diff --git a/bob/bio/base/config/extractor/linearize.py b/bob/bio/base/config/extractor/linearize.py index ddc02165757ec3ed8a66d43d0d59d8f3ce6edaf5..7d452d6e3363c553ecd9f069982e0269b3f0166c 100644 --- a/bob/bio/base/config/extractor/linearize.py +++ b/bob/bio/base/config/extractor/linearize.py @@ -3,4 +3,4 @@ import bob.bio.base # Linearization of the data to a vector, no data type specified -extractor = bob.bio.base.extractor.Linearize +extractor = bob.bio.base.extractor.Linearize() diff --git a/bob/bio/base/mixins/__init__.py b/bob/bio/base/mixins/__init__.py index 62acd81c13d30ee5eb3adb9526d466727af2bfda..729af155f8f3f72cd1e3805f4a6efe40e2787dd7 100644 --- a/bob/bio/base/mixins/__init__.py +++ b/bob/bio/base/mixins/__init__.py @@ -1,2 +1,2 @@ from .linearize import Linearize, SampleLinearize, CheckpointSampleLinearize -#from .pca import CheckpointSamplePCA, SamplePCA +from .pca import CheckpointSamplePCA, SamplePCA diff --git a/bob/bio/base/mixins/legacy.py b/bob/bio/base/mixins/legacy.py index 616bdf43d683cb69a6d4ad85407c091b627b86e9..a1c523dea8b7e175de10abb61e6d1dbc4f199d79 100644 --- a/bob/bio/base/mixins/legacy.py +++ b/bob/bio/base/mixins/legacy.py @@ -83,12 +83,23 @@ class LegacyProcessorMixin(TransformerMixin): def transform(self, X): - X = check_array(X, allow_nd=True) - # Instantiates and do the "real" transform if self.instance is None: self.instance = self.callable() - return [self.instance(x) for x in X] + + if isinstance(X[0], dict): + # Handling annotations if it's the case + retval = [] + for x in X: + data = x["data"] + annotations = x["annotations"] + + retval.append(self.instance(data, annotations=annotations)) + return retval + + else: + X = check_array(X, allow_nd=True) + return [self.instance(x) for x in X] from bob.pipelines.mixins import CheckpointMixin, SampleMixin diff --git a/bob/bio/base/mixins/pca.py b/bob/bio/base/mixins/pca.py index 83e7bf47baef37ad611c8b53f3e88fa0f8ce6400..1412188f66aa8b111d39b741093486cf5bf780c8 100644 --- a/bob/bio/base/mixins/pca.py +++ b/bob/bio/base/mixins/pca.py @@ -7,7 +7,7 @@ TODO: This should be deployed in bob.pipelines """ -from bob.pipelines.processor import CheckpointMixin, SampleMixin +from bob.pipelines.mixins import CheckpointMixin, SampleMixin from sklearn.base import TransformerMixin from sklearn.decomposition import PCA import numpy diff --git a/bob/bio/base/pipelines/vanilla_biometrics/database.py b/bob/bio/base/pipelines/vanilla_biometrics/database.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/bob/bio/base/pipelines/vanilla_biometrics/pipeline.py b/bob/bio/base/pipelines/vanilla_biometrics/pipeline.py index fe346a6aa4e0cf20649cbebb24e1367174ffd4d5..9b32ae55f66ca498b1d0cbf88692b842fc9e6406 100644 --- a/bob/bio/base/pipelines/vanilla_biometrics/pipeline.py +++ b/bob/bio/base/pipelines/vanilla_biometrics/pipeline.py @@ -12,6 +12,9 @@ import dask.bag import dask.delayed from bob.pipelines.sample import samplesets_to_samples +import logging +logger = logging.getLogger(__name__) + def biometric_pipeline( background_model_samples, @@ -20,16 +23,21 @@ def biometric_pipeline( extractor, biometric_algorithm, ): + logger.info(f" >> Vanilla Biometrics: Training background model with pipeline {extractor}") ## Training background model (fit will return even if samples is ``None``, ## in which case we suppose the algorithm is not trainable in any way) extractor = train_background_model(background_model_samples, extractor) + logger.info(f" >> Creating biometric references with the biometric algorithm {biometric_algorithm}") + ## Create biometric samples biometric_references = create_biometric_reference( biometric_reference_samples, extractor, biometric_algorithm ) + logger.info(f" >> Computing scores with the biometric algorithm {biometric_algorithm}") + ## Scores all probes return compute_scores( probe_samples, biometric_references, extractor, biometric_algorithm @@ -38,7 +46,6 @@ def biometric_pipeline( def train_background_model(background_model_samples, extractor): - # TODO: Maybe here is supervised X, y = samplesets_to_samples(background_model_samples) extractor = extractor.fit(X, y=y) diff --git a/bob/bio/base/script/vanilla_biometrics.py b/bob/bio/base/script/vanilla_biometrics.py index f8e17b31f5ec48d7e7ae3c480dcc8d8787d84b9f..b58204d2bf9fcbe4a51386fb993ee7352dbb6dd1 100644 --- a/bob/bio/base/script/vanilla_biometrics.py +++ b/bob/bio/base/script/vanilla_biometrics.py @@ -171,6 +171,8 @@ def vanilla_biometrics( with open(os.path.join(output,f"scores-{g}"), "w") as f: biometric_references = database.references(group=g) + + logger.info(f"Running vanilla biometrics for group {g}") result = biometric_pipeline( database.background_model_samples(), diff --git a/bob/bio/base/test/test_processor.py b/bob/bio/base/test/test_processor.py deleted file mode 100644 index fc06fcf88667731438379b7ca69c085a3091ba1f..0000000000000000000000000000000000000000 --- a/bob/bio/base/test/test_processor.py +++ /dev/null @@ -1,68 +0,0 @@ -#!/usr/bin/env python -# vim: set fileencoding=utf-8 : -# @author: Tiago de Freitas Pereira <tiago.pereira@idiap.ch> - -from bob.pipelines.sample import Sample, SampleSet, DelayedSample -import os -import numpy -import tempfile -from sklearn.utils.validation import check_is_fitted - -from bob.bio.base.processor import Linearize, SampleLinearize, CheckpointSampleLinearize -def test_linearize_processor(): - - ## Test the transformer only - transformer = Linearize() - X = numpy.zeros(shape=(10,10)) - X_tr = transformer.transform(X) - assert X_tr.shape == (100,) - - - ## Test wrapped in to a Sample - sample = Sample(X, key="1") - transformer = SampleLinearize() - X_tr = transformer.transform([sample]) - assert X_tr[0].data.shape == (100,) - - ## Test checkpoint - with tempfile.TemporaryDirectory() as d: - transformer = CheckpointSampleLinearize(features_dir=d) - X_tr = transformer.transform([sample]) - assert X_tr[0].data.shape == (100,) - assert os.path.exists(os.path.join(d, "1.h5")) - - -from bob.bio.base.processor import SamplePCA, CheckpointSamplePCA -def test_pca_processor(): - - ## Test wrapped in to a Sample - X = numpy.random.rand(100,10) - samples = [Sample(data, key=str(i)) for i, data in enumerate(X)] - - # fit - n_components = 2 - estimator = SamplePCA(n_components=n_components) - estimator = estimator.fit(samples) - - # https://scikit-learn.org/stable/modules/generated/sklearn.utils.validation.check_is_fitted.html - assert check_is_fitted(estimator, "n_components_") is None - - # transform - samples_tr = estimator.transform(samples) - assert samples_tr[0].data.shape == (n_components,) - - - ## Test Checkpoining - with tempfile.TemporaryDirectory() as d: - model_path = os.path.join(d, "model.pkl") - estimator = CheckpointSamplePCA(n_components=n_components, features_dir=d, model_path=model_path) - - # fit - estimator = estimator.fit(samples) - assert check_is_fitted(estimator, "n_components_") is None - assert os.path.exists(model_path) - - # transform - samples_tr = estimator.transform(samples) - assert samples_tr[0].data.shape == (n_components,) - assert os.path.exists(os.path.join(d, samples_tr[0].key+".h5")) diff --git a/bob/bio/base/test/test_vanilla_biometrics.py b/bob/bio/base/test/test_vanilla_biometrics.py index 082622427618c41da91354d016a3ae016d95a121..60e0ac4027c6e7535496db6a4b88b02d284974df 100644 --- a/bob/bio/base/test/test_vanilla_biometrics.py +++ b/bob/bio/base/test/test_vanilla_biometrics.py @@ -9,9 +9,6 @@ import tempfile from sklearn.utils.validation import check_is_fitted -#from bob.bio.base.processor import Linearize, SampleLinearize, CheckpointSampleLinearize - - class DummyDatabase: def __init__(self, delayed=False, n_references=10, n_probes=10, dim=10, one_d = True): @@ -61,7 +58,8 @@ class DummyDatabase: return probes -from bob.bio.base.pipelines.vanilla_biometrics.comparator import DistanceComparator +from bob.bio.base.pipelines.vanilla_biometrics.biometric_algorithm import Distance +import itertools def test_distance_comparator(): n_references = 10 @@ -70,40 +68,15 @@ def test_distance_comparator(): database = DummyDatabase(delayed=False, n_references=n_references, n_probes=n_probes, dim=10, one_d = True) references = database.references() probes = database.probes() - - pass - - comparator = DistanceComparator() - references = comparator.enroll_samples(references) + + comparator = Distance() + references = comparator._enroll_samples(references) assert len(references)== n_references assert references[0].data.shape == (dim,) probes = database.probes() - scores = comparator.score_samples(probes, references) + scores = comparator._score_samples(probes, references) + scores = list(itertools.chain(*scores)) assert len(scores) == n_probes*n_references assert len(scores[0].samples)==n_references - - - - ## Test the transformer only - #transformer = Linearize() - #X = numpy.zeros(shape=(10,10)) - #X_tr = transformer.transform(X) - #assert X_tr.shape == (100,) - - - ## Test wrapped in to a Sample - #sample = Sample(X, key="1") - #transformer = SampleLinearize() - #X_tr = transformer.transform([sample]) - #assert X_tr[0].data.shape == (100,) - - ## Test checkpoint - #with tempfile.TemporaryDirectory() as d: - #transformer = CheckpointSampleLinearize(features_dir=d) - #X_tr = transformer.transform([sample]) - #assert X_tr[0].data.shape == (100,) - #assert os.path.exists(os.path.join(d, "1.h5")) - -