diff --git a/bob/bio/gmm/algorithm/GMM.py b/bob/bio/gmm/algorithm/GMM.py
index d412abbcf5ff62ecc266e5224a296296462a5fab..1f664ba71a6fe5490908e160f94e6c286a63f9c5 100644
--- a/bob/bio/gmm/algorithm/GMM.py
+++ b/bob/bio/gmm/algorithm/GMM.py
@@ -132,7 +132,8 @@ class GMM (Algorithm):
     """Save projector to file"""
     # Saves the UBM to file
     logger.debug(" .... Saving model to file '%s'", projector_file)
-    self.ubm.save(bob.io.base.HDF5File(projector_file, "w"))
+    hdf5 = projector_file if isinstance(projector_file, bob.io.base.HDF5File) else bob.io.base.HDF5File(projector_file, 'w')
+    self.ubm.save(hdf5)
 
 
   def train_projector(self, train_features, projector_file):
diff --git a/bob/bio/gmm/algorithm/IVector.py b/bob/bio/gmm/algorithm/IVector.py
new file mode 100644
index 0000000000000000000000000000000000000000..90a36fb86235484bb25079265717a6f2ae8ad0fb
--- /dev/null
+++ b/bob/bio/gmm/algorithm/IVector.py
@@ -0,0 +1,210 @@
+#!/usr/bin/env python
+# vim: set fileencoding=utf-8 :
+# Laurent El Shafey <Laurent.El-Shafey@idiap.ch>
+
+import bob.core
+import bob.io.base
+import bob.learn.linear
+import bob.learn.em
+
+import numpy
+
+from .GMM import GMM
+from bob.bio.base.algorithm import Algorithm
+
+import logging
+logger = logging.getLogger("bob.bio.gmm")
+
+class IVector (GMM):
+  """Tool for extracting I-Vectors"""
+
+  def __init__(
+      self,
+      # IVector training
+      subspace_dimension_of_t,       # T subspace dimension
+      tv_training_iterations = 25,   # Number of EM iterations for the JFA training
+      update_sigma = True,
+      # parameters of the GMM
+      **kwargs
+  ):
+    """Initializes the local GMM tool with the given file selector object"""
+    # call base class constructor with its set of parameters
+    GMM.__init__(self, **kwargs)
+
+    # call tool constructor to overwrite what was set before
+    Algorithm.__init__(
+        self,
+        performs_projection = True,
+        use_projected_features_for_enrollment = True,
+        requires_enroller_training = False, # not needed anymore because it's done while training the projector
+        split_training_features_by_client = False,
+
+        subspace_dimension_of_t = subspace_dimension_of_t,
+        tv_training_iterations = tv_training_iterations,
+        update_sigma = update_sigma,
+
+        multiple_model_scoring = None,
+        multiple_probe_scoring = None,
+        **kwargs
+    )
+
+    self.update_sigma = update_sigma
+    self.subspace_dimension_of_t = subspace_dimension_of_t
+    self.tv_training_iterations = tv_training_iterations
+    self.ivector_trainer = bob.learn.em.IVectorTrainer(update_sigma=update_sigma)
+    self.whitening_trainer = bob.learn.linear.WhiteningTrainer()
+
+
+  def _check_projected(self, feature):
+    """Checks that the features are appropriate"""
+    if not isinstance(feature, numpy.ndarray) or len(feature.shape) != 1 or feature.dtype != numpy.float64:
+      raise ValueError("The given feature is not appropriate")
+    if self.whitener is not None and feature.shape[0] != self.whitener.shape[1]:
+      raise ValueError("The given feature is expected to have %d elements, but it has %d" % (self.whitener.shape[1], feature.shape[0]))
+
+
+  def train_ivector(self, training_stats):
+    logger.info("  -> Training IVector enroller")
+    self.tv = bob.learn.em.IVectorMachine(self.ubm, self.subspace_dimension_of_t)
+    self.tv.variance_threshold = self.variance_threshold
+
+    # train IVector model
+    bob.learn.em.train(self.ivector_trainer, self.tv, training_stats, self.tv_training_iterations, rng=self.rng)
+
+  def train_whitening(self, training_features):
+    ivectors_matrix = numpy.vstack(training_features)
+    # create a Linear Machine
+    self.whitener = bob.learn.linear.Machine(ivectors_matrix.shape[1],ivectors_matrix.shape[1])
+    # create the whitening trainer
+    self.whitening_trainer.train(ivectors_matrix, self.whitener)
+
+  def train_projector(self, train_features, projector_file):
+    """Train Projector and Enroller at the same time"""
+    [self._check_feature(feature) for feature in train_features]
+
+    # train UBM
+    data = numpy.vstack(train_features)
+    self.train_ubm(data)
+    del data
+
+    # train IVector
+    logger.info("  -> Projecting training data")
+    training_stats = [self.project_ubm(feature) for feature in train_features]
+    # train IVector
+    self.train_ivector(training_stats)
+
+    # project training i-vectors
+    whitening_train_data = [self.project_ivec(stats) for stats in training_stats]
+    self.train_whitening(whitening_train_data)
+
+    # save
+    self.save_projector(projector_file)
+
+  def save_projector(self, projector_file):
+    # Save the IVector base AND the UBM AND the whitening into the same file
+    hdf5file = bob.io.base.HDF5File(projector_file, "w")
+    hdf5file.create_group('Projector')
+    hdf5file.cd('Projector')
+    self.save_ubm(hdf5file)
+
+    hdf5file.cd('/')
+    hdf5file.create_group('Enroller')
+    hdf5file.cd('Enroller')
+    self.tv.save(hdf5file)
+
+    hdf5file.cd('/')
+    hdf5file.create_group('Whitener')
+    hdf5file.cd('Whitener')
+    self.whitener.save(hdf5file)
+
+
+  def load_tv(self, tv_file):
+    hdf5file = bob.io.base.HDF5File(tv_file)
+    self.tv = bob.learn.em.IVectorMachine(hdf5file)
+    # add UBM model from base class
+    self.tv.ubm = self.ubm
+
+  def load_whitening(self, whitening_file):
+    hdf5file = bob.io.base.HDF5File(whitening_file)
+    self.whitener = bob.learn.linear.Machine(hdf5file)
+
+
+  def load_projector(self, projector_file):
+    """Load the GMM and the ISV model from the same HDF5 file"""
+    hdf5file = bob.io.base.HDF5File(projector_file)
+
+    # Load Projector
+    hdf5file.cd('/Projector')
+    self.load_ubm(hdf5file)
+
+    # Load Enroller
+    hdf5file.cd('/Enroller')
+    self.load_tv(hdf5file)
+
+    # Load Whitening
+    hdf5file.cd('/Whitener')
+    self.load_whitening(hdf5file)
+
+
+  def project_ivec(self, gmm_stats):
+    return self.tv.project(gmm_stats)
+
+  def project_whitening(self, ivector):
+    whitened = self.whitener.forward(ivector)
+    return whitened / numpy.linalg.norm(whitened)
+
+  #######################################################
+  ############## IVector projection #####################
+  def project(self, feature_array):
+    """Computes GMM statistics against a UBM, then corresponding Ux vector"""
+    self._check_feature(feature_array)
+    # project UBM
+    projected_ubm = self.project_ubm(feature_array)
+    # project I-Vector
+    ivector = self.project_ivec(projected_ubm)
+    # whiten I-Vector
+    return self.project_whitening(ivector)
+
+  #######################################################
+  ################## ISV model enroll ####################
+  def write_feature(self, data, feature_file):
+    """Saves the feature, which is the (whitened) I-Vector."""
+    bob.bio.base.save(data, feature_file)
+
+  def read_feature(self, feature_file):
+    """Read the type of features that we require, namely i-vectors (stored as simple numpy arrays)"""
+    return bob.bio.base.load(feature_file)
+
+
+
+  #######################################################
+  ################## Model  Enrollment ###################
+  def enroll(self, enroll_features):
+    """Performs IVector enrollment"""
+    [self._check_projected(feature) for feature in enroll_features]
+    model = numpy.mean(numpy.vstack(enroll_features), axis=0)
+    return model
+
+
+  ######################################################
+  ################ Feature comparison ##################
+  def read_model(self, model_file):
+    """Reads the whitened i-vector that holds the model"""
+    return bob.bio.base.load(model_file)
+
+  def read_probe(self, probe_file):
+    """read probe file which is an i-vector"""
+    return bob.bio.base.load(probe_file)
+
+  def score(self, model, probe):
+    """Computes the score for the given model and the given probe."""
+    self._check_projected(model)
+    self._check_projected(probe)
+    return numpy.dot(model/numpy.linalg.norm(model), probe/numpy.linalg.norm(probe))
+
+
+  def score_for_multiple_probes(self, model, probes):
+    """This function computes the score between the given model and several given probe files."""
+    [self._check_projected(probe) for probe in probes]
+    probe = numpy.mean(numpy.vstack(probes), axis=0)
+    return self.score(model, probe)
diff --git a/bob/bio/gmm/algorithm/__init__.py b/bob/bio/gmm/algorithm/__init__.py
index dff2ced5b05dafe54c7bb193cd6f29823864c684..e3029635df3a5671fb218e7df6042e56d68b8ba8 100644
--- a/bob/bio/gmm/algorithm/__init__.py
+++ b/bob/bio/gmm/algorithm/__init__.py
@@ -1,3 +1,4 @@
 from .GMM import GMM, GMMRegular
 from .JFA import JFA
 from .ISV import ISV
+from .IVector import IVector
diff --git a/bob/bio/gmm/config/algorithm/isv.py b/bob/bio/gmm/config/algorithm/isv.py
index 24a8be4cc02ec2bb1a3b68e943f92ed3017ebd03..3ae069d881764d904ea8d4419c5b5b01760e0b35 100644
--- a/bob/bio/gmm/config/algorithm/isv.py
+++ b/bob/bio/gmm/config/algorithm/isv.py
@@ -1,7 +1,6 @@
 #!/usr/bin/env python
 
 import bob.bio.gmm
-import numpy
 
 algorithm = bob.bio.gmm.algorithm.ISV(
     # ISV parameters
diff --git a/bob/bio/gmm/config/algorithm/ivector.py b/bob/bio/gmm/config/algorithm/ivector.py
new file mode 100644
index 0000000000000000000000000000000000000000..ec07b8065c8e1d2eac1ebdc40c9e592388c1cef9
--- /dev/null
+++ b/bob/bio/gmm/config/algorithm/ivector.py
@@ -0,0 +1,10 @@
+import bob.bio.gmm
+
+algorithm = bob.bio.gmm.algorithm.IVector(
+    # IVector parameters
+    subspace_dimension_of_t = 400,
+    update_sigma = True,
+    tv_training_iterations = 3,  # Number of EM iterations for the TV training
+    # GMM parameters
+    number_of_gaussians = 512,
+)
diff --git a/bob/bio/gmm/test/data/ivector_model.hdf5 b/bob/bio/gmm/test/data/ivector_model.hdf5
new file mode 100644
index 0000000000000000000000000000000000000000..1c2349f4f18926d1be88f569c215ed8665d480ef
Binary files /dev/null and b/bob/bio/gmm/test/data/ivector_model.hdf5 differ
diff --git a/bob/bio/gmm/test/data/ivector_projected.hdf5 b/bob/bio/gmm/test/data/ivector_projected.hdf5
new file mode 100644
index 0000000000000000000000000000000000000000..013da29abc64fdda1a5b85eb737886147b0f18ed
Binary files /dev/null and b/bob/bio/gmm/test/data/ivector_projected.hdf5 differ
diff --git a/bob/bio/gmm/test/data/ivector_projector.hdf5 b/bob/bio/gmm/test/data/ivector_projector.hdf5
new file mode 100644
index 0000000000000000000000000000000000000000..726988762bbdfdb51d6f62493a41e3be3c4fa3dd
Binary files /dev/null and b/bob/bio/gmm/test/data/ivector_projector.hdf5 differ
diff --git a/bob/bio/gmm/test/test_algorithms.py b/bob/bio/gmm/test/test_algorithms.py
index b358496f4765cbc907849e889a575b7c3473803b..ae933d740dff40eca1fd059daf6359df3f1ba580 100644
--- a/bob/bio/gmm/test/test_algorithms.py
+++ b/bob/bio/gmm/test/test_algorithms.py
@@ -326,80 +326,63 @@ def test_jfa():
   # assert abs(jfa1.score_for_multiple_probes(model, [probe, probe]) - reference_score) < 1e-5, jfa1.score_for_multiple_probes(model, [probe, probe])
 
 
-"""
-  def test10_ivector(self):
-    # NOTE: This test will fail when it is run solely. Please always run all Tool tests in order to assure that they work.
-    # read input
-    feature = facereclib.utils.load(self.input_dir('dct_blocks.hdf5'))
-    # assure that the config file is readable
-    tool = self.config('ivector')
-    self.assertTrue(isinstance(tool, facereclib.tools.IVector))
-
-    # here, we use a reduced complexity for test purposes
-    tool = facereclib.tools.IVector(
-        number_of_gaussians = 2,
-        subspace_dimension_of_t=2,       # T subspace dimension
-        update_sigma = False, # TODO Do another test with True
-        tv_training_iterations = 1,  # Number of EM iterations for the JFA training
-        variance_threshold = 1e-5,
-        INIT_SEED = seed_value
-    )
-    self.assertTrue(tool.performs_projection)
-    self.assertTrue(tool.requires_projector_training)
-    self.assertTrue(tool.use_projected_features_for_enrollment)
-    self.assertFalse(tool.split_training_features_by_client)
-    self.assertFalse(tool.requires_enroller_training)
 
+def test_ivector():
+  temp_file = bob.io.base.test_utils.temporary_filename()
+  ivec1 = bob.bio.base.load_resource("ivector", "algorithm")
+  assert isinstance(ivec1, bob.bio.gmm.algorithm.IVector)
+  assert isinstance(ivec1, bob.bio.gmm.algorithm.GMM)
+  assert isinstance(ivec1, bob.bio.base.algorithm.Algorithm)
+  assert ivec1.performs_projection
+  assert ivec1.requires_projector_training
+  assert ivec1.use_projected_features_for_enrollment
+  assert not ivec1.split_training_features_by_client
+  assert not ivec1.requires_enroller_training
+
+  # create smaller IVector object
+  ivec2 = bob.bio.gmm.algorithm.IVector(
+      number_of_gaussians = 2,
+      subspace_dimension_of_t = 2,
+      kmeans_training_iterations = 1,
+      tv_training_iterations = 1,
+      INIT_SEED = seed_value
+  )
+
+  train_data = utils.random_training_set((100,45), count=5, minimum=-5., maximum=5.)
+  # reference is the same as for GMM projection
+  reference_file = pkg_resources.resource_filename('bob.bio.gmm.test', 'data/ivector_projector.hdf5')
+  try:
     # train the projector
-    t = tempfile.mkstemp('ubm.hdf5', prefix='frltest_')[1]
-    tool.train_projector(facereclib.utils.tests.random_training_set(feature.shape, count=5, minimum=-5., maximum=5.), t)
-    if regenerate_refs:
-      import shutil
-      shutil.copy2(t, self.reference_dir('ivector_projector.hdf5'))
-
-    # load the projector file
-    tool.load_projector(self.reference_dir('ivector_projector.hdf5'))
-
-    # compare ISV projector with reference
-    hdf5file = bob.io.base.HDF5File(t)
-    hdf5file.cd('Projector')
-    projector_reference = bob.learn.em.GMMMachine(hdf5file)
-    self.assertTrue(tool.m_ubm.is_similar_to(projector_reference))
-
-    # compare ISV enroller with reference
-    hdf5file.cd('/')
-    hdf5file.cd('Enroller')
-    enroller_reference = bob.learn.em.IVectorMachine(hdf5file)
-    enroller_reference.ubm = projector_reference
-    if not _mac_os:
-      self.assertTrue(tool.m_tv.is_similar_to(enroller_reference))
-    os.remove(t)
-
-    # project the feature
-    projected = tool.project(feature)
-    if regenerate_refs:
-      tool.save_feature(projected, self.reference_dir('ivector_feature.hdf5'))
-
-    # compare the projected feature with the reference
-    projected_reference = tool.read_feature(self.reference_dir('ivector_feature.hdf5'))
-    self.assertTrue(numpy.allclose(projected,projected_reference))
-
-    # enroll model with the projected feature
-    # This is not yet supported
-    # model = tool.enroll([projected[0]])
-    # if regenerate_refs:
-    #  model.save(bob.io.HDF5File(self.reference_dir('ivector_model.hdf5'), 'w'))
-    #reference_model = tool.read_model(self.reference_dir('ivector_model.hdf5'))
-    # compare the IVector model with the reference
-    #self.assertTrue(model.is_similar_to(reference_model))
-
-    # check that the read_probe function reads the correct values
-    probe = tool.read_probe(self.reference_dir('ivector_feature.hdf5'))
-    self.assertTrue(numpy.allclose(probe,projected))
-
-    # score with projected feature and compare to the weird reference score ...
-    # This in not implemented yet
-
-    # score with a concatenation of the probe
-    # This is not implemented yet
-"""
+    ivec2.train_projector(train_data, temp_file)
+
+    assert os.path.exists(temp_file)
+
+    if regenerate_refs: shutil.copy(temp_file, reference_file)
+
+    # check projection matrix
+    ivec1.load_projector(reference_file)
+    ivec2.load_projector(temp_file)
+
+    assert ivec1.ubm.is_similar_to(ivec2.ubm)
+    assert ivec1.tv.is_similar_to(ivec2.tv)
+    assert ivec1.whitener.is_similar_to(ivec2.whitener)
+  finally:
+    if os.path.exists(temp_file): os.remove(temp_file)
+
+  # generate and project random feature
+  feature = utils.random_array((20,45), -5., 5., seed=84)
+  projected = ivec1.project(feature)
+  _compare(projected, pkg_resources.resource_filename('bob.bio.gmm.test', 'data/ivector_projected.hdf5'), ivec1.write_feature, ivec1.read_feature)
+
+  # enroll model from random features
+  random_features = utils.random_training_set((20,45), count=5, minimum=-5., maximum=5.)
+  enroll_features = [ivec1.project(feature) for feature in random_features]
+  model = ivec1.enroll(enroll_features)
+  _compare(model, pkg_resources.resource_filename('bob.bio.gmm.test', 'data/ivector_model.hdf5'), ivec1.write_model, ivec1.read_model)
+
+  # compare model with probe
+  probe = ivec1.read_probe(pkg_resources.resource_filename('bob.bio.gmm.test', 'data/ivector_projected.hdf5'))
+  reference_score = -0.00187151
+  assert abs(ivec1.score(model, probe) - reference_score) < 1e-5, "The scores differ: %3.8f, %3.8f" % (ivec1.score(model, probe), reference_score)
+  # TODO: implement that
+  assert abs(ivec1.score_for_multiple_probes(model, [probe, probe]) - reference_score) < 1e-5
diff --git a/setup.py b/setup.py
index 6b180159d8d2b50855dbf046860cd4d9ba1d6a0c..801609bbc872d4b7b1fea4ce4c60b9f7522f5962 100644
--- a/setup.py
+++ b/setup.py
@@ -121,6 +121,7 @@ setup(
         'gmm-regular       = bob.bio.gmm.config.algorithm.gmm_regular:algorithm',
         'jfa               = bob.bio.gmm.config.algorithm.jfa:algorithm',
         'isv               = bob.bio.gmm.config.algorithm.isv:algorithm',
+        'ivector           = bob.bio.gmm.config.algorithm.ivector:algorithm',
       ],
    },