diff --git a/bob/bio/base/config/examples/gabor_mobio-male.py b/bob/bio/base/config/examples/gabor_mobio-male.py
deleted file mode 100644
index 8336c510b5cbd927647abd607fb6339f99bcbcc7..0000000000000000000000000000000000000000
--- a/bob/bio/base/config/examples/gabor_mobio-male.py
+++ /dev/null
@@ -1,82 +0,0 @@
-from bob.bio.base.pipelines.vanilla_biometrics.implemented import CheckpointDistance
-from bob.bio.base.pipelines.vanilla_biometrics.legacy import (
-    DatabaseConnector,
-    Preprocessor,
-    Extractor,
-    AlgorithmAsBioAlg,
-)
-from bob.bio.face.database.mobio import MobioBioDatabase
-from bob.bio.face.preprocessor import FaceCrop
-from bob.extension import rc
-from bob.pipelines.transformers import CheckpointSampleLinearize, CheckpointSamplePCA
-from sklearn.pipeline import make_pipeline
-import functools
-import os
-import bob.bio.face
-import math
-
-base_dir = "example"
-
-
-database = DatabaseConnector(
-    MobioBioDatabase(
-        original_directory=rc["bob.db.mobio.directory"],
-        annotation_directory=rc["bob.db.mobio.annotation_directory"],
-        original_extension=".png",
-        protocol="mobile0-male",
-    )
-)
-database.allow_score_multiple_references = True
-
-# Using face crop
-CROPPED_IMAGE_HEIGHT = 80
-CROPPED_IMAGE_WIDTH = CROPPED_IMAGE_HEIGHT * 4 // 5
-# eye positions for frontal images
-RIGHT_EYE_POS = (CROPPED_IMAGE_HEIGHT // 5, CROPPED_IMAGE_WIDTH // 4 - 1)
-LEFT_EYE_POS = (CROPPED_IMAGE_HEIGHT // 5, CROPPED_IMAGE_WIDTH // 4 * 3)
-
-# FaceCrop
-preprocessor = functools.partial(
-    bob.bio.face.preprocessor.INormLBP,
-    face_cropper=functools.partial(
-        bob.bio.face.preprocessor.FaceCrop,
-        cropped_image_size=(CROPPED_IMAGE_HEIGHT, CROPPED_IMAGE_WIDTH),
-        cropped_positions={"leye": LEFT_EYE_POS, "reye": RIGHT_EYE_POS},
-        color_channel="gray",
-    ),
-)
-
-extractor = functools.partial(
-    bob.bio.face.extractor.GridGraph,
-    # Gabor parameters
-    gabor_sigma=math.sqrt(2.0) * math.pi,
-    # what kind of information to extract
-    normalize_gabor_jets=True,
-    # setup of the fixed grid
-    node_distance=(8, 8),
-)
-
-transformer = make_pipeline(
-    Preprocessor(preprocessor, features_dir=os.path.join(base_dir, "face_cropper")),
-    Extractor(extractor, features_dir=os.path.join(base_dir, "gabor_graph")),
-)
-
-
-## algorithm
-
-gabor_jet = functools.partial(
-    bob.bio.face.algorithm.GaborJet,
-    gabor_jet_similarity_type="PhaseDiffPlusCanberra",
-    multiple_feature_scoring="max_jet",
-    gabor_sigma=math.sqrt(2.0) * math.pi,
-)
-
-algorithm = AlgorithmAsBioAlg(callable=gabor_jet, features_dir=base_dir, allow_score_multiple_references=True)
-#algorithm = AlgorithmAsBioAlg(callable=gabor_jet, features_dir=base_dir)
-
-
-from bob.bio.base.pipelines.vanilla_biometrics import VanillaBiometrics, dask_vanilla_biometrics
-
-#pipeline = VanillaBiometrics(transformer, algorithm)
-pipeline = dask_vanilla_biometrics(VanillaBiometrics(transformer, algorithm), npartitions=48)
-
diff --git a/bob/bio/base/config/examples/isv_atnt_legacy_all_legacy.py b/bob/bio/base/config/examples/isv_atnt_legacy_all_legacy.py
deleted file mode 100644
index 41ee5f2c30a74561cca1b3f3dec90345ffc07bfd..0000000000000000000000000000000000000000
--- a/bob/bio/base/config/examples/isv_atnt_legacy_all_legacy.py
+++ /dev/null
@@ -1,75 +0,0 @@
-from bob.bio.face.database import AtntBioDatabase
-from bob.bio.gmm.algorithm import ISV
-from bob.bio.face.preprocessor import FaceCrop
-from sklearn.pipeline import make_pipeline
-from bob.bio.base.pipelines.vanilla_biometrics.legacy import DatabaseConnector, Preprocessor, AlgorithmAsTransformer, AlgorithmAsBioAlg, Extractor
-import functools
-from bob.bio.base.pipelines.vanilla_biometrics.implemented import (
-    Distance,
-    CheckpointDistance,
-)
-import os
-
-# DATABASE
-database = DatabaseConnector(
-    AtntBioDatabase(original_directory="./atnt", protocol="Default"),
-)
-database.allow_scoring_with_all_biometric_references = True
-
-base_dir = "example/isv"
-
-# PREPROCESSOR LEGACY
-
-# Cropping
-CROPPED_IMAGE_HEIGHT = 80
-CROPPED_IMAGE_WIDTH = CROPPED_IMAGE_HEIGHT * 4 // 5
-
-# eye positions for frontal images
-RIGHT_EYE_POS = (CROPPED_IMAGE_HEIGHT // 5, CROPPED_IMAGE_WIDTH // 4 - 1)
-LEFT_EYE_POS = (CROPPED_IMAGE_HEIGHT // 5, CROPPED_IMAGE_WIDTH // 4 * 3)
-
-
-# RANDOM EYES POSITIONS
-# I JUST MADE UP THESE NUMBERS
-FIXED_RIGHT_EYE_POS = (30, 30)
-FIXED_LEFT_EYE_POS = (20, 50)
-
-face_cropper = functools.partial(
-    FaceCrop,
-    cropped_image_size=(CROPPED_IMAGE_HEIGHT, CROPPED_IMAGE_WIDTH),
-    cropped_positions={"leye": LEFT_EYE_POS, "reye": RIGHT_EYE_POS},
-    fixed_positions={"leye": FIXED_LEFT_EYE_POS, "reye": FIXED_RIGHT_EYE_POS},
-)
-
-
-import bob.bio.face
-
-extractor = functools.partial(
-    bob.bio.face.extractor.DCTBlocks,
-    block_size=12,
-    block_overlap=11,
-    number_of_dct_coefficients=45,
-)
-
-
-
-# ALGORITHM LEGACY
-isv = functools.partial(ISV, subspace_dimension_of_u=10, number_of_gaussians=2)
-
-model_path=os.path.join(base_dir, "ubm_u.hdf5")
-transformer = make_pipeline(
-    Preprocessor(callable=face_cropper, features_dir=os.path.join(base_dir,"face_crop")),
-    Extractor(extractor, features_dir=os.path.join(base_dir, "dcts")),
-    AlgorithmAsTransformer(
-        callable=isv, features_dir=os.path.join(base_dir,"isv"), model_path=model_path
-    ),
-)
-
-
-algorithm = AlgorithmAsBioAlg(callable=isv, features_dir=base_dir, model_path=model_path)
-
-
-from bob.bio.base.pipelines.vanilla_biometrics import VanillaBiometrics, dask_vanilla_biometrics
-
-#pipeline = VanillaBiometrics(transformer, algorithm)
-pipeline = dask_vanilla_biometrics(VanillaBiometrics(transformer, algorithm))
diff --git a/bob/bio/base/config/examples/lda_atnt_legacy.py b/bob/bio/base/config/examples/lda_atnt_legacy.py
deleted file mode 100644
index dd6f93edc46fb041870d2dea18ab66f02fd5257a..0000000000000000000000000000000000000000
--- a/bob/bio/base/config/examples/lda_atnt_legacy.py
+++ /dev/null
@@ -1,65 +0,0 @@
-from bob.bio.face.database import AtntBioDatabase
-from bob.bio.base.algorithm import LDA
-from bob.bio.face.preprocessor import FaceCrop
-from sklearn.pipeline import make_pipeline
-from bob.pipelines.transformers import CheckpointSampleLinearize
-from bob.bio.base.pipelines.vanilla_biometrics.legacy import DatabaseConnector, Preprocessor, AlgorithmAsTransformer
-import functools
-from bob.bio.base.pipelines.vanilla_biometrics.implemented import (
-    Distance,
-    CheckpointDistance,
-)
-
-# DATABASE
-
-database = DatabaseConnector(
-    AtntBioDatabase(original_directory="./atnt", protocol="Default"),
-)
-
-
-# PREPROCESSOR LEGACY
-
-# Cropping
-CROPPED_IMAGE_HEIGHT = 80
-CROPPED_IMAGE_WIDTH = CROPPED_IMAGE_HEIGHT * 4 // 5
-
-# eye positions for frontal images
-RIGHT_EYE_POS = (CROPPED_IMAGE_HEIGHT // 5, CROPPED_IMAGE_WIDTH // 4 - 1)
-LEFT_EYE_POS = (CROPPED_IMAGE_HEIGHT // 5, CROPPED_IMAGE_WIDTH // 4 * 3)
-
-
-# RANDOM EYES POSITIONS
-# I JUST MADE UP THESE NUMBERS
-FIXED_RIGHT_EYE_POS = (30, 30)
-FIXED_LEFT_EYE_POS = (20, 50)
-
-face_cropper = functools.partial(
-    FaceCrop,
-    cropped_image_size=(CROPPED_IMAGE_HEIGHT, CROPPED_IMAGE_WIDTH),
-    cropped_positions={"leye": LEFT_EYE_POS, "reye": RIGHT_EYE_POS},
-    fixed_positions={"leye": FIXED_LEFT_EYE_POS, "reye": FIXED_RIGHT_EYE_POS},
-)
-
-# ALGORITHM LEGACY
-
-lda = functools.partial(LDA, use_pinv=True, pca_subspace_dimension=0.90)
-
-
-transformer = make_pipeline(
-    Preprocessor(callable=face_cropper, features_dir="./example/transformer0"),
-    CheckpointSampleLinearize(features_dir="./example/transformer1"),
-    AlgorithmAsTransformer(
-        callable=lda, features_dir="./example/transformer2", model_path="./example/lda_projector.hdf5"
-    ),
-)
-
-
-
-algorithm = CheckpointDistance(features_dir="./example/")
-# algorithm = Distance()
-
-
-from bob.bio.base.pipelines.vanilla_biometrics import VanillaBiometrics, dask_vanilla_biometrics
-
-#pipeline = VanillaBiometrics(transformer, algorithm)
-pipeline = dask_vanilla_biometrics(VanillaBiometrics(transformer, algorithm))
diff --git a/bob/bio/base/config/examples/lda_atnt_legacy_all_legacy.py b/bob/bio/base/config/examples/lda_atnt_legacy_all_legacy.py
deleted file mode 100644
index d9736430ea82c0623137ee53ae3bf6919e40242e..0000000000000000000000000000000000000000
--- a/bob/bio/base/config/examples/lda_atnt_legacy_all_legacy.py
+++ /dev/null
@@ -1,64 +0,0 @@
-from bob.bio.face.database import AtntBioDatabase
-from bob.bio.base.algorithm import LDA
-from bob.bio.face.preprocessor import FaceCrop
-from sklearn.pipeline import make_pipeline
-from bob.pipelines.transformers import CheckpointSampleLinearize
-from bob.bio.base.pipelines.vanilla_biometrics.legacy import DatabaseConnector, Preprocessor, AlgorithmAsTransformer, AlgorithmAsBioAlg
-import functools
-from bob.bio.base.pipelines.vanilla_biometrics.implemented import (
-    Distance,
-    CheckpointDistance,
-)
-import os
-
-# DATABASE
-database = DatabaseConnector(
-    AtntBioDatabase(original_directory="./atnt", protocol="Default"),
-)
-
-base_dir = "example"
-
-# PREPROCESSOR LEGACY
-
-# Cropping
-CROPPED_IMAGE_HEIGHT = 80
-CROPPED_IMAGE_WIDTH = CROPPED_IMAGE_HEIGHT * 4 // 5
-
-# eye positions for frontal images
-RIGHT_EYE_POS = (CROPPED_IMAGE_HEIGHT // 5, CROPPED_IMAGE_WIDTH // 4 - 1)
-LEFT_EYE_POS = (CROPPED_IMAGE_HEIGHT // 5, CROPPED_IMAGE_WIDTH // 4 * 3)
-
-
-# RANDOM EYES POSITIONS
-# I JUST MADE UP THESE NUMBERS
-FIXED_RIGHT_EYE_POS = (30, 30)
-FIXED_LEFT_EYE_POS = (20, 50)
-
-face_cropper = functools.partial(
-    FaceCrop,
-    cropped_image_size=(CROPPED_IMAGE_HEIGHT, CROPPED_IMAGE_WIDTH),
-    cropped_positions={"leye": LEFT_EYE_POS, "reye": RIGHT_EYE_POS},
-    fixed_positions={"leye": FIXED_LEFT_EYE_POS, "reye": FIXED_RIGHT_EYE_POS},
-)
-
-# ALGORITHM LEGACY
-
-lda = functools.partial(LDA, use_pinv=True, pca_subspace_dimension=0.90)
-
-
-transformer = make_pipeline(
-    Preprocessor(callable=face_cropper, features_dir=os.path.join(base_dir,"transformer0")),
-    CheckpointSampleLinearize(features_dir=os.path.join(base_dir,"transformer1")),
-    AlgorithmAsTransformer(
-        callable=lda, features_dir=os.path.join(base_dir,"transformer2"), model_path=os.path.join(base_dir, "lda.hdf5")
-    ),
-)
-
-
-algorithm = AlgorithmAsBioAlg(callable=lda, features_dir="./example/")
-
-
-from bob.bio.base.pipelines.vanilla_biometrics import VanillaBiometrics, dask_vanilla_biometrics
-
-#pipeline = VanillaBiometrics(transformer, algorithm)
-pipeline = dask_vanilla_biometrics(VanillaBiometrics(transformer, algorithm))
diff --git a/bob/bio/base/config/examples/pca_atnt.py b/bob/bio/base/config/examples/pca_atnt.py
deleted file mode 100644
index e75daf2752badb3930f34a10c62943455fa38970..0000000000000000000000000000000000000000
--- a/bob/bio/base/config/examples/pca_atnt.py
+++ /dev/null
@@ -1,33 +0,0 @@
-from bob.bio.base.pipelines.vanilla_biometrics.legacy import DatabaseConnector
-from sklearn.pipeline import make_pipeline
-from bob.pipelines.transformers import CheckpointSampleLinearize, CheckpointSamplePCA
-from bob.bio.base.pipelines.vanilla_biometrics.implemented import (
-    CheckpointDistance,
-)
-from bob.bio.face.database import AtntBioDatabase
-import os
-
-
-base_dir = "example"
-
-database = DatabaseConnector(AtntBioDatabase(original_directory="./atnt", protocol="Default"))
-database.allow_scoring_with_all_biometric_references = True
-
-transformer = make_pipeline(
-    CheckpointSampleLinearize(features_dir=os.path.join(base_dir, "linearize")),
-    CheckpointSamplePCA(
-        features_dir=os.path.join(base_dir, "pca_features"), model_path=os.path.join(base_dir, "pca.pkl")
-    ),
-)
-algorithm = CheckpointDistance(features_dir=base_dir, allow_score_multiple_references=True)
-
-# # comment out the code below to disable dask
-from bob.pipelines.mixins import estimator_dask_it, mix_me_up
-from bob.bio.base.pipelines.vanilla_biometrics.mixins import (
-    BioAlgDaskMixin,
-)
-
-from bob.bio.base.pipelines.vanilla_biometrics import VanillaBiometrics, dask_vanilla_biometrics
-
-pipeline = VanillaBiometrics(transformer, algorithm)
-#pipeline = dask_vanilla_biometrics(VanillaBiometrics(transformer, algorithm))
diff --git a/bob/bio/base/config/examples/pca_mobio-male.py b/bob/bio/base/config/examples/pca_mobio-male.py
deleted file mode 100644
index 668a1e6f7cbdc34dbae1f1ac5bcf40299db07bcf..0000000000000000000000000000000000000000
--- a/bob/bio/base/config/examples/pca_mobio-male.py
+++ /dev/null
@@ -1,50 +0,0 @@
-from bob.bio.base.pipelines.vanilla_biometrics.implemented import (
-    CheckpointDistance,
-)
-from bob.bio.base.pipelines.vanilla_biometrics.legacy import (
-    DatabaseConnector,
-    Preprocessor,
-)
-from bob.bio.face.database.mobio import MobioBioDatabase
-from bob.bio.face.preprocessor import FaceCrop
-from bob.extension import rc
-from bob.pipelines.transformers import CheckpointSampleLinearize, CheckpointSamplePCA
-from sklearn.pipeline import make_pipeline
-import functools
-
-
-database = DatabaseConnector(
-    MobioBioDatabase(
-        original_directory=rc["bob.db.mobio.directory"],
-        annotation_directory=rc["bob.db.mobio.annotation_directory"],
-        original_extension=".png",
-        protocol="mobile0-male",
-    )
-)
-
-# Using face crop
-CROPPED_IMAGE_HEIGHT = 80
-CROPPED_IMAGE_WIDTH = CROPPED_IMAGE_HEIGHT * 4 // 5
-# eye positions for frontal images
-RIGHT_EYE_POS = (CROPPED_IMAGE_HEIGHT // 5, CROPPED_IMAGE_WIDTH // 4 - 1)
-LEFT_EYE_POS = (CROPPED_IMAGE_HEIGHT // 5, CROPPED_IMAGE_WIDTH // 4 * 3)
-# FaceCrop
-preprocessor = functools.partial(
-    FaceCrop,
-    cropped_image_size=(CROPPED_IMAGE_HEIGHT, CROPPED_IMAGE_WIDTH),
-    cropped_positions={"leye": LEFT_EYE_POS, "reye": RIGHT_EYE_POS},
-)
-
-transformer = make_pipeline(
-    Preprocessor(preprocessor, features_dir="./example/extractor0"),
-    CheckpointSampleLinearize(features_dir="./example/extractor1"),
-    CheckpointSamplePCA(
-        features_dir="./example/extractor2", model_path="./example/pca.pkl"
-    ),
-)
-algorithm = CheckpointDistance(features_dir="./example/")
-
-from bob.bio.base.pipelines.vanilla_biometrics import VanillaBiometrics, dask_vanilla_biometrics
-
-#pipeline = VanillaBiometrics(transformer, algorithm)
-pipeline = dask_vanilla_biometrics(VanillaBiometrics(transformer, algorithm), npartitions=48)
diff --git a/bob/bio/base/pipelines/vanilla_biometrics/__init__.py b/bob/bio/base/pipelines/vanilla_biometrics/__init__.py
index d67835735a076de0842a1f9467eaf54eb53a4fb7..5f6a882001b489ec6708465963389bf0d2e32380 100644
--- a/bob/bio/base/pipelines/vanilla_biometrics/__init__.py
+++ b/bob/bio/base/pipelines/vanilla_biometrics/__init__.py
@@ -1,6 +1,6 @@
-# see https://docs.python.org/3/library/pkgutil.html
-from pkgutil import extend_path
+from .pipelines import VanillaBiometricsPipeline
+from .biometric_algorithms import Distance
+from .score_writers import FourColumnsScoreWriter, CSVScoreWriter
+from .wrappers import BioAlgorithmCheckpointWrapper, BioAlgorithmDaskWrapper, dask_vanilla_biometrics
 
-from .pipeline import VanillaBiometrics, dask_vanilla_biometrics
-
-__path__ = extend_path(__path__, __name__)
+from .legacy import BioAlgorithmLegacy, DatabaseConnector
\ No newline at end of file
diff --git a/bob/bio/base/pipelines/vanilla_biometrics/abstract_classes.py b/bob/bio/base/pipelines/vanilla_biometrics/abstract_classes.py
index e27c27aabcd9d4f40cf87feeace3a497b094bab9..7e99ec91d6617db8390e5e7e3b5e5b1e364c2bc5 100644
--- a/bob/bio/base/pipelines/vanilla_biometrics/abstract_classes.py
+++ b/bob/bio/base/pipelines/vanilla_biometrics/abstract_classes.py
@@ -1,3 +1,7 @@
+#!/usr/bin/env python
+# vim: set fileencoding=utf-8 :
+
+
 from abc import ABCMeta, abstractmethod
 from bob.pipelines.sample import Sample, SampleSet, DelayedSample
 import functools
@@ -9,14 +13,9 @@ class BioAlgorithm(metaclass=ABCMeta):
     biometric model enrollement, via ``enroll()`` and scoring, with
     ``score()``.
 
-    Parameters
-    ----------
-
-
     """
 
-    def __init__(self, allow_score_multiple_references=False, **kwargs):
-        self.allow_score_multiple_references = allow_score_multiple_references
+    def __init__(self, **kwargs):
         self.stacked_biometric_references = None
 
     def enroll_samples(self, biometric_references):
@@ -61,7 +60,12 @@ class BioAlgorithm(metaclass=ABCMeta):
         """
         pass
 
-    def score_samples(self, probe_features, biometric_references, allow_scoring_with_all_biometric_references=False):
+    def score_samples(
+        self,
+        probe_features,
+        biometric_references,
+        allow_scoring_with_all_biometric_references=False,
+    ):
         """Scores a new sample against multiple (potential) references
 
         Parameters
@@ -78,7 +82,7 @@ class BioAlgorithm(metaclass=ABCMeta):
 
             allow_scoring_with_all_biometric_references: bool
                 If true will call `self.score_multiple_biometric_references`, at scoring time, to compute scores in one shot with multiple probes.
-                This optiization is useful when all probes needs to be compared with all biometric references AND
+                This optimization is useful when all probes needs to be compared with all biometric references AND
                 your scoring function allows this broadcast computation.
 
 
@@ -87,18 +91,29 @@ class BioAlgorithm(metaclass=ABCMeta):
 
             scores : list
                 For each sample in a probe, returns as many scores as there are
-                samples in the probe, together with the probe's and the
+                samples in the probe, together with the probes and the
                 relevant reference's subject identifiers.
 
         """
 
         retval = []
         for p in probe_features:
-            retval.append(self._score_sample_set(p, biometric_references, allow_scoring_with_all_biometric_references=allow_scoring_with_all_biometric_references))
+            retval.append(
+                self._score_sample_set(
+                    p,
+                    biometric_references,
+                    allow_scoring_with_all_biometric_references=allow_scoring_with_all_biometric_references,
+                )
+            )
         return retval
 
-    def _score_sample_set(self, sampleset, biometric_references, allow_scoring_with_all_biometric_references):
-        """Given a sampleset for probing, compute the scores and retures a sample set with the scores
+    def _score_sample_set(
+        self,
+        sampleset,
+        biometric_references,
+        allow_scoring_with_all_biometric_references,
+    ):
+        """Given a sampleset for probing, compute the scores and returns a sample set with the scores
         """
 
         # Stacking the samples from a sampleset
@@ -106,15 +121,10 @@ class BioAlgorithm(metaclass=ABCMeta):
 
         # Compute scores for each sample inside of the sample set
         # TODO: In some cases we want to compute 1 score per sampleset (IJB-C)
-        # We should add an agregator function here so we can properlly agregate samples from
+        # We should add an aggregator function here so we can properly aggregator samples from
         # a sampleset either after or before scoring.
-        # To be honest, this should be the default behaviour
+        # To be honest, this should be the default behavior
         retval = []
-
-        def _write_sample(ref, probe, score):
-            data = make_four_colums_score(ref.subject, probe.subject, probe.path, score)
-            return Sample(data, parent=ref)
-
         for subprobe_id, (s, parent) in enumerate(zip(data, sampleset.samples)):
             # Creating one sample per comparison
             subprobe_scores = []
@@ -128,21 +138,25 @@ class BioAlgorithm(metaclass=ABCMeta):
                 scores = self.score_multiple_biometric_references(
                     self.stacked_biometric_references, s
                 )
-                
+
                 # Wrapping the scores in samples
                 for ref, score in zip(biometric_references, scores):
-                    subprobe_scores.append(_write_sample(ref, sampleset, score))
+                    subprobe_scores.append(Sample(score, parent=ref))
             else:
 
                 for ref in [
                     r for r in biometric_references if r.key in sampleset.references
                 ]:
                     score = self.score(ref.data, s)
-                    subprobe_scores.append(_write_sample(ref, sampleset, score))
-
-            # Creating one sampleset per probe
-            subprobe = SampleSet(subprobe_scores, parent=sampleset)
-            subprobe.subprobe_id = subprobe_id
+                    subprobe_scores.append(Sample(score, parent=ref))
+
+            # Fetching metadata from the probe
+            kwargs = dict(
+                (metadata, sampleset.__dict__[metadata])
+                for metadata in sampleset.__dict__.keys()
+                if metadata not in ["samples", "key", "data", "load", "_data"]
+            )
+            subprobe = SampleSet(subprobe_scores, parent=parent, **kwargs)
             retval.append(subprobe)
 
         return retval
@@ -245,26 +259,23 @@ class Database(metaclass=ABCMeta):
         pass
 
 
-def make_four_colums_score(
-    biometric_reference_subject, probe_subject, probe_path, score,
-):
-    data = "{0} {1} {2} {3}\n".format(
-        biometric_reference_subject, probe_subject, probe_path, score,
-    )
-    return data
-
-
-def create_score_delayed_sample(path, probe):
+class ScoreWriter(metaclass=ABCMeta):
     """
-    Write scores in the four columns format
+    Defines base methods to read, write scores and concatenate scores
+    for :any:`BioAlgorithm`
     """
 
-    with open(path, "w") as f:
-        for score_line in probe.samples:
-            f.write(score_line.data)
+    def __init__(self, extension=".txt"):
+        self.extension = extension
 
-    def load():
-        with open(path) as f:
-            return f.read()
+    @abstractmethod
+    def write(self, sampleset, path):
+        pass
 
-    return DelayedSample(load, parent=probe)
+    @abstractmethod
+    def read(self, path):
+        pass
+
+    @abstractmethod
+    def concatenate_write_scores(self, sampleset, path):
+        pass
diff --git a/bob/bio/base/pipelines/vanilla_biometrics/implemented.py b/bob/bio/base/pipelines/vanilla_biometrics/biometric_algorithms.py
similarity index 94%
rename from bob/bio/base/pipelines/vanilla_biometrics/implemented.py
rename to bob/bio/base/pipelines/vanilla_biometrics/biometric_algorithms.py
index f77e66d3386f35a44674d7944b51dbf92053ae2b..233c9863d7b07c98216f068922cfc45be3acf58a 100644
--- a/bob/bio/base/pipelines/vanilla_biometrics/implemented.py
+++ b/bob/bio/base/pipelines/vanilla_biometrics/biometric_algorithms.py
@@ -2,8 +2,10 @@ import scipy.spatial.distance
 from sklearn.utils.validation import check_array
 import numpy
 from .abstract_classes import BioAlgorithm
-from .mixins import BioAlgCheckpointMixin
 from scipy.spatial.distance import cdist
+import os
+from bob.pipelines import DelayedSample, Sample, SampleSet
+import functools
 
 
 class Distance(BioAlgorithm):
@@ -69,7 +71,3 @@ class Distance(BioAlgorithm):
         )
 
         return list(scores.flatten())
-
-
-class CheckpointDistance(BioAlgCheckpointMixin, Distance):
-    pass
diff --git a/bob/bio/base/pipelines/vanilla_biometrics/legacy.py b/bob/bio/base/pipelines/vanilla_biometrics/legacy.py
index bcf9840bd6e7c8dc7b570cb48756526730b89236..f1279b05e34030e2b3b5a300639fdfc833c843cf 100644
--- a/bob/bio/base/pipelines/vanilla_biometrics/legacy.py
+++ b/bob/bio/base/pipelines/vanilla_biometrics/legacy.py
@@ -11,17 +11,16 @@ from bob.bio.base import utils
 from .abstract_classes import (
     BioAlgorithm,
     Database,
-    create_score_delayed_sample,
-    make_four_colums_score,
 )
 from bob.io.base import HDF5File
-from bob.pipelines.mixins import SampleMixin, CheckpointMixin
-from bob.pipelines.sample import DelayedSample, SampleSet, Sample
-from bob.pipelines.utils import is_picklable
-from sklearn.base import TransformerMixin, BaseEstimator
+from bob.pipelines import DelayedSample, SampleSet, Sample
 import logging
 import copy
 
+from .score_writers import FourColumnsScoreWriter
+
+from bob.bio.base.algorithm import Algorithm
+
 logger = logging.getLogger("bob.bio.base")
 
 
@@ -157,276 +156,106 @@ class DatabaseConnector(Database):
         return list(probes.values())
 
 
-class _NonPickableWrapper:
-    def __init__(self, callable, **kwargs):
-        super().__init__(**kwargs)
-        self.callable = callable
-        self._instance = None
-
-    @property
-    def instance(self):
-        if self._instance is None:
-            self._instance = self.callable()
-        return self._instance
+class BioAlgorithmLegacy(BioAlgorithm):
+    """Biometric Algorithm that handlesy :any:`bob.bio.base.algorithm.Algorithm`
 
-    def __setstate__(self, d):
-        # Handling unpicklable objects
-        self._instance = None
-        # return super().__setstate__(d)
+    In this design, :any:`BioAlgorithm.enroll` maps to :any:`bob.bio.base.algorithm.Algorithm.enroll` and 
+    :any:`BioAlgorithm.score` maps :any:`bob.bio.base.algorithm.Algorithm.score`
+    
+    .. note::
+        Legacy algorithms are always checkpointable     
 
-    def __getstate__(self):
-        # Handling unpicklable objects
-        self._instance = None
-        # return super().__getstate__()
 
-
-class _Preprocessor(_NonPickableWrapper, TransformerMixin, BaseEstimator):
-    def transform(self, X, annotations=None):
-        if annotations is None:
-            return [self.instance(data) for data in X]
-        else:
-            return [self.instance(data, annot) for data, annot in zip(X, annotations)]
-
-    def _more_tags(self):
-        return {"stateless": True, "requires_fit": False}
+    Parameters
+    ----------
+      instance: object
+         An instance of :any:`bob.bio.base.algorithm.Algorithm`
 
 
-def _get_pickable_method(method):
-    if not is_picklable(method):
-        logger.warning(
-            f"The method {method} is not picklable. Returning its unbounded method"
-        )
-        method = functools.partial(method.__func__, None)
-    return method
+    Example
+    -------
+        >>> from bob.bio.base.pipelines.vanilla_biometrics import BioAlgorithmLegacy
+        >>> from bob.bio.base.algorithm import PCA
+        >>> biometric_algorithm = BioAlgorithmLegacy(PCA())
 
+    """
 
-class Preprocessor(CheckpointMixin, SampleMixin, _Preprocessor):
     def __init__(
         self,
-        callable,
-        transform_extra_arguments=(("annotations", "annotations"),),
+        instance,
+        base_dir,
+        force=False,
+        projector_file=None,
+        score_writer=FourColumnsScoreWriter(),
         **kwargs,
     ):
-        instance = callable()
-        super().__init__(
-            callable=callable,
-            transform_extra_arguments=transform_extra_arguments,
-            load_func=_get_pickable_method(instance.read_data),
-            save_func=_get_pickable_method(instance.write_data),
-            **kwargs,
-        )
-
-
-def _split_X_by_y(X, y):
-    training_data = defaultdict(list)
-    for x1, y1 in zip(X, y):
-        training_data[y1].append(x1)
-    training_data = training_data.values()
-    return training_data
-
-
-class _Extractor(_NonPickableWrapper, TransformerMixin, BaseEstimator):
-    def transform(self, X, metadata=None):
-        if self.requires_metadata:
-            return [self.instance(data, metadata=m) for data, m in zip(X, metadata)]
-        else:
-            return [self.instance(data) for data in X]
-
-    def fit(self, X, y=None):
-        if not self.instance.requires_training:
-            return self
-
-        training_data = X
-        if self.instance.split_training_data_by_client:
-            training_data = _split_X_by_y(X, y)
-
-        self.instance.train(self, training_data, self.model_path)
-        return self
-
-    def _more_tags(self):
-        return {
-            "requires_fit": self.instance.requires_training,
-            "stateless": not self.instance.requires_training,
-        }
-
-
-class Extractor(CheckpointMixin, SampleMixin, _Extractor):
-    def __init__(self, callable, model_path=None, **kwargs):
-        instance = callable()
-
-        transform_extra_arguments = None
-        self.requires_metadata = False
-        if utils.is_argument_available("metadata", instance.__call__):
-            transform_extra_arguments = (("metadata", "metadata"),)
-            self.requires_metadata = True
-
-        fit_extra_arguments = None
-        if instance.requires_training and instance.split_training_data_by_client:
-            fit_extra_arguments = (("y", "subject"),)
-
-        super().__init__(
-            callable=callable,
-            transform_extra_arguments=transform_extra_arguments,
-            fit_extra_arguments=fit_extra_arguments,
-            load_func=_get_pickable_method(instance.read_feature),
-            save_func=_get_pickable_method(instance.write_feature),
-            model_path=model_path,
-            **kwargs,
-        )
-
-    def load_model(self):
-        self.instance.load(self.model_path)
-        return self
-
-    def save_model(self):
-        # we have already saved the model in .fit()
-        return self
-
-
-class _AlgorithmTransformer(_NonPickableWrapper, TransformerMixin, BaseEstimator):
-    def transform(self, X):
-        return [self.instance.project(feature) for feature in X]
-
-    def fit(self, X, y=None):
-        if not self.instance.requires_projector_training:
-            return self
-
-        training_data = X
-        if self.instance.split_training_features_by_client:
-            training_data = _split_X_by_y(X, y)
-
-        self.instance.train_projector(training_data, self.model_path)
-        return self
-
-    def _more_tags(self):
-        return {"requires_fit": self.instance.requires_projector_training}
-
+        super().__init__(**kwargs)
 
-class AlgorithmAsTransformer(CheckpointMixin, SampleMixin, _AlgorithmTransformer):
-    """Class that wraps :py:class:`bob.bio.base.algorithm.Algoritm`
+        if not isinstance(instance, Algorithm):
+            raise ValueError(
+                f"Only `bob.bio.base.Algorithm` supported, not `{instance}`"
+            )
+        logger.info(f"Using `bob.bio.base` legacy algorithm {instance}")
 
-    :py:method:`LegacyAlgorithmrMixin.fit` maps to :py:method:`bob.bio.base.algorithm.Algoritm.train_projector`
+        if instance.requires_projector_training and projector_file is None:
+            raise ValueError(f"{instance} requires a `projector_file` to be set")
 
-    :py:method:`LegacyAlgorithmrMixin.transform` maps :py:method:`bob.bio.base.algorithm.Algoritm.project`
+        self.instance = instance
+        self.is_background_model_loaded = False
 
-    Example
-    -------
+        self.projector_file = projector_file
+        self.biometric_reference_dir = os.path.join(base_dir, "biometric_references")
+        self._biometric_reference_extension = ".hdf5"
+        self.score_dir = os.path.join(base_dir, "scores")
+        self.score_writer = score_writer
+        self.force = force
 
-        Wrapping LDA algorithm with functtools
-        >>> from bob.bio.base.pipelines.vanilla_biometrics.legacy import LegacyAlgorithmAsTransformer
-        >>> from bob.bio.base.algorithm import LDA
-        >>> import functools
-        >>> transformer = LegacyAlgorithmAsTransformer(functools.partial(LDA, use_pinv=True, pca_subspace_dimension=0.90))
+    def load_legacy_background_model(self):
+        # Loading background model
+        if not self.is_background_model_loaded:
+            self.instance.load_projector(self.projector_file)
+            self.is_background_model_loaded = True
 
+    def enroll(self, enroll_features, **kwargs):
+        self.load_legacy_background_model()
+        return self.instance.enroll(enroll_features)
 
+    def score(self, biometric_reference, data, **kwargs):
+        self.load_legacy_background_model()
+        scores = self.instance.score(biometric_reference, data)
+        if isinstance(scores, list):
+            scores = self.instance.probe_fusion_function(scores)
+        return scores
 
-    Parameters
-    ----------
-      callable: callable
-         Calleble function that instantiates the bob.bio.base.algorithm.Algorithm
+    def score_multiple_biometric_references(self, biometric_references, data, **kwargs):
+        scores = self.instance.score_for_multiple_models(biometric_references, data)
+        return scores
 
-    """
+    def write_biometric_reference(self, sample, path):
+        os.makedirs(os.path.dirname(path), exist_ok=True)
+        self.instance.write_model(sample.data, path)
 
-    def __init__(self, callable, model_path, **kwargs):
-        instance = callable()
-
-        fit_extra_arguments = None
-        if (
-            instance.requires_projector_training
-            and instance.split_training_features_by_client
-        ):
-            fit_extra_arguments = (("y", "subject"),)
-
-        super().__init__(
-            callable=callable,
-            fit_extra_arguments=fit_extra_arguments,
-            load_func=_get_pickable_method(instance.read_feature),
-            save_func=_get_pickable_method(instance.write_feature),
-            model_path=model_path,
-            **kwargs,
+    def _enroll_sample_set(self, sampleset):
+        """
+        Enroll a sample set with checkpointing
+        """
+        # Amending `models` directory
+        path = os.path.join(
+            self.biometric_reference_dir,
+            str(sampleset.key) + self._biometric_reference_extension,
         )
 
-    def load_model(self):
-        self.instance.load_projector(self.model_path)
-        return self
-
-    def save_model(self):
-        # we have already saved the model in .fit()
-        return self
-
-
-class AlgorithmAsBioAlg(_NonPickableWrapper, BioAlgorithm):
-    """Biometric Algorithm that handles legacy :py:class:`bob.bio.base.algorithm.Algorithm`
-
-
-    :py:method:`BioAlgorithm.enroll` maps to :py:method:`bob.bio.base.algorithm.Algoritm.enroll`
-
-    :py:method:`BioAlgorithm.score` maps :py:method:`bob.bio.base.algorithm.Algoritm.score`
-
-
-    Example
-    -------
+        if self.force or not os.path.exists(path):
+            enrolled_sample = super()._enroll_sample_set(sampleset)
 
+            # saving the new sample
+            self.write_biometric_reference(enrolled_sample, path)
 
-    Parameters
-    ----------
-      callable: callable
-         Calleble function that instantiates the bob.bio.base.algorithm.Algorithm
-
-    """
-
-    def __init__(
-        self, callable, features_dir, extension=".hdf5", model_path=None, **kwargs
-    ):
-        super().__init__(callable, **kwargs)
-        self.features_dir = features_dir
-        self.biometric_reference_dir = os.path.join(
-            self.features_dir, "biometric_references"
+        delayed_enrolled_sample = DelayedSample(
+            functools.partial(self.instance.read_model, path), parent=sampleset
         )
-        self.score_dir = os.path.join(self.features_dir, "scores")
-        self.extension = extension
-        self.model_path = model_path
-        self.is_projector_loaded = False
-
-    def _enroll_sample_set(self, sampleset):
-        # Enroll
-        return self.enroll(sampleset)
-
-    def _load_projector(self):
-        """
-        Run :py:meth:`bob.bio.base.algorithm.Algorithm.load_projector` if necessary by
-        :py:class:`bob.bio.base.algorithm.Algorithm`
-        """
-        if self.instance.performs_projection and not self.is_projector_loaded:
-            if self.model_path is None:
-                raise ValueError(
-                    "Algorithm " + f"{self. instance} performs_projection. Hence, "
-                    "`model_path` needs to passed in `AlgorithmAsBioAlg.__init__`"
-                )
-            else:
-                # Loading model
-                self.instance.load_projector(self.model_path)
-                self.is_projector_loaded = True
 
-    def _restore_state_of_ref(self, ref):
-        """
-        There are some algorithms that :py:meth:`bob.bio.base.algorithm.Algorithm.read_model` or 
-        :py:meth:`bob.bio.base.algorithm.Algorithm.read_feature` depends
-        on the state of `self` to be properly loaded.
-        In these cases, it's not possible to rely only in the unbounded method extracted by
-        :py:func:`_get_pickable_method`.
-
-        This function replaces the current state of these objects (that are not)
-        by bounding them with `self.instance`
-        """
-        
-        if isinstance(ref, DelayedSample):
-            new_ref = copy.copy(ref)
-
-            new_ref.load = functools.partial(ref.load.func, self.instance, ref.load.args[1])
-            return new_ref
-        else:
-            return ref
+        return delayed_enrolled_sample
 
     def _score_sample_set(
         self,
@@ -434,105 +263,14 @@ class AlgorithmAsBioAlg(_NonPickableWrapper, BioAlgorithm):
         biometric_references,
         allow_scoring_with_all_biometric_references=False,
     ):
-        """Given a sampleset for probing, compute the scores and retures a sample set with the scores
-        """
-
-        # Compute scores for each sample inside of the sample set
-        # TODO: In some cases we want to compute 1 score per sampleset (IJB-C)
-        # We should add an agregator function here so we can properlly agregate samples from
-        # a sampleset either after or before scoring.
-        # To be honest, this should be the default behaviour
-
-        def _write_sample(ref, probe, score):
-            data = make_four_colums_score(ref.subject, probe.subject, probe.path, score)
-            return Sample(data, parent=ref)
-
-        self._load_projector()
-        retval = []
-
-        for subprobe_id, s in enumerate(sampleset.samples):
-            # Creating one sample per comparison
-            subprobe_scores = []
-
-            if allow_scoring_with_all_biometric_references:
-                if self.stacked_biometric_references is None:
-
-                    if self.instance.performs_projection:
-                        # Hydrating the state of biometric references 
-                        biometric_references = [
-                            self._restore_state_of_ref(ref)
-                            for ref in biometric_references
-                        ]
-
-                    self.stacked_biometric_references = [
-                        ref.data for ref in biometric_references
-                    ]
-
-                s = self._restore_state_of_ref(s)
-                scores = self.score_multiple_biometric_references(
-                    self.stacked_biometric_references, s.data
-                )
-                # Wrapping the scores in samples
-                for ref, score in zip(biometric_references, scores):
-                    subprobe_scores.append(_write_sample(ref, sampleset, score))
-
-            else:
-                for ref in [
-                    r for r in biometric_references if r.key in sampleset.references
-                ]:
-                    ref = self._restore_state_of_ref(ref)
-                    score = self.score(ref.data, s.data)
-                    subprobe_scores.append(_write_sample(ref, sampleset, score))
-
-            # Creating one sampleset per probe
-            subprobe = SampleSet(subprobe_scores, parent=sampleset)
-            subprobe.subprobe_id = subprobe_id
-
-            # Checkpointing score MANDATORY FOR LEGACY
-            path = os.path.join(self.score_dir, str(subprobe.path) + ".txt")
-            os.makedirs(os.path.dirname(path), exist_ok=True)
-
-            delayed_scored_sample = create_score_delayed_sample(path, subprobe)
-            subprobe.samples = [delayed_scored_sample]
-
-            retval.append(subprobe)
-
-        return retval
-
-    def enroll(self, enroll_features, **kwargs):
-
-        if not isinstance(enroll_features, SampleSet):
-            raise ValueError(
-                f"`enroll_features` should be the type SampleSet, not {enroll_features}"
-            )
-
-        path = os.path.join(
-            self.biometric_reference_dir, str(enroll_features.key) + self.extension
+        path = os.path.join(self.score_dir, str(sampleset.key))
+        # Computing score
+        scored_sample_set = super()._score_sample_set(
+            sampleset,
+            biometric_references,
+            allow_scoring_with_all_biometric_references=allow_scoring_with_all_biometric_references,
         )
-        self._load_projector()
-        if path is None or not os.path.isfile(path):
-            # Enrolling
-            data = [s.data for s in enroll_features.samples]
-            model = self.instance.enroll(data)
 
-            # Checkpointing
-            os.makedirs(os.path.dirname(path), exist_ok=True)
-            self.instance.write_model(model, path)
+        scored_sample_set = self.score_writer.write(scored_sample_set, path)
 
-        reader = _get_pickable_method(self.instance.read_model)
-        return DelayedSample(functools.partial(reader, path), parent=enroll_features)
-
-    def score(self, biometric_reference, data, **kwargs):
-        return self.instance.score(biometric_reference, data)
-
-    def score_multiple_biometric_references(self, biometric_references, data, **kwargs):
-        """
-        It handles the score computation of one probe against multiple biometric references using legacy
-        `bob.bio.base`
-
-        Basically it wraps :py:meth:`bob.bio.base.algorithm.Algorithm.score_for_multiple_models`.
-
-        """
-
-        scores = self.instance.score_for_multiple_models(biometric_references, data)
-        return scores
+        return scored_sample_set
diff --git a/bob/bio/base/pipelines/vanilla_biometrics/mixins.py b/bob/bio/base/pipelines/vanilla_biometrics/mixins.py
deleted file mode 100644
index d21bc9c8f1bed30560639db35a0cdac8b525413d..0000000000000000000000000000000000000000
--- a/bob/bio/base/pipelines/vanilla_biometrics/mixins.py
+++ /dev/null
@@ -1,122 +0,0 @@
-from bob.pipelines.mixins import CheckpointMixin
-from bob.pipelines.sample import DelayedSample
-import bob.io.base
-import os
-import functools
-import dask
-from .abstract_classes import create_score_delayed_sample
-
-
-class BioAlgCheckpointMixin(CheckpointMixin):
-    """Mixing used to checkpoint Enrolled and Scoring samples.
-
-    Examples
-    --------
-
-    >>> from bob.bio.base.pipelines.vanilla_biometrics.biometric_algorithm import BioAlgCheckpointMixin, Distance
-    >>> class DistanceCheckpoint(BioAlgCheckpointMixin, Distance) pass:
-    >>> biometric_algorithm = DistanceCheckpoint(features_dir="./")
-    >>> biometric_algorithm.enroll(sample)
-
-    It's possible to use it as with the :py:func:`bob.pipelines.mixins.mix_me_up`
-
-    >>> from bob.pipelines.mixins import mix_me_up
-    >>> biometric_algorithm = mix_me_up([BioAlgCheckpointMixin], Distance)(features_dir="./")
-    >>> biometric_algorithm.enroll(sample)
-
-    """
-
-    def __init__(self, features_dir="", **kwargs):
-        super().__init__(features_dir=features_dir, **kwargs)
-        self.biometric_reference_dir = os.path.join(
-            features_dir, "biometric_references"
-        )
-        self.score_dir = os.path.join(features_dir, "scores")
-
-    def save(self, sample, path):
-        return bob.io.base.save(sample.data, path, create_directories=True)
-
-    def _enroll_sample_set(self, sampleset):
-        """
-        Enroll a sample set with checkpointing
-        """
-
-        # Amending `models` directory
-        path = os.path.join(
-            self.biometric_reference_dir, str(sampleset.key) + self.extension
-        )
-        if path is None or not os.path.isfile(path):
-
-            # Enrolling the sample
-            enrolled_sample = super()._enroll_sample_set(sampleset)
-
-            # saving the new sample
-            self.save(enrolled_sample, path)
-
-            # Dealaying it.
-            # This seems inefficient, but it's crucial for large datasets
-            delayed_enrolled_sample = DelayedSample(
-                functools.partial(bob.io.base.load, path), enrolled_sample
-            )
-
-        else:
-            # If sample already there, just load
-            delayed_enrolled_sample = self.load(sampleset, path)
-
-        return delayed_enrolled_sample
-
-    def _score_sample_set(
-        self,
-        sampleset,
-        biometric_references,
-        allow_scoring_with_all_biometric_references=False
-    ):
-        """Given a sampleset for probing, compute the scores and retures a sample set with the scores
-        """
-
-        # Computing score
-        scored_sample_set = super()._score_sample_set(
-            sampleset,
-            biometric_references,
-            allow_scoring_with_all_biometric_references=allow_scoring_with_all_biometric_references,
-        )
-        for s in scored_sample_set:
-            # Checkpointing score
-            path = os.path.join(self.score_dir, str(s.path) + ".txt")
-            os.makedirs(os.path.dirname(path), exist_ok=True)
-
-            delayed_scored_sample = create_score_delayed_sample(path, s)
-            s.samples = [delayed_scored_sample]
-
-        return scored_sample_set
-
-
-class BioAlgDaskMixin:
-    def enroll_samples(self, biometric_reference_features):
-        biometric_references = biometric_reference_features.map_partitions(
-            super().enroll_samples
-        )
-        return biometric_references
-
-    def score_samples(
-        self,
-        probe_features,
-        biometric_references,
-        allow_scoring_with_all_biometric_references=False,
-    ):
-
-        # TODO: Here, we are sending all computed biometric references to all
-        # probes.  It would be more efficient if only the models related to each
-        # probe are sent to the probing split.  An option would be to use caching
-        # and allow the ``score`` function above to load the required data from
-        # the disk, directly.  A second option would be to generate named delays
-        # for each model and then associate them here.
-
-        all_references = dask.delayed(list)(biometric_references)
-
-        scores = probe_features.map_partitions(
-            super().score_samples,
-            all_references,
-            allow_scoring_with_all_biometric_references=allow_scoring_with_all_biometric_references,
-        )
-        return scores
diff --git a/bob/bio/base/pipelines/vanilla_biometrics/pipeline.py b/bob/bio/base/pipelines/vanilla_biometrics/pipelines.py
similarity index 85%
rename from bob/bio/base/pipelines/vanilla_biometrics/pipeline.py
rename to bob/bio/base/pipelines/vanilla_biometrics/pipelines.py
index c5d0cbf487c708d2b8d6a8e5ef01cfecbc8fa897..434c5208cb168d0d02094438e8454f95d17674b6 100644
--- a/bob/bio/base/pipelines/vanilla_biometrics/pipeline.py
+++ b/bob/bio/base/pipelines/vanilla_biometrics/pipelines.py
@@ -14,7 +14,7 @@ import numpy
 logger = logging.getLogger(__name__)
 
 
-class VanillaBiometrics(object):
+class VanillaBiometricsPipeline(object):
     """
     Vanilla Biometrics Pipeline
 
@@ -120,7 +120,7 @@ class VanillaBiometrics(object):
         biometric_reference_features = self.transformer.transform(
             biometric_reference_samples
         )
-
+        
         biometric_references = self.biometric_algorithm.enroll_samples(
             biometric_reference_features
         )
@@ -137,7 +137,7 @@ class VanillaBiometrics(object):
 
         # probes is a list of SampleSets
         probe_features = self.transformer.transform(probe_samples)
-
+        
         scores = self.biometric_algorithm.score_samples(
             probe_features,
             biometric_references,
@@ -146,28 +146,3 @@ class VanillaBiometrics(object):
 
         # scores is a list of Samples
         return scores
-
-
-def dask_vanilla_biometrics(pipeline, npartitions=None):
-    """
-    Given a :py:class:`VanillaBiometrics`, wraps :py:meth:`VanillaBiometrics.transformer` and
-    :py:class:`VanillaBiometrics.biometric_algorithm` with Dask delayeds
-
-    Parameters
-    ----------
-
-    pipeline: :py:class:`VanillaBiometrics`
-       Vanilla Biometrics based pipeline to be dasked
-
-
-    npartitions: int
-       Number of partitions for the initial `Dask.bag`
-    """
-
-    from bob.pipelines.mixins import estimator_dask_it, mix_me_up
-    from bob.bio.base.pipelines.vanilla_biometrics.mixins import BioAlgDaskMixin
-
-    transformer = estimator_dask_it(pipeline.transformer, npartitions=npartitions)
-    biometric_algorithm = mix_me_up([BioAlgDaskMixin], pipeline.biometric_algorithm)
-
-    return VanillaBiometrics(transformer, biometric_algorithm)
diff --git a/bob/bio/base/pipelines/vanilla_biometrics/score_writers.py b/bob/bio/base/pipelines/vanilla_biometrics/score_writers.py
new file mode 100644
index 0000000000000000000000000000000000000000..2574406cbce7211d22d17560c843afaeaf19a400
--- /dev/null
+++ b/bob/bio/base/pipelines/vanilla_biometrics/score_writers.py
@@ -0,0 +1,185 @@
+#!/usr/bin/env python
+# vim: set fileencoding=utf-8 :
+
+
+import os
+from bob.pipelines import SampleSet, DelayedSample
+from .abstract_classes import ScoreWriter
+import functools
+import csv
+
+
+class FourColumnsScoreWriter(ScoreWriter):
+    """
+    Read and write scores using the four columns format
+    :any:`bob.bio.base.score.load.four_column`
+    """
+
+    def write(self, probe_sampleset, path):
+        """
+        Write scores and returns a :any:`bob.pipelines.DelayedSample` containing
+        the instruction to open the score file
+        """
+        os.makedirs(path, exist_ok=True)
+        checkpointed_scores = []
+
+        for probe in probe_sampleset:
+
+            lines = [
+                "{0} {1} {2} {3}\n".format(
+                    biometric_reference.subject,
+                    probe.subject,
+                    probe.key,
+                    biometric_reference.data,
+                )
+                for biometric_reference in probe
+            ]
+            filename = os.path.join(path, str(probe.subject)) + ".txt"
+            open(filename, "w").writelines(lines)
+            checkpointed_scores.append(
+                SampleSet(
+                    [
+                        DelayedSample(
+                            functools.partial(self.read, filename), parent=probe
+                        )
+                    ],
+                    parent=probe,
+                )
+            )
+        return checkpointed_scores
+
+    def read(self, path):
+        """
+        Base Instruction to load a score file
+        """
+        return open(path).readlines()
+
+    def concatenate_write_scores(self, samplesets_list, filename):
+        """
+        Given a list of samplsets, write them all in a single file
+        """
+        os.makedirs(os.path.dirname(filename), exist_ok=True)
+        f = open(filename, "w")
+        for samplesets in samplesets_list:
+            for sset in samplesets:
+                for s in sset:
+                    f.writelines(s.data)
+
+
+class CSVScoreWriter(ScoreWriter):
+    """
+    Read and write scores in CSV format, shipping all metadata with the scores    
+
+    Parameters
+    ----------
+
+    n_sample_sets: 
+        Number of samplesets in one chunk
+
+    """
+
+    def __init__(self, n_sample_sets=1000):
+        self.n_sample_sets = n_sample_sets
+
+    def write(self, probe_sampleset, path):
+        """
+        Write scores and returns a :any:`bob.pipelines.DelayedSample` containing
+        the instruction to open the score file
+        """
+
+        exclude_list = ["samples", "key", "data", "load", "_data", "references"]
+
+        def create_csv_header(probe_sampleset):
+            first_biometric_reference = probe_sampleset[0]
+
+            probe_dict = dict(
+                (k, f"probe_{k}")
+                for k in probe_sampleset.__dict__.keys()
+                if k not in exclude_list
+            )
+
+            bioref_dict = dict(
+                (k, f"bio_ref_{k}")
+                for k in first_biometric_reference.__dict__.keys()
+                if k not in exclude_list
+            )
+
+            header = (
+                ["probe_key"]
+                + [probe_dict[k] for k in probe_dict]
+                + [bioref_dict[k] for k in bioref_dict]
+                + ["score"]
+            )
+            return header, probe_dict, bioref_dict
+
+        os.makedirs(path, exist_ok=True)
+        checkpointed_scores = []
+
+        header, probe_dict, bioref_dict = create_csv_header(probe_sampleset[0])
+
+        for probe in probe_sampleset:
+            filename = os.path.join(path, str(probe.subject)) + ".csv"
+            with open(filename, "w") as f:
+
+                csv_write = csv.writer(f)
+                csv_write.writerow(header)
+
+                rows = []
+                probe_row = [str(probe.key)] + [
+                    str(probe.__dict__[k]) for k in probe_dict.keys()
+                ]
+
+                for biometric_reference in probe:
+                    bio_ref_row = [
+                        str(biometric_reference.__dict__[k])
+                        for k in list(bioref_dict.keys()) + ["data"]
+                    ]
+
+                    rows.append(probe_row + bio_ref_row)
+
+                csv_write.writerows(rows)
+                checkpointed_scores.append(
+                    SampleSet(
+                        [
+                            DelayedSample(
+                                functools.partial(self.read, filename), parent=probe
+                            )
+                        ],
+                        parent=probe,
+                    )
+                )
+        return checkpointed_scores
+
+    def read(self, path):
+        """
+        Base Instruction to load a score file
+        """
+        return open(path).readlines()
+
+    def concatenate_write_scores(self, samplesets_list, filename):
+        """
+        Given a list of samplsets, write them all in a single file
+        """
+
+        # CSV files tends to be very big
+        # here, here we write them in chunks
+
+        base_dir = os.path.splitext(filename)[0]
+        os.makedirs(base_dir, exist_ok=True)
+        f = None
+        for i, samplesets in enumerate(samplesets_list):
+            if i% self.n_sample_sets==0:
+                if f is not None:
+                    f.close()
+                    del f
+
+                filename = os.path.join(base_dir, f"chunk_{i}.csv")
+                f = open(filename, "w")
+
+            for sset in samplesets:
+                for s in sset:
+                    if i==0:
+                        f.writelines(s.data)
+                    else:
+                        f.writelines(s.data[1:])
+            samplesets_list[i] = None
\ No newline at end of file
diff --git a/bob/bio/base/pipelines/vanilla_biometrics/wrappers.py b/bob/bio/base/pipelines/vanilla_biometrics/wrappers.py
new file mode 100644
index 0000000000000000000000000000000000000000..973039625200b4af245d1b8352637ea1d22fafcb
--- /dev/null
+++ b/bob/bio/base/pipelines/vanilla_biometrics/wrappers.py
@@ -0,0 +1,193 @@
+from bob.pipelines import DelayedSample
+import bob.io.base
+import os
+import dask
+import functools
+from .score_writers import FourColumnsScoreWriter
+from .abstract_classes import BioAlgorithm
+
+import bob.pipelines as mario
+
+
+class BioAlgorithmCheckpointWrapper(BioAlgorithm):
+    """Wrapper used to checkpoint enrolled and Scoring samples.
+
+    Parameters
+    ----------
+        biometric_algorithm: :any:`BioAlgorithm`
+           An implemented :any:`BioAlgorithm`
+    
+        base_dir: str
+           Path to store biometric references and scores
+        
+        extension: str
+            File extension
+
+        score_writer: :any:`bob.bio.base.pipelines.vanilla_biometrics.abstract_classe.ScoreWriter`
+            Format to write scores. Default to :any:`FourColumnsScoreWriter`
+
+        force: bool
+          If True, will recompute scores and biometric references no matter if a file exists
+
+    Examples
+    --------
+
+    >>> from bob.bio.base.pipelines.vanilla_biometrics.biometric_algorithm import BioAlgCheckpointWrapper, Distance    
+    >>> biometric_algorithm = BioAlgCheckpointWrapper(Distance(), base_dir="./")
+    >>> biometric_algorithm.enroll(sample)
+
+    """
+
+    def __init__(
+        self,
+        biometric_algorithm,
+        base_dir,
+        score_writer=FourColumnsScoreWriter(),
+        force=False,
+        **kwargs
+    ):
+        super().__init__(**kwargs)
+
+        self.biometric_reference_dir = os.path.join(base_dir, "biometric_references")
+        self.score_dir = os.path.join(base_dir, "scores")
+        self.biometric_algorithm = biometric_algorithm
+        self.force = force
+        self._biometric_reference_extension = ".hdf5"
+        self.score_writer = score_writer
+
+    def enroll(self, enroll_features):
+        return self.biometric_algorithm.enroll(enroll_features)
+
+    def score(self, biometric_reference, data):
+        return self.biometric_algorithm.score(biometric_reference, data)
+
+    def score_multiple_biometric_references(self, biometric_references, data):
+        return self.biometric_algorithm.score_multiple_biometric_references(
+            biometric_references, data
+        )
+
+    def write_biometric_reference(self, sample, path):
+        return bob.io.base.save(sample.data, path, create_directories=True)
+
+    def _enroll_sample_set(self, sampleset):
+        """
+        Enroll a sample set with checkpointing
+        """
+
+        # Amending `models` directory
+        path = os.path.join(
+            self.biometric_reference_dir,
+            str(sampleset.key) + self._biometric_reference_extension,
+        )
+        if self.force or not os.path.exists(path):
+
+            enrolled_sample = self.biometric_algorithm._enroll_sample_set(sampleset)
+
+            # saving the new sample
+            self.write_biometric_reference(enrolled_sample, path)
+
+        # This seems inefficient, but it's crucial for large datasets
+        delayed_enrolled_sample = DelayedSample(
+            functools.partial(bob.io.base.load, path), parent=sampleset
+        )
+
+        return delayed_enrolled_sample
+
+    def _score_sample_set(
+        self,
+        sampleset,
+        biometric_references,
+        allow_scoring_with_all_biometric_references=False,
+    ):
+        """Given a sampleset for probing, compute the scores and returns a sample set with the scores
+        """
+
+        # TODO: WE CAN'T REUSE THE ALREADY WRITTEN SCORE FILE FOR LOADING
+        #       UNLESS WE SAVE THE PICKLED SAMPLESET WITH THE SCORES
+
+        path = os.path.join(self.score_dir, str(sampleset.key))
+
+        # Computing score
+        scored_sample_set = self.biometric_algorithm._score_sample_set(
+            sampleset,
+            biometric_references,
+            allow_scoring_with_all_biometric_references=allow_scoring_with_all_biometric_references,
+        )
+
+        scored_sample_set = self.score_writer.write(scored_sample_set, path)
+
+        return scored_sample_set
+
+
+class BioAlgorithmDaskWrapper(BioAlgorithm):
+    def __init__(self, biometric_algorithm, **kwargs):
+        self.biometric_algorithm = biometric_algorithm
+        # Copying attribute
+        if hasattr(biometric_algorithm, "score_writer"):
+            self.score_writer = biometric_algorithm.score_writer
+
+    def enroll_samples(self, biometric_reference_features):
+
+        biometric_references = biometric_reference_features.map_partitions(
+            self.biometric_algorithm.enroll_samples
+        )
+        return biometric_references
+
+    def score_samples(
+        self,
+        probe_features,
+        biometric_references,
+        allow_scoring_with_all_biometric_references=False,
+    ):
+
+        # TODO: Here, we are sending all computed biometric references to all
+        # probes.  It would be more efficient if only the models related to each
+        # probe are sent to the probing split.  An option would be to use caching
+        # and allow the ``score`` function above to load the required data from
+        # the disk, directly.  A second option would be to generate named delays
+        # for each model and then associate them here.
+
+        all_references = dask.delayed(list)(biometric_references)
+
+        scores = probe_features.map_partitions(
+            self.biometric_algorithm.score_samples,
+            all_references,
+            allow_scoring_with_all_biometric_references=allow_scoring_with_all_biometric_references,
+        )
+        return scores
+
+    def enroll(self, data):
+        return self.biometric_algorithm.enroll(data)
+
+    def score(self, biometric_reference, data):
+        return self.biometric_algorithm.score(biometric_reference, data)
+
+    def score_multiple_biometric_references(self, biometric_references, data):
+        return self.biometric_algorithm.score_multiple_biometric_references(
+            biometric_references, data
+        )
+
+
+def dask_vanilla_biometrics(vanila_biometrics_pipeline, npartitions=None):
+    """
+    Given a :any:`VanillaBiometrics`, wraps :any:`VanillaBiometrics.transformer` and
+    :any:`VanillaBiometrics.biometric_algorithm` to be executed with dask
+
+    Parameters
+    ----------
+
+    vanila_biometrics_pipeline: :any:`VanillaBiometrics`
+       Vanilla Biometrics based pipeline to be dasked
+
+    npartitions: int
+       Number of partitions for the initial :any:`dask.bag`
+    """
+
+    vanila_biometrics_pipeline.transformer = mario.wrap(
+        ["dask"], vanila_biometrics_pipeline.transformer, npartitions=npartitions
+    )
+    vanila_biometrics_pipeline.biometric_algorithm = BioAlgorithmDaskWrapper(
+        vanila_biometrics_pipeline.biometric_algorithm
+    )
+
+    return vanila_biometrics_pipeline
diff --git a/bob/bio/base/script/vanilla_biometrics.py b/bob/bio/base/script/vanilla_biometrics.py
index ea0ad30ec52ce3ea7f6937b890ba2c47f0f97f43..f2f4e71331c995fd938ca06406f97cef46e609a6 100644
--- a/bob/bio/base/script/vanilla_biometrics.py
+++ b/bob/bio/base/script/vanilla_biometrics.py
@@ -14,6 +14,14 @@ from bob.extension.scripts.click_helper import (
 )
 
 import logging
+import os
+import itertools
+import dask.bag
+from bob.bio.base.pipelines.vanilla_biometrics import (
+    VanillaBiometricsPipeline,
+    BioAlgorithmCheckpointWrapper,
+)
+
 
 logger = logging.getLogger(__name__)
 
@@ -77,7 +85,6 @@ TODO: Work out this help
     "-l",
     required=False,
     cls=ResourceOption,
-    entry_point_group="bob.pipelines.client",  # This should be linked to bob.bio.base
     help="Dask client for the execution of the pipeline.",
 )
 @click.option(
@@ -97,9 +104,7 @@ TODO: Work out this help
     help="Name of output directory",
 )
 @verbosity_option(cls=ResourceOption)
-def vanilla_biometrics(
-    pipeline, database, dask_client, groups, output, **kwargs
-):
+def vanilla_biometrics(pipeline, database, dask_client, groups, output, **kwargs):
     """Runs the simplest biometrics pipeline.
 
     Such pipeline consists into three sub-pipelines.
@@ -144,48 +149,47 @@ def vanilla_biometrics(
 
     """
 
-    from bob.bio.base.pipelines.vanilla_biometrics.pipeline import VanillaBiometrics
-    import dask.bag
-    import itertools
-    import os
-    from bob.pipelines.sample import Sample, DelayedSample
-
     if not os.path.exists(output):
         os.makedirs(output, exist_ok=True)
 
     for group in groups:
 
-        with open(os.path.join(output, f"scores-{group}"), "w") as f:
-            biometric_references = database.references(group=group)
-
-            logger.info(f"Running vanilla biometrics for group {group}")
-
-            allow_scoring_with_all_biometric_references = (
-                database.allow_scoring_with_all_biometric_references
-                if hasattr(database, "allow_scoring_with_all_biometric_references")
-                else False
+        score_file_name = os.path.join(output, f"scores-{group}.txt")
+        biometric_references = database.references(group=group)
+
+        logger.info(f"Running vanilla biometrics for group {group}")
+        allow_scoring_with_all_biometric_references = (
+            database.allow_scoring_with_all_biometric_references
+            if hasattr(database, "allow_scoring_with_all_biometric_references")
+            else False
+        )
+
+        result = pipeline(
+            database.background_model_samples(),
+            biometric_references,
+            database.probes(group=group),
+            allow_scoring_with_all_biometric_references=allow_scoring_with_all_biometric_references,
+        )
+
+        if isinstance(result, dask.bag.core.Bag):
+            if dask_client is not None:
+                result = result.compute(scheduler=dask_client)
+            else:
+                logger.warning("`dask_client` not set. Your pipeline will run locally")
+                result = result.compute(scheduler="single-threaded")
+
+        # Check if there's a score writer hooked in        
+        if hasattr(pipeline.biometric_algorithm, "score_writer"):
+            pipeline.biometric_algorithm.score_writer.concatenate_write_scores(
+                result, score_file_name
             )
-
-            result = pipeline(database.background_model_samples(),
-                              biometric_references,
-                              database.probes(group=group),
-                              allow_scoring_with_all_biometric_references=allow_scoring_with_all_biometric_references
-                              )
-
-            if isinstance(result, dask.bag.core.Bag):
-                if dask_client is not None:
-                    result = result.compute(scheduler=dask_client)
-                else:
-                    logger.warning(
-                        "`dask_client` not set. Your pipeline will run locally"
-                    )
-                    result = result.compute(scheduler="single-threaded")
-
-            # Flatting out the list
-            result = itertools.chain(*result)
-            for probe in result:
-                for sample in probe.samples:
-                    f.write(sample.data)
+        else:
+            with open(score_file_name, "w") as f:
+                # Flatting out the list
+                result = itertools.chain(*result)
+                for probe in result:
+                    for sample in probe.samples:
+                        f.writelines(sample.data)
 
     if dask_client is not None:
         dask_client.shutdown()
diff --git a/bob/bio/base/test/test_algorithms.py b/bob/bio/base/test/test_algorithms.py
index 8b03c5e32599244677fe5e2ed5db437680f7a3b7..c023812e3ba32bf8d9d58e4cd2dae4b81b331a44 100644
--- a/bob/bio/base/test/test_algorithms.py
+++ b/bob/bio/base/test/test_algorithms.py
@@ -111,7 +111,7 @@ def test_pca():
   # compare model with probe
   probe = pca1.read_feature(pkg_resources.resource_filename('bob.bio.base.test', 'data/pca_projected.hdf5'))
   reference_score = -251.53563107
-  assert abs(pca1.score(model, probe) - reference_score) < 1e-5, "The scores differ: %3.8f, %3.8f" % (pca1.score(model, probe), reference_score)
+  assert abs(numpy.mean(pca1.score(model, probe)) - reference_score) < 1e-5, "The scores differ: %3.8f, %3.8f" % (pca1.score(model, probe), reference_score)
   assert abs(pca1.score_for_multiple_probes(model, [probe, probe]) - reference_score) < 1e-5
 
   # test the calculation of the subspace dimension based on percentage of variance
@@ -180,12 +180,11 @@ def test_lda():
   # enroll model from random features
   enroll = utils.random_training_set(5, 5, 0., 255., seed=21)
   model = lda1.enroll(enroll)
-  _compare(model, pkg_resources.resource_filename('bob.bio.base.test', 'data/lda_model.hdf5'), lda1.write_model, lda1.read_model)
-
+  _compare(model, pkg_resources.resource_filename('bob.bio.base.test', 'data/lda_model.hdf5'), lda1.write_model, lda1.read_model)  
   # compare model with probe
   probe = lda1.read_feature(pkg_resources.resource_filename('bob.bio.base.test', 'data/lda_projected.hdf5'))
   reference_score = -233.30450012
-  assert abs(lda1.score(model, probe) - reference_score) < 1e-5, "The scores differ: %3.8f, %3.8f" % (lda1.score(model, probe), reference_score)
+  assert abs(numpy.mean(lda1.score(model, probe)) - reference_score) < 1e-5, "The scores differ: %3.8f, %3.8f" % (lda1.score(model, probe), reference_score)
   assert abs(lda1.score_for_multiple_probes(model, [probe, probe]) - reference_score) < 1e-5
 
   # test the calculation of the subspace dimension based on percentage of variance
diff --git a/bob/bio/base/test/test_transformers.py b/bob/bio/base/test/test_transformers.py
index 5fa1b098d1f4d92475d570fa098917bd6a5ee6ac..0bd43dcab8ab5e655b346ba893a3b845553bffa3 100644
--- a/bob/bio/base/test/test_transformers.py
+++ b/bob/bio/base/test/test_transformers.py
@@ -1,68 +1,298 @@
 #!/usr/bin/env python
 # vim: set fileencoding=utf-8 :
-# @author: Tiago de Freitas Pereira <tiago.pereira@idiap.ch>
 
-from bob.pipelines.sample import Sample, SampleSet, DelayedSample
-import os
-import numpy
+from bob.bio.base.preprocessor import Preprocessor
+from bob.bio.base.extractor import Extractor
+from bob.bio.base.algorithm import Algorithm
+import scipy
+from bob.bio.base.transformers import (
+    PreprocessorTransformer,
+    ExtractorTransformer,
+    AlgorithmTransformer,
+)
+import bob.pipelines as mario
+import numpy as np
 import tempfile
-from sklearn.utils.validation import check_is_fitted
+import os
+import bob.io.base
+from bob.bio.base.wrappers import (
+    wrap_checkpoint_preprocessor,
+    wrap_checkpoint_extractor,
+    wrap_checkpoint_algorithm,
+    wrap_sample_preprocessor,
+    wrap_sample_extractor,
+    wrap_sample_algorithm,
+)
+from sklearn.pipeline import make_pipeline
+
+
+class FakePreprocesor(Preprocessor):
+    def __call__(self, data, annotations=None):
+        return data + annotations
+
+
+class FakeExtractor(Extractor):
+    def __call__(self, data):
+        return data.flatten()
+
+
+class FakeExtractorFittable(Extractor):
+    def __init__(self, **kwargs):
+        super().__init__(**kwargs)
+        self.requires_training = True
+        self.model = None
+
+    def __call__(self, data, metadata=None):
+        model = self.model
+        return data @ model
+
+    def train(self, training_data, extractor_file):
+        self.model = np.vstack(training_data)
+        bob.io.base.save(self.model, extractor_file)
+
+
+class FakeAlgorithm(Algorithm):
+    def __init__(self, **kwargs):
+        super().__init__(**kwargs)
+        self.requires_projector_training = True
+        self.split_training_features_by_client = True
+        self.model = None
+
+    def project(self, data):
+        return data + self.model
+
+    def train_projector(self, training_features, projector_file):
+        self.model = np.sum(np.vstack(training_features), axis=0)
+        bob.io.base.save(self.model, projector_file)
+
+    def load_projector(self, projector_file):
+        self.model = bob.io.base.load(projector_file)
+
+    def enroll(self, enroll_features):
+        return np.mean(enroll_features, axis=0)
+
+    def score(self, model, data):
+        return scipy.spatial.distance.euclidean(model, data)
+
+
+def generate_samples(n_subjects, n_samples_per_subject, shape=(2, 2), annotations=1):
+    """
+    Simple sample generator that generates a certain number of samples per
+    subject, whose data is np.zeros + subject index
+    """
+
+    samples = []
+    for i in range(n_subjects):
+        data = np.zeros(shape) + i
+        for j in range(n_samples_per_subject):
+            samples += [
+                mario.Sample(
+                    data,
+                    subject=str(i),
+                    key=str(i * n_subjects + j),
+                    annotations=annotations,
+                )
+            ]
+    return samples
+
+
+def assert_sample(transformed_sample, oracle):
+    return np.alltrue(
+        [np.allclose(ts.data, o) for ts, o in zip(transformed_sample, oracle)]
+    )
+
+
+def assert_checkpoints(transformed_sample, dir_name):
+    return np.alltrue(
+        [
+            os.path.exists(os.path.join(dir_name, ts.key + ".h5"))
+            for ts in transformed_sample
+        ]
+    )
+
+
+def test_preprocessor():
+
+    preprocessor = FakePreprocesor()
+    preprocessor_transformer = PreprocessorTransformer(preprocessor)
+
+    # Testing sample
+    transform_extra_arguments = [("annotations", "annotations")]
+    sample_transformer = mario.SampleWrapper(
+        preprocessor_transformer, transform_extra_arguments
+    )
+
+    data = np.zeros((2, 2))
+    oracle = [np.ones((2, 2))]
+    annotations = 1
+    sample = [mario.Sample(data, key="1", annotations=annotations)]
+    transformed_sample = sample_transformer.transform(sample)
+
+    assert assert_sample(transformed_sample, oracle)
+
+    # Testing checkpoint
+    with tempfile.TemporaryDirectory() as dir_name:
+        checkpointing_transformer = mario.CheckpointWrapper(
+            sample_transformer,
+            features_dir=dir_name,
+            load_func=preprocessor.read_data,
+            save_func=preprocessor.write_data,
+        )
+        transformed_sample = checkpointing_transformer.transform(sample)
+
+        assert assert_sample(transformed_sample, oracle)
+        assert assert_checkpoints(transformed_sample, dir_name)
+
+
+def test_extractor():
+
+    extractor = FakeExtractor()
+    extractor_transformer = ExtractorTransformer(extractor)
+
+    # Testing sample
+    sample_transformer = mario.SampleWrapper(extractor_transformer)
+
+    data = np.zeros((2, 2))
+    oracle = [np.zeros((1, 4))]
+    sample = [mario.Sample(data, key="1")]
+    transformed_sample = sample_transformer.transform(sample)
+
+    assert assert_sample(transformed_sample, oracle)
+
+    # Testing checkpoint
+    with tempfile.TemporaryDirectory() as dir_name:
+        checkpointing_transformer = mario.CheckpointWrapper(
+            sample_transformer,
+            features_dir=dir_name,
+            load_func=extractor.read_feature,
+            save_func=extractor.write_feature,
+        )
+        transformed_sample = checkpointing_transformer.transform(sample)
+
+        assert assert_sample(transformed_sample, oracle)
+        assert assert_checkpoints(transformed_sample, dir_name)
+
+
+def test_extractor_fittable():
+
+    with tempfile.TemporaryDirectory() as dir_name:
+
+        extractor_file = os.path.join(dir_name, "Extractor.hdf5")
+        extractor = FakeExtractorFittable()
+        extractor_transformer = ExtractorTransformer(
+            extractor, model_path=extractor_file
+        )
+
+        # Testing sample
+        sample_transformer = mario.SampleWrapper(extractor_transformer)
+        # Fitting
+        training_data = np.arange(4).reshape(2, 2)
+        training_samples = [mario.Sample(training_data, key="1")]
+        sample_transformer = sample_transformer.fit(training_samples)
+
+        test_data = [np.zeros((2, 2)), np.ones((2, 2))]
+        oracle = [np.zeros((2, 2)), np.ones((2, 2)) @ training_data]
+        test_sample = [mario.Sample(d, key=str(i)) for i, d in enumerate(test_data)]
+
+        transformed_sample = sample_transformer.transform(test_sample)
+        assert assert_sample(transformed_sample, oracle)
 
-from bob.pipelines.transformers import Linearize, SampleLinearize, CheckpointSampleLinearize
-def test_linearize_processor():
+        # Testing checkpoint
+        checkpointing_transformer = mario.CheckpointWrapper(
+            sample_transformer,
+            features_dir=dir_name,
+            load_func=extractor.read_feature,
+            save_func=extractor.write_feature,
+        )
+        transformed_sample = checkpointing_transformer.transform(test_sample)
+        assert assert_sample(transformed_sample, oracle)
+        assert assert_checkpoints(transformed_sample, dir_name)
 
-    ## Test the transformer only
-    transformer = Linearize()
-    X = numpy.zeros(shape=(10,10))
-    X_tr = transformer.transform(X)
-    assert X_tr.shape == (100,)
 
+def test_algorithm():
 
-    ## Test wrapped in to a Sample
-    sample = Sample(X, key="1")
-    transformer = SampleLinearize()
-    X_tr = transformer.transform([sample])
-    assert X_tr[0].data.shape == (100,)
+    with tempfile.TemporaryDirectory() as dir_name:
 
-    ## Test checkpoint
-    with tempfile.TemporaryDirectory() as d:
-        transformer = CheckpointSampleLinearize(features_dir=d)
-        X_tr =  transformer.transform([sample])
-        assert X_tr[0].data.shape == (100,)
-        assert os.path.exists(os.path.join(d, "1.h5"))
+        projector_file = os.path.join(dir_name, "Projector.hdf5")
+        projector_pkl = os.path.join(dir_name, "Projector.pkl")  # Testing pickling
 
+        algorithm = FakeAlgorithm()
+        algorithm_transformer = AlgorithmTransformer(
+            algorithm, projector_file=projector_file
+        )
 
-from bob.pipelines.transformers import SamplePCA, CheckpointSamplePCA
-def test_pca_processor():
+        # Testing sample
+        fit_extra_arguments = [("y", "subject")]
+        sample_transformer = mario.SampleWrapper(
+            algorithm_transformer, fit_extra_arguments=fit_extra_arguments
+        )
 
-    ## Test wrapped in to a Sample
-    X = numpy.random.rand(100,10)
-    samples = [Sample(data, key=str(i)) for i, data in enumerate(X)]
+        n_subjects = 2
+        n_samples_per_subject = 2
+        shape = (2, 2)
+        training_samples = generate_samples(
+            n_subjects, n_samples_per_subject, shape=shape
+        )
+        sample_transformer = sample_transformer.fit(training_samples)
 
-    # fit
-    n_components = 2
-    estimator = SamplePCA(n_components=n_components)
-    estimator = estimator.fit(samples)
+        oracle = np.zeros(shape) + n_subjects
+        test_sample = generate_samples(1, 1)
+        transformed_sample = sample_transformer.transform(test_sample)
+        assert assert_sample(transformed_sample, [oracle])
+        assert os.path.exists(projector_file)
 
-    # https://scikit-learn.org/stable/modules/generated/sklearn.utils.validation.check_is_fitted.html
-    assert check_is_fitted(estimator, "n_components_") is None
+        # Testing checkpoint
+        checkpointing_transformer = mario.CheckpointWrapper(
+            sample_transformer,
+            features_dir=dir_name,
+            load_func=algorithm.read_feature,
+            save_func=algorithm.write_feature,
+            model_path=projector_pkl,
+        )
+        # Fitting again to assert if it loads again
+        checkpointing_transformer = checkpointing_transformer.fit(training_samples)
+        transformed_sample = checkpointing_transformer.transform(test_sample)
 
-    # transform
-    samples_tr = estimator.transform(samples)
-    assert samples_tr[0].data.shape == (n_components,)
+        # Fitting again
+        assert assert_sample(transformed_sample, oracle)
+        transformed_sample = checkpointing_transformer.transform(test_sample)
+        assert assert_checkpoints(transformed_sample, dir_name)
+        assert os.path.exists(projector_pkl)
 
 
-    ## Test Checkpoining
-    with tempfile.TemporaryDirectory() as d:
-        model_path = os.path.join(d, "model.pkl")
-        estimator = CheckpointSamplePCA(n_components=n_components, features_dir=d, model_path=model_path)
+def test_wrap_bob_pipeline():
+    def run_pipeline(with_dask, with_checkpoint):
+        with tempfile.TemporaryDirectory() as dir_name:
+            if with_checkpoint:
+                pipeline = make_pipeline(
+                    wrap_checkpoint_preprocessor(FakePreprocesor(), dir_name,),
+                    wrap_checkpoint_extractor(FakeExtractor(), dir_name,),
+                    wrap_checkpoint_algorithm(FakeAlgorithm(), dir_name),
+                )
+            else:
+                pipeline = make_pipeline(
+                    wrap_sample_preprocessor(FakePreprocesor()),
+                    wrap_sample_extractor(FakeExtractor(), dir_name,),
+                    wrap_sample_algorithm(FakeAlgorithm(), dir_name),
+                )
 
-        # fit
-        estimator = estimator.fit(samples)
-        assert check_is_fitted(estimator, "n_components_") is None
-        assert os.path.exists(model_path)
+            oracle = [7.0, 7.0, 7.0, 7.0]
+            training_samples = generate_samples(n_subjects=2, n_samples_per_subject=2)
+            test_samples = generate_samples(n_subjects=1, n_samples_per_subject=1)
+            if with_dask:
+                pipeline = mario.wrap(["dask"], pipeline)
+                transformed_samples = (
+                    pipeline.fit(training_samples)
+                    .transform(test_samples)
+                    .compute(scheduler="single-threaded")
+                )
+            else:
+                transformed_samples = pipeline.fit(training_samples).transform(
+                    test_samples
+                )
+            assert assert_sample(transformed_samples, oracle)
 
-        # transform
-        samples_tr = estimator.transform(samples)
-        assert samples_tr[0].data.shape == (n_components,)
-        assert os.path.exists(os.path.join(d, samples_tr[0].key+".h5"))
+    run_pipeline(False, False)
+    run_pipeline(False, True)
+    run_pipeline(True, False)
+    run_pipeline(True, True)
diff --git a/bob/bio/base/test/test_vanilla_biometrics.py b/bob/bio/base/test/test_vanilla_biometrics.py
index 75d9354860926ed739c382eb590252dc87ecf0ed..ff525ab9e06c428852da76ab889af0b3a3cbff14 100644
--- a/bob/bio/base/test/test_vanilla_biometrics.py
+++ b/bob/bio/base/test/test_vanilla_biometrics.py
@@ -2,33 +2,79 @@
 # vim: set fileencoding=utf-8 :
 # @author: Tiago de Freitas Pereira <tiago.pereira@idiap.ch>
 
-from bob.pipelines.sample import Sample, SampleSet, DelayedSample
+from bob.pipelines import Sample, SampleSet, DelayedSample
 import os
-import numpy
+import numpy as np
 import tempfile
-from sklearn.utils.validation import check_is_fitted
+from sklearn.pipeline import make_pipeline
+from bob.bio.base.wrappers import wrap_bob_legacy
+from bob.bio.base.test.test_transformers import (
+    FakePreprocesor,
+    FakeExtractor,
+    FakeAlgorithm,
+)
+from bob.bio.base.pipelines.vanilla_biometrics import (
+    Distance,
+    VanillaBiometricsPipeline,
+    BioAlgorithmCheckpointWrapper,
+    dask_vanilla_biometrics,
+    FourColumnsScoreWriter,
+    CSVScoreWriter,
+    BioAlgorithmLegacy,
+)
 
+import bob.pipelines as mario
+import uuid
+import shutil
+import itertools
 
-class DummyDatabase:
 
-    def __init__(self, delayed=False, n_references=10, n_probes=10, dim=10, one_d = True):
+class DummyDatabase:
+    def __init__(self, delayed=False, n_references=10, n_probes=10, dim=10, one_d=True):
         self.delayed = delayed
         self.dim = dim
         self.n_references = n_references
         self.n_probes = n_probes
         self.one_d = one_d
-
+        self.gender_choices = ["M", "F"]
+        self.metadata_1_choices = ["A", "B", "C"]
 
     def _create_random_1dsamples(self, n_samples, offset, dim):
-        return [ Sample(numpy.random.rand(dim), key=i) for i in range(offset,offset+n_samples) ]
+        return [
+            Sample(
+                np.random.rand(dim),
+                key=str(uuid.uuid4()),
+                annotations=1,
+                subject=str(i),
+            )
+            for i in range(offset, offset + n_samples)
+        ]
 
     def _create_random_2dsamples(self, n_samples, offset, dim):
-        return [ Sample(numpy.random.rand(dim, dim), key=i) for i in range(offset,offset+n_samples) ]
+        return [
+            Sample(
+                np.random.rand(dim, dim),
+                key=str(uuid.uuid4()),
+                annotations=1,
+                subject=str(i),
+            )
+            for i in range(offset, offset + n_samples)
+        ]
 
     def _create_random_sample_set(self, n_sample_set=10, n_samples=2):
 
         # Just generate random samples
-        sample_set = [SampleSet(samples=[], key=i) for i in range(n_sample_set)]
+        np.random.seed(10)
+        sample_set = [
+            SampleSet(
+                samples=[],
+                key=str(i),
+                subject=str(i),
+                gender=np.random.choice(self.gender_choices),
+                metadata_1=np.random.choice(self.metadata_1_choices),
+            )
+            for i in range(n_sample_set)
+        ]
 
         offset = 0
         for s in sample_set:
@@ -42,41 +88,209 @@ class DummyDatabase:
 
         return sample_set
 
-
     def background_model_samples(self):
-        return self._create_random_sample_set()
-
+        samples = [sset.samples for sset in self._create_random_sample_set()]
+        return list(itertools.chain(*samples))
 
     def references(self):
         return self._create_random_sample_set(self.n_references, self.dim)
 
-
     def probes(self):
-        probes = self._create_random_sample_set(self.n_probes, self.dim)
+        probes = []
+
+        probes = self._create_random_sample_set(n_sample_set=10, n_samples=1)
         for p in probes:
             p.references = list(range(self.n_references))
+
         return probes
 
+    @property
+    def allow_scoring_with_all_biometric_references(self):
+        return True
 
-from bob.bio.base.pipelines.vanilla_biometrics.biometric_algorithm import Distance
-import itertools
-def test_distance_comparator():
-
-    n_references = 10
-    dim = 10
-    n_probes = 10
-    database = DummyDatabase(delayed=False, n_references=n_references, n_probes=n_probes, dim=10, one_d = True)
-    references = database.references()
-    probes = database.probes()
-
-    comparator = Distance()
-    references = comparator.enroll_samples(references)
-    assert len(references)== n_references
-    assert references[0].data.shape == (dim,)
-
-    probes = database.probes()
-    scores = comparator.score_samples(probes, references)
-    scores = list(itertools.chain(*scores))
-
-    assert len(scores) == n_probes*n_references
-    assert len(scores[0].samples)==n_references
+
+def _make_transformer(dir_name):
+    pipeline = make_pipeline(
+        wrap_bob_legacy(
+            FakePreprocesor(),
+            dir_name,
+            transform_extra_arguments=(("annotations", "annotations"),),
+        ),
+        wrap_bob_legacy(FakeExtractor(), dir_name,),
+    )
+
+    return pipeline
+
+
+def _make_transformer_with_algorithm(dir_name):
+    pipeline = make_pipeline(
+        wrap_bob_legacy(
+            FakePreprocesor(),
+            dir_name,
+            transform_extra_arguments=(("annotations", "annotations"),),
+        ),
+        wrap_bob_legacy(FakeExtractor(), dir_name),
+        wrap_bob_legacy(FakeAlgorithm(), dir_name),
+    )
+
+    return pipeline
+
+
+def test_on_memory():
+
+    with tempfile.TemporaryDirectory() as dir_name:
+
+        def run_pipeline(with_dask):
+            database = DummyDatabase()
+
+            transformer = _make_transformer(dir_name)
+
+            biometric_algorithm = Distance()
+
+            vanilla_biometrics_pipeline = VanillaBiometricsPipeline(
+                transformer, biometric_algorithm
+            )
+
+            if with_dask:
+                vanilla_biometrics_pipeline = dask_vanilla_biometrics(
+                    vanilla_biometrics_pipeline, npartitions=2
+                )
+
+            scores = vanilla_biometrics_pipeline(
+                database.background_model_samples(),
+                database.references(),
+                database.probes(),
+                allow_scoring_with_all_biometric_references=database.allow_scoring_with_all_biometric_references,
+            )
+
+            if with_dask:
+                scores = scores.compute(scheduler="single-threaded")
+
+            assert len(scores) == 10
+            for probe_ssets in scores:
+                for probe in probe_ssets:
+                    assert len(probe) == 10
+
+        run_pipeline(False)
+        run_pipeline(False)  # Testing checkpoint
+        shutil.rmtree(dir_name)  # Deleting the cache so it runs again from scratch
+        os.makedirs(dir_name, exist_ok=True)
+        run_pipeline(True)
+        run_pipeline(True)  # Testing checkpoint
+
+
+def test_checkpoint_bioalg_as_transformer():
+
+    with tempfile.TemporaryDirectory() as dir_name:
+
+        def run_pipeline(with_dask, score_writer=FourColumnsScoreWriter()):
+            database = DummyDatabase()
+
+            transformer = _make_transformer(dir_name)
+
+            biometric_algorithm = BioAlgorithmCheckpointWrapper(
+                Distance(), base_dir=dir_name, score_writer=score_writer
+            )
+
+            vanilla_biometrics_pipeline = VanillaBiometricsPipeline(
+                transformer, biometric_algorithm
+            )
+
+            if with_dask:
+                vanilla_biometrics_pipeline = dask_vanilla_biometrics(
+                    vanilla_biometrics_pipeline, npartitions=2
+                )
+
+            scores = vanilla_biometrics_pipeline(
+                database.background_model_samples(),
+                database.references(),
+                database.probes(),
+                allow_scoring_with_all_biometric_references=database.allow_scoring_with_all_biometric_references,
+            )
+            if with_dask:
+                scores = scores.compute(scheduler="single-threaded")
+
+            if isinstance(score_writer, CSVScoreWriter):
+                base_path = os.path.join(dir_name, "concatenated_scores")
+                score_writer.concatenate_write_scores(scores, base_path)
+                assert (
+                    len(open(os.path.join(base_path, "chunk_0.csv")).readlines()) == 101
+                )
+            else:
+                filename = os.path.join(dir_name, "concatenated_scores.txt")
+                score_writer.concatenate_write_scores(scores, filename)
+                assert len(open(filename).readlines()) == 100
+
+        run_pipeline(False)
+        run_pipeline(False)  # Checking if the checkpointng works
+        shutil.rmtree(dir_name)  # Deleting the cache so it runs again from scratch
+        os.makedirs(dir_name, exist_ok=True)
+
+        # Dask
+        run_pipeline(True)
+        run_pipeline(True)  # Checking if the checkpointng works
+        shutil.rmtree(dir_name)  # Deleting the cache so it runs again from scratch
+        os.makedirs(dir_name, exist_ok=True)
+
+        # CSVWriter
+        run_pipeline(False, CSVScoreWriter())
+        run_pipeline(False, CSVScoreWriter())  # Checking if the checkpointng works
+        shutil.rmtree(dir_name)  # Deleting the cache so it runs again from scratch
+        os.makedirs(dir_name, exist_ok=True)
+
+        # CSVWriter + Dask
+        run_pipeline(True, CSVScoreWriter())
+        run_pipeline(True, CSVScoreWriter())  # Checking if the checkpointng works
+
+
+def test_checkpoint_bioalg_as_bioalg():
+
+    with tempfile.TemporaryDirectory() as dir_name:
+
+        def run_pipeline(with_dask, score_writer=FourColumnsScoreWriter()):
+            database = DummyDatabase()
+
+            transformer = _make_transformer_with_algorithm(dir_name)
+            projector_file = transformer[2].estimator.estimator.projector_file
+
+            biometric_algorithm = BioAlgorithmLegacy(
+                FakeAlgorithm(),
+                base_dir=dir_name,
+                score_writer=score_writer,
+                projector_file=projector_file,
+            )
+
+            vanilla_biometrics_pipeline = VanillaBiometricsPipeline(
+                transformer, biometric_algorithm
+            )
+
+            if with_dask:
+                vanilla_biometrics_pipeline = dask_vanilla_biometrics(
+                    vanilla_biometrics_pipeline, npartitions=2
+                )
+
+            scores = vanilla_biometrics_pipeline(
+                database.background_model_samples(),
+                database.references(),
+                database.probes(),
+                allow_scoring_with_all_biometric_references=database.allow_scoring_with_all_biometric_references,
+            )
+
+            filename = os.path.join(dir_name, "concatenated_scores.txt")
+            score_writer.concatenate_write_scores(scores, filename)
+
+            if isinstance(score_writer, CSVScoreWriter):
+                assert len(open(filename).readlines()) == 101
+            else:
+                assert len(open(filename).readlines()) == 100
+
+        run_pipeline(False)
+        run_pipeline(False)  # Checking if the checkpointng works
+        shutil.rmtree(dir_name)  # Deleting the cache so it runs again from scratch
+        os.makedirs(dir_name, exist_ok=True)
+
+        # Dask
+        run_pipeline(True)
+        run_pipeline(True)  # Checking if the checkpointng works
+        shutil.rmtree(dir_name)  # Deleting the cache so it runs again from scratch
+        os.makedirs(dir_name, exist_ok=True)
diff --git a/bob/bio/base/transformers/__init__.py b/bob/bio/base/transformers/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..4893224a141f179011ceea7b35e2df51af3d94c4
--- /dev/null
+++ b/bob/bio/base/transformers/__init__.py
@@ -0,0 +1,18 @@
+# see https://docs.python.org/3/library/pkgutil.html
+from pkgutil import extend_path
+
+__path__ = extend_path(__path__, __name__)
+
+from collections import defaultdict
+def split_X_by_y(X, y):
+    training_data = defaultdict(list)
+    for x1, y1 in zip(X, y):
+        training_data[y1].append(x1)
+    training_data = list(training_data.values())
+    return training_data
+
+
+
+from .preprocessor import PreprocessorTransformer
+from .extractor import ExtractorTransformer
+from .algorithm import AlgorithmTransformer
diff --git a/bob/bio/base/transformers/algorithm.py b/bob/bio/base/transformers/algorithm.py
new file mode 100644
index 0000000000000000000000000000000000000000..68e55d3846597e97f2ac47e4f91f539e2d1b6b07
--- /dev/null
+++ b/bob/bio/base/transformers/algorithm.py
@@ -0,0 +1,81 @@
+#!/usr/bin/env python
+# vim: set fileencoding=utf-8 :
+
+from sklearn.base import TransformerMixin, BaseEstimator
+from bob.bio.base.algorithm import Algorithm
+from bob.pipelines.utils import is_picklable
+from . import split_X_by_y
+import os
+
+
+class AlgorithmTransformer(TransformerMixin, BaseEstimator):
+    """Class that wraps :any:`bob.bio.base.algorithm.Algoritm`
+
+    :any:`LegacyAlgorithmrMixin.fit` maps to :any:`bob.bio.base.algorithm.Algoritm.train_projector`
+
+    :any:`LegacyAlgorithmrMixin.transform` maps :any:`bob.bio.base.algorithm.Algoritm.project`
+
+    Example
+    -------
+
+        Wrapping LDA algorithm with functtools
+        >>> from bob.bio.base.pipelines.vanilla_biometrics import AlgorithmTransformer
+        >>> from bob.bio.base.algorithm import LDA
+        >>> transformer = AlgorithmTransformer(LDA(use_pinv=True, pca_subspace_dimension=0.90)
+
+
+    Parameters
+    ----------
+      instance: object
+         An instance of bob.bio.base.algorithm.Algorithm
+
+    """
+
+    def __init__(
+        self, instance, projector_file=None, **kwargs,
+    ):
+
+        if not isinstance(instance, Algorithm):
+            raise ValueError(
+                "`instance` should be an instance of `bob.bio.base.extractor.Algorithm`"
+            )
+
+        if instance.requires_projector_training and (
+            projector_file is None or projector_file == ""
+        ):
+            raise ValueError(
+                f"`projector_file` needs to be set if extractor {instance} requires training"
+            )
+
+        if not is_picklable(instance):
+            raise ValueError(f"{instance} needs to be picklable")
+
+        self.instance = instance
+        self.projector_file = projector_file
+        super().__init__(**kwargs)
+
+    def fit(self, X, y=None):
+        if not self.instance.requires_projector_training:
+            return self
+        training_data = X
+        if self.instance.split_training_features_by_client:
+            training_data = split_X_by_y(X, y)
+
+        os.makedirs(os.path.dirname(self.projector_file), exist_ok=True)
+        self.instance.train_projector(training_data, self.projector_file)
+        return self
+
+    def transform(self, X, metadata=None):
+        if metadata is None:
+            return [self.instance.project(data) for data in X]
+        else:
+            return [
+                self.instance.project(data, metadata)
+                for data, metadata in zip(X, metadata)
+            ]
+
+    def _more_tags(self):
+        return {
+            "stateless": not self.instance.requires_projector_training,
+            "requires_fit": self.instance.requires_projector_training,
+        }
diff --git a/bob/bio/base/transformers/extractor.py b/bob/bio/base/transformers/extractor.py
new file mode 100644
index 0000000000000000000000000000000000000000..c25bcfd942f4a2c43a68469dbc82eededaa8e817
--- /dev/null
+++ b/bob/bio/base/transformers/extractor.py
@@ -0,0 +1,65 @@
+#!/usr/bin/env python
+# vim: set fileencoding=utf-8 :
+
+from sklearn.base import TransformerMixin, BaseEstimator
+from bob.bio.base.extractor import Extractor
+from . import split_X_by_y
+
+
+class ExtractorTransformer(TransformerMixin, BaseEstimator):
+    """
+    Scikit learn transformer for :any:`bob.bio.base.extractor.Extractor`.
+
+    Parameters
+    ----------
+
+      instance: object
+         An instance of `bob.bio.base.extractor.Extractor`
+
+      model_path: ``str``
+         Model path in case :any:`bob.bio.base.extractor.Extractor.requires_training` is equals to true
+
+    """
+
+    def __init__(
+        self, instance, model_path=None, **kwargs,
+    ):
+
+        if not isinstance(instance, Extractor):
+            raise ValueError(
+                "`instance` should be an instance of `bob.bio.base.extractor.Extractor`"
+            )
+
+        if instance.requires_training and (model_path is None or model_path == ""):
+            raise ValueError(
+                f"`model_path` needs to be set if extractor {instance} requires training"
+            )
+
+        self.instance = instance
+        self.model_path = model_path
+        super().__init__(**kwargs)
+
+    def fit(self, X, y=None):
+        if not self.instance.requires_training:
+            return self
+
+        training_data = X
+        if self.instance.split_training_data_by_client:
+            training_data = split_X_by_y(X, y)
+
+        self.instance.train(training_data, self.model_path)
+        return self
+
+    def transform(self, X, metadata=None):
+        if metadata is None:
+            return [self.instance(data) for data in X]
+        else:
+            return [
+                self.instance(data, metadata) for data, metadata in zip(X, metadata)
+            ]
+
+    def _more_tags(self):
+        return {
+            "stateless": not self.instance.requires_training,
+            "requires_fit": self.instance.requires_training,
+        }
diff --git a/bob/bio/base/transformers/preprocessor.py b/bob/bio/base/transformers/preprocessor.py
new file mode 100644
index 0000000000000000000000000000000000000000..1b1e15c2a2c6d4552e791a70b642db6d0653faeb
--- /dev/null
+++ b/bob/bio/base/transformers/preprocessor.py
@@ -0,0 +1,39 @@
+#!/usr/bin/env python
+# vim: set fileencoding=utf-8 :
+
+from sklearn.base import TransformerMixin, BaseEstimator
+from bob.bio.base.preprocessor import Preprocessor
+
+class PreprocessorTransformer(TransformerMixin, BaseEstimator):
+    """
+    Scikit learn transformer for :any:`bob.bio.base.preprocessor.Preprocessor`.
+
+    Parameters
+    ----------
+
+      instance: object
+         An instance of `bob.bio.base.preprocessor.Preprocessor`
+
+
+    """
+
+    def __init__(
+        self,
+        instance,
+        **kwargs,
+    ):
+
+        if not isinstance(instance, Preprocessor):
+            raise ValueError("`instance` should be an instance of `bob.bio.base.preprocessor.Preprocessor`")
+
+        self.instance = instance
+        super().__init__(**kwargs)
+
+    def transform(self, X, annotations=None):
+        if annotations is None:
+            return [self.instance(data) for data in X]
+        else:
+            return [self.instance(data, annot) for data, annot in zip(X, annotations)]
+
+    def _more_tags(self):
+        return {"stateless": True, "requires_fit": False}
diff --git a/bob/bio/base/wrappers.py b/bob/bio/base/wrappers.py
new file mode 100644
index 0000000000000000000000000000000000000000..2123ddde73b31d978992b28713841776447c13e8
--- /dev/null
+++ b/bob/bio/base/wrappers.py
@@ -0,0 +1,433 @@
+#!/usr/bin/env python
+# vim: set fileencoding=utf-8 :
+
+from bob.bio.base.transformers import (
+    PreprocessorTransformer,
+    ExtractorTransformer,
+    AlgorithmTransformer,
+)
+from bob.bio.base.preprocessor import Preprocessor
+from bob.bio.base.extractor import Extractor
+from bob.bio.base.algorithm import Algorithm
+import bob.pipelines as mario
+import os
+from bob.bio.base.utils import is_argument_available
+
+
+def wrap_bob_legacy(
+    bob_object,
+    dir_name,
+    fit_extra_arguments=None,
+    transform_extra_arguments=None,
+    dask_it=False,
+    **kwargs
+):
+    """
+    Wraps either :any:`bob.bio.base.preprocessor.Preprocessor`, :any:`bob.bio.base.extractor.Extractor`
+    or :any:`bob.bio.base.algorithm.Algorithm` with :any:`sklearn.base.TransformerMixin` 
+    and :any:`bob.pipelines.wrappers.CheckpointWrapper` and :any:`bob.pipelines.wrappers.SampleWrapper`
+
+
+    Parameters
+    ----------
+
+    bob_object: object
+        Instance of :any:`bob.bio.base.preprocessor.Preprocessor`, :any:`bob.bio.base.extractor.Extractor` and :any:`bob.bio.base.algorithm.Algorithm`
+        
+    dir_name: str
+        Directory name for the checkpoints
+
+    fit_extra_arguments: [tuple]
+        Same behavior as in Check :any:`bob.pipelines.wrappers.fit_extra_arguments`
+
+    transform_extra_arguments: [tuple]
+        Same behavior as in Check :any:`bob.pipelines.wrappers.transform_extra_arguments`
+
+    dask_it: bool
+        If True, the transformer will be a dask graph
+
+    """
+
+    if isinstance(bob_object, Preprocessor):
+        transformer = wrap_checkpoint_preprocessor(
+            bob_object, features_dir=os.path.join(dir_name, "preprocessor"),
+            **kwargs
+        )
+    elif isinstance(bob_object, Extractor):
+        transformer = wrap_checkpoint_extractor(
+            bob_object,
+            features_dir=os.path.join(dir_name, "extractor"),
+            model_path=dir_name,
+            fit_extra_arguments=fit_extra_arguments,
+            transform_extra_arguments=transform_extra_arguments,
+            **kwargs
+        )
+    elif isinstance(bob_object, Algorithm):
+        transformer = wrap_checkpoint_algorithm(
+            bob_object,
+            features_dir=os.path.join(dir_name, "algorithm"),
+            model_path=dir_name,
+            fit_extra_arguments=fit_extra_arguments,
+            transform_extra_arguments=transform_extra_arguments,
+            **kwargs
+        )
+    else:
+        raise ValueError(
+            "`bob_object` should be an instance of `Preprocessor`, `Extractor` and `Algorithm`"
+        )
+
+    if dask_it:
+        transformer = mario.wrap(["dask"], transformer)
+
+    return transformer
+
+
+def wrap_sample_preprocessor(
+    preprocessor,
+    transform_extra_arguments=(("annotations", "annotations"),),
+    **kwargs
+):
+    """
+    Wraps :any:`bob.bio.base.preprocessor.Preprocessor` with 
+    :any:`bob.pipelines.wrappers.CheckpointWrapper` and :any:`bob.pipelines.wrappers.SampleWrapper`
+
+    .. warning:: 
+       This wrapper doesn't checkpoint data
+
+    Parameters
+    ----------
+
+    preprocessor: :any:`bob.bio.base.preprocessor.Preprocessor`
+       Instance of :any:`bob.bio.base.transformers.PreprocessorTransformer` to be wrapped
+
+    transform_extra_arguments: [tuple]
+        Same behavior as in Check :any:`bob.pipelines.wrappers.transform_extra_arguments`
+
+    """
+
+    transformer = PreprocessorTransformer(preprocessor)
+    return mario.wrap(
+        ["sample"],
+        transformer,
+        transform_extra_arguments=transform_extra_arguments,
+    )
+
+
+def wrap_checkpoint_preprocessor(
+    preprocessor,
+    features_dir=None,
+    transform_extra_arguments=(("annotations", "annotations"),),
+    load_func=None,
+    save_func=None,
+    extension=".hdf5",
+):
+    """
+    Wraps :any:`bob.bio.base.preprocessor.Preprocessor` with 
+    :any:`bob.pipelines.wrappers.CheckpointWrapper` and :any:`bob.pipelines.wrappers.SampleWrapper`
+
+    Parameters
+    ----------
+
+    preprocessor: :any:`bob.bio.base.preprocessor.Preprocessor`
+       Instance of :any:`bob.bio.base.transformers.PreprocessorTransformer` to be wrapped
+
+    features_dir: str
+       Features directory to be checkpointed (see :any:bob.pipelines.CheckpointWrapper`).
+
+    extension : str, optional
+        Extension o preprocessed files (see :any:bob.pipelines.CheckpointWrapper`).
+
+    load_func : None, optional
+        Function that loads data to be preprocessed.
+        The default is :any:`bob.bio.base.preprocessor.Preprocessor.read_data`
+
+    save_func : None, optional
+        Function that saves preprocessed data.
+        The default is :any:`bob.bio.base.preprocessor.Preprocessor.write_data`
+
+    transform_extra_arguments: [tuple]
+        Same behavior as in Check :any:`bob.pipelines.wrappers.transform_extra_arguments`
+
+    """
+
+    transformer = PreprocessorTransformer(preprocessor)
+    return mario.wrap(
+        ["sample", "checkpoint"],
+        transformer,
+        load_func=load_func or preprocessor.read_data,
+        save_func=save_func or preprocessor.write_data,
+        features_dir=features_dir,
+        transform_extra_arguments=transform_extra_arguments,
+        extension=extension,
+    )
+
+
+def _prepare_extractor_sample_args(
+    extractor, transform_extra_arguments, fit_extra_arguments
+):
+    if transform_extra_arguments is None and is_argument_available(
+        "metadata", extractor.__call__
+    ):
+        transform_extra_arguments = (("metadata", "metadata"),)
+
+    if (
+        fit_extra_arguments is None
+        and extractor.requires_training
+        and extractor.split_training_data_by_client
+    ):
+        fit_extra_arguments = (("y", "subject"),)
+
+    return transform_extra_arguments, fit_extra_arguments
+
+
+def wrap_sample_extractor(
+    extractor,
+    fit_extra_arguments=None,
+    transform_extra_arguments=None,
+    model_path=None,
+    **kwargs,
+):
+    """
+    Wraps :any:`bob.bio.base.extractor.Extractor` with 
+    :any:`bob.pipelines.wrappers.CheckpointWrapper` and :any:`bob.pipelines.wrappers.SampleWrapper`
+
+    Parameters
+    ----------
+
+    extractor: :any:`bob.bio.base.extractor.Preprocessor`
+       Instance of :any:`bob.bio.base.transformers.ExtractorTransformer` to be wrapped
+
+    transform_extra_arguments: [tuple], optional
+        Same behavior as in Check :any:`bob.pipelines.wrappers.transform_extra_arguments`
+
+    model_path: str
+        Path to `extractor_file` in :any:`bob.bio.base.extractor.Extractor`
+
+    """
+
+    extractor_file = (
+        os.path.join(model_path, "Extractor.hdf5") if model_path is not None else None
+    )
+
+    transformer = ExtractorTransformer(extractor, model_path=extractor_file)
+
+    transform_extra_arguments, fit_extra_arguments = _prepare_extractor_sample_args(
+        extractor, transform_extra_arguments, fit_extra_arguments
+    )
+
+    return mario.wrap(
+        ["sample"],
+        transformer,
+        transform_extra_arguments=transform_extra_arguments,
+        fit_extra_arguments=fit_extra_arguments,
+        **kwargs,
+    )
+
+
+def wrap_checkpoint_extractor(
+    extractor,
+    features_dir=None,
+    fit_extra_arguments=None,
+    transform_extra_arguments=None,
+    load_func=None,
+    save_func=None,
+    extension=".hdf5",
+    model_path=None,
+    **kwargs,
+):
+    """
+    Wraps :any:`bob.bio.base.extractor.Extractor` with 
+    :any:`bob.pipelines.wrappers.CheckpointWrapper` and :any:`bob.pipelines.wrappers.SampleWrapper`
+
+    Parameters
+    ----------
+
+    extractor: :any:`bob.bio.base.extractor.Preprocessor`
+       Instance of :any:`bob.bio.base.transformers.ExtractorTransformer` to be wrapped
+
+    features_dir: str
+       Features directory to be checkpointed (see :any:bob.pipelines.CheckpointWrapper`).
+
+    extension : str, optional
+        Extension o preprocessed files (see :any:bob.pipelines.CheckpointWrapper`).
+
+    load_func : None, optional
+        Function that loads data to be preprocessed.
+        The default is :any:`bob.bio.base.extractor.Extractor.read_feature`
+
+    save_func : None, optional
+        Function that saves preprocessed data.
+        The default is :any:`bob.bio.base.extractor.Extractor.write_feature`
+
+    fit_extra_arguments: [tuple]
+        Same behavior as in Check :any:`bob.pipelines.wrappers.fit_extra_arguments`
+
+    transform_extra_arguments: [tuple], optional
+        Same behavior as in Check :any:`bob.pipelines.wrappers.transform_extra_arguments`
+
+    model_path: str
+        See :any:`TransformerExtractor`.
+
+    """
+
+    extractor_file = (
+        os.path.join(model_path, "Extractor.hdf5") if model_path is not None else None
+    )
+
+    model_file = (
+        os.path.join(model_path, "Extractor.pkl") if model_path is not None else None
+    )
+    transformer = ExtractorTransformer(extractor, model_path=extractor_file)
+
+    transform_extra_arguments, fit_extra_arguments = _prepare_extractor_sample_args(
+        extractor, transform_extra_arguments, fit_extra_arguments
+    )
+
+    return mario.wrap(
+        ["sample", "checkpoint"],
+        transformer,
+        load_func=load_func or extractor.read_feature,
+        save_func=save_func or extractor.write_feature,
+        model_path=model_file,
+        features_dir=features_dir,
+        transform_extra_arguments=transform_extra_arguments,
+        fit_extra_arguments=fit_extra_arguments,
+        **kwargs,
+    )
+
+
+def _prepare_algorithm_sample_args(
+    algorithm, transform_extra_arguments, fit_extra_arguments
+):
+
+    if transform_extra_arguments is None and is_argument_available(
+        "metadata", algorithm.project
+    ):
+        transform_extra_arguments = (("metadata", "metadata"),)
+
+    if (
+        fit_extra_arguments is None
+        and algorithm.requires_projector_training
+        and algorithm.split_training_features_by_client
+    ):
+        fit_extra_arguments = (("y", "subject"),)
+
+    return transform_extra_arguments, fit_extra_arguments
+
+
+def wrap_sample_algorithm(
+    algorithm,
+    model_path=None,
+    fit_extra_arguments=None,
+    transform_extra_arguments=None,
+    **kwargs,
+):
+    """
+    Wraps :any:`bob.bio.base.algorithm.Algorithm` with 
+    :any:`bob.pipelines.wrappers.CheckpointWrapper` and :any:`bob.pipelines.wrappers.SampleWrapper`
+
+    Parameters
+    ----------
+
+    algorithm_transformer: :any:`bob.bio.base.algorithm.Algorithm`
+       Instance of :any:`bob.bio.base.transformers.AlgorithmTransformer` to be wrapped
+
+    model_path: str
+        Path to `projector_file` in :any:`bob.bio.base.algorithm.Algorithm`
+
+    fit_extra_arguments: [tuple]
+        Same behavior as in Check :any:`bob.pipelines.wrappers.fit_extra_arguments`
+
+    transform_extra_arguments: [tuple]
+        Same behavior as in Check :any:`bob.pipelines.wrappers.transform_extra_arguments`
+
+    """
+
+    projector_file = (
+        os.path.join(model_path, "Projector.hdf5") if model_path is not None else None
+    )
+
+    transformer = AlgorithmTransformer(algorithm, projector_file=projector_file)
+
+    transform_extra_arguments, fit_extra_arguments = _prepare_algorithm_sample_args(
+        algorithm, transform_extra_arguments, fit_extra_arguments
+    )
+
+    return mario.wrap(
+        ["sample"],
+        transformer,
+        transform_extra_arguments=transform_extra_arguments,
+        fit_extra_arguments=fit_extra_arguments,
+    )
+
+
+def wrap_checkpoint_algorithm(
+    algorithm,
+    model_path=None,
+    features_dir=None,
+    extension=".hdf5",
+    fit_extra_arguments=None,
+    transform_extra_arguments=None,
+    load_func=None,
+    save_func=None,
+    **kwargs,
+):
+    """
+    Wraps :any:`bob.bio.base.algorithm.Algorithm` with 
+    :any:`bob.pipelines.wrappers.CheckpointWrapper` and :any:`bob.pipelines.wrappers.SampleWrapper`
+
+    Parameters
+    ----------
+
+    algorithm_transformer: :any:`bob.bio.base.algorithm.Algorithm`
+       Instance of :any:`bob.bio.base.transformers.AlgorithmTransformer` to be wrapped
+
+    features_dir: str
+       Features directory to be checkpointed (see :any:bob.pipelines.CheckpointWrapper`).
+
+    model_path: str
+       Path to checkpoint the model
+
+    extension : str, optional
+        Extension o preprocessed files (see :any:bob.pipelines.CheckpointWrapper`).
+
+    fit_extra_arguments: [tuple]
+        Same behavior as in Check :any:`bob.pipelines.wrappers.fit_extra_arguments`
+
+    transform_extra_arguments: [tuple]
+        Same behavior as in Check :any:`bob.pipelines.wrappers.transform_extra_arguments`
+
+    load_func : None, optional
+        Function that loads data to be preprocessed.
+        The default is :any:`bob.bio.base.extractor.Extractor.read_feature`
+
+    save_func : None, optional
+        Function that saves preprocessed data.
+        The default is :any:`bob.bio.base.extractor.Extractor.write_feature`
+
+
+    """
+
+    projector_file = (
+        os.path.join(model_path, "Projector.hdf5") if model_path is not None else None
+    )
+
+    model_file = (
+        os.path.join(model_path, "Projector.pkl") if model_path is not None else None
+    )
+    transformer = AlgorithmTransformer(algorithm, projector_file=projector_file)
+
+    transform_extra_arguments, fit_extra_arguments = _prepare_algorithm_sample_args(
+        algorithm, transform_extra_arguments, fit_extra_arguments
+    )
+
+    return mario.wrap(
+        ["sample", "checkpoint"],
+        transformer,
+        load_func=load_func or algorithm.read_feature,
+        save_func=save_func or algorithm.write_feature,
+        model_path=model_file,
+        features_dir=features_dir,
+        transform_extra_arguments=transform_extra_arguments,
+        fit_extra_arguments=fit_extra_arguments,
+    )
diff --git a/doc/py_api.rst b/doc/py_api.rst
index 5ab5c938b54ec087a9d5a895279c41180518f492..d127ce4ddd0973075cb6ef34ebaf40e74559d83d 100644
--- a/doc/py_api.rst
+++ b/doc/py_api.rst
@@ -23,8 +23,6 @@ IO-related functions
 Pipelines
 ~~~~~~~~~
 
-.. autosummary::
-   bob.bio.base.pipelines.vanilla_biometrics.biometric_pipeline
 
 
 Functions dealing with resources
@@ -71,18 +69,13 @@ Plotting
    bob.bio.base.script.figure.Dir
    bob.bio.base.script.figure.Hist
 
-OpenBR conversions
-------------------
-.. autosummary::
-   bob.bio.base.score.openbr.write_matrix
-   bob.bio.base.score.openbr.write_score_file
+
 
 Details
 -------
 
 
 .. automodule:: bob.bio.base.score.load
-.. automodule:: bob.bio.base.score.openbr
 .. automodule:: bob.bio.base.script.figure
 .. automodule:: bob.bio.base.script.commands
 .. automodule:: bob.bio.base.script.gen