - # assure that the config file is readable - tool = self.config('ivector') - self.assertTrue(isinstance(tool, facereclib.tools.IVector)) - - # here, we use a reduced complexity for test purposes - tool = facereclib.tools.IVector( - number_of_gaussians = 2, - subspace_dimension_of_t=2, # T subspace dimension - update_sigma = False, # TODO Do another test with True - tv_training_iterations = 1, # Number of EM iterations for the JFA training - variance_threshold = 1e-5, - INIT_SEED = seed_value - ) - self.assertTrue(tool.performs_projection) - self.assertTrue(tool.requires_projector_training) - self.assertTrue(tool.use_projected_features_for_enrollment) - self.assertFalse(tool.split_training_features_by_client) - self.assertFalse(tool.requires_enroller_training) +def test_ivector(): + temp_file = bob.io.base.test_utils.temporary_filename() + ivec1 = bob.bio.base.load_resource("ivector", "algorithm") + assert isinstance(ivec1, bob.bio.gmm.algorithm.IVector) + assert isinstance(ivec1, bob.bio.gmm.algorithm.GMM) + assert isinstance(ivec1, bob.bio.base.algorithm.Algorithm) + assert ivec1.performs_projection + assert ivec1.requires_projector_training + assert ivec1.use_projected_features_for_enrollment + assert not ivec1.split_training_features_by_client + assert not ivec1.requires_enroller_training + + # create smaller IVector object + ivec2 = bob.bio.gmm.algorithm.IVector( + number_of_gaussians = 2, + subspace_dimension_of_t = 2, + kmeans_training_iterations = 1, + tv_training_iterations = 1, + INIT_SEED = seed_value + ) + + train_data = utils.random_training_set((100,45), count=5, minimum=-5., maximum=5.) + # reference is the same as for GMM projection + reference_file = pkg_resources.resource_filename('bob.bio.gmm.test', 'data/ivector_projector.hdf5') + try: # train the projector - t = tempfile.mkstemp('ubm.hdf5', prefix='frltest_')[1] - tool.train_projector(facereclib.utils.tests.random_training_set(feature.shape, count=5, minimum=-5., maximum=5.), t) - if regenerate_refs: - import shutil - shutil.copy2(t, self.reference_dir('ivector_projector.hdf5')) - - # load the projector file - tool.load_projector(self.reference_dir('ivector_projector.hdf5')) - - # compare ISV projector with reference - hdf5file = bob.io.base.HDF5File(t) - hdf5file.cd('Projector') - projector_reference = bob.learn.em.GMMMachine(hdf5file) - self.assertTrue(tool.m_ubm.is_similar_to(projector_reference)) - - # compare ISV enroller with reference - hdf5file.cd('/') - hdf5file.cd('Enroller') - enroller_reference = bob.learn.em.IVectorMachine(hdf5file) - enroller_reference.ubm = projector_reference - if not _mac_os: - self.assertTrue(tool.m_tv.is_similar_to(enroller_reference)) - os.remove(t) - - # project the feature - projected = tool.project(feature) - if regenerate_refs: - tool.save_feature(projected, self.reference_dir('ivector_feature.hdf5')) - - # compare the projected feature with the reference - projected_reference = tool.read_feature(self.reference_dir('ivector_feature.hdf5')) - self.assertTrue(numpy.allclose(projected,projected_reference)) - - # enroll model with the projected feature - # This is not yet supported - # model = tool.enroll([projected[0]]) - # if regenerate_refs: - # model.save(bob.io.HDF5File(self.reference_dir('ivector_model.hdf5'), 'w')) - #reference_model = tool.read_model(self.reference_dir('ivector_model.hdf5')) - # compare the IVector model with the reference - #self.assertTrue(model.is_similar_to(reference_model)) - - # check that the read_probe function reads the correct values - probe = tool.read_probe(self.reference_dir('ivector_feature.hdf5')) - self.assertTrue(numpy.allclose(probe,projected)) - - # score with projected feature and compare to the weird reference score ... - # This in not implemented yet - - # score with a concatenation of the probe - # This is not implemented yet -""" + ivec2.train_projector(train_data, temp_file) + + assert os.path.exists(temp_file) + + if regenerate_refs: shutil.copy(temp_file, reference_file) + + # check projection matrix + ivec1.load_projector(reference_file) + ivec2.load_projector(temp_file) + + assert ivec1.ubm.is_similar_to(ivec2.ubm) + assert ivec1.tv.is_similar_to(ivec2.tv) + assert ivec1.whitener.is_similar_to(ivec2.whitener) + finally: + if os.path.exists(temp_file): os.remove(temp_file) + + # generate and project random feature + feature = utils.random_array((20,45), -5., 5., seed=84) + projected = ivec1.project(feature) + _compare(projected, pkg_resources.resource_filename('bob.bio.gmm.test', 'data/ivector_projected.hdf5'), ivec1.write_feature, ivec1.read_feature) + + # enroll model from random features + random_features = utils.random_training_set((20,45), count=5, minimum=-5., maximum=5.) + enroll_features = [ivec1.project(feature) for feature in random_features] + model = ivec1.enroll(enroll_features) + _compare(model, pkg_resources.resource_filename('bob.bio.gmm.test', 'data/ivector_model.hdf5'), ivec1.write_model, ivec1.read_model) + + # compare model with probe + probe = ivec1.read_probe(pkg_resources.resource_filename('bob.bio.gmm.test', 'data/ivector_projected.hdf5')) + reference_score = -0.00187151 + assert abs(ivec1.score(model, probe) - reference_score) < 1e-5, "The scores differ: %3.8f, %3.8f" % (ivec1.score(model, probe), reference_score) + # TODO: implement that + assert abs(ivec1.score_for_multiple_probes(model, [probe, probe]) - reference_score) < 1e-5 diff --git a/setup.py b/setup.py index 6b18015..801609b 100644 --- a/setup.py +++ b/setup.py @@ -121,6 +121,7 @@ setup( 'gmm-regular = bob.bio.gmm.config.algorithm.gmm_regular:algorithm', 'jfa = bob.bio.gmm.config.algorithm.jfa:algorithm', 'isv = bob.bio.gmm.config.algorithm.isv:algorithm', + 'ivector = bob.bio.gmm.config.algorithm.ivector:algorithm', ], }, -- GitLab