diff --git a/bob/bio/base/algorithm/Algorithm.py b/bob/bio/base/algorithm/Algorithm.py index 8935d4d6ac63c5fcde6ced57f0e32d8c4791b55d..9cc06732f7b8ac35f1bbaaafda189cc5db1f8e37 100644 --- a/bob/bio/base/algorithm/Algorithm.py +++ b/bob/bio/base/algorithm/Algorithm.py @@ -47,7 +47,7 @@ class Algorithm: See :py:func:`bob.bio.base.score_fusion_strategy` for possible values. kwargs : ``key=value`` pairs - A list of keyword arguments to be written in the :py:meth:`__str__` function. + A list of keyword arguments to be written in the `__str__` function. """ diff --git a/bob/bio/base/algorithm/BIC.py b/bob/bio/base/algorithm/BIC.py index a5eb7e01182befe3328346e6459037b08fb7e5fc..d1add235f713bd786474a1dc974fa80f7fce90f3 100644 --- a/bob/bio/base/algorithm/BIC.py +++ b/bob/bio/base/algorithm/BIC.py @@ -12,275 +12,284 @@ from .Algorithm import Algorithm from .. import utils import logging -logger = logging.getLogger("bob.bio.base") - -class BIC (Algorithm): - """Computes the Intrapersonal/Extrapersonal classifier using a generic feature type and feature comparison function. - - In this generic implementation, any distance or similarity vector that results as a comparison of two feature vectors can be used. - Currently two different versions are implemented: One with [MWP98]_ and one without (a generalization of [GW09]_) subspace projection of the features. - The implementation of the BIC training is taken from :ref:`bob.learn.linear <bob.learn.linear>`. - - **Parameters:** - - comparison_function : function - The function to compare the features in the original feature space. - For a given pair of features, this function is supposed to compute a vector of similarity (or distance) values. - In the easiest case, it just computes the element-wise difference of the feature vectors, but more difficult functions can be applied, and the function might be specialized for the features you put in. - - maximum_training_pair_count : int or None - Limit the number of training image pairs to the given value, i.e., to avoid memory issues. - - subspace_dimensions : (int, int) or None - A tuple of sizes of the intrapersonal and extrapersonal subspaces. - If given, subspace projection is performed (cf. [MWP98]_) and the subspace projection matrices are truncated to the given sizes. - If omitted, no subspace projection is performed (cf. [GW09]_). - - uses_dffs : bool - Only valid, when ``subspace_dimensions`` are specified. - Use the *Distance From Feature Space* (DFFS) (cf. [MWP98]_) during scoring. - Use this flag with care! - - read_function : function - A function to read a feature from :py:class:`bob.io.base.HDF5File`. - This function need to be appropriate to read the type of features that you are using. - By default, :py:func:`bob.bio.base.load` is used. - - write_function : function - A function to write a feature to :py:class:`bob.io.base.HDF5File`. - This function is used to write the model and need to be appropriate to write the type of features that you are using. - By default, :py:func:`bob.bio.base.save` is used. - - kwargs : ``key=value`` pairs - A list of keyword arguments directly passed to the :py:class:`Algorithm` base class constructor. - """ - - def __init__( - self, - comparison_function, # the function to be used to compare two features; this highly depends on the type of features that are used - maximum_training_pair_count = None, # if set, limit the number of training pairs to the given number in a non-random manner - subspace_dimensions = None, # if set as a pair (intra_dim, extra_dim), PCA subspace truncation for the two classes is performed - uses_dffs = False, # use the distance from feature space; only valid when PCA truncation is enabled; WARNING: uses this flag with care - read_function = utils.load, - write_function = utils.save, - **kwargs # parameters directly sent to the base class - ): - - # call base class function and register that this tool requires training for the enrollment - Algorithm.__init__( - self, - requires_enroller_training = True, - - comparison_function = str(comparison_function), - maximum_training_pair_count = maximum_training_pair_count, - subspace_dimensions = subspace_dimensions, - uses_dffs = uses_dffs, - read_function=str(read_function), - write_function=str(write_function), - - **kwargs - ) - - # set up the BIC tool - self.comparison_function = comparison_function - self.read_function = read_function - self.write_function = write_function - self.maximum_pair_count = maximum_training_pair_count - self.use_dffs = uses_dffs - if subspace_dimensions is not None: - self.M_I = subspace_dimensions[0] - self.M_E = subspace_dimensions[1] - self.bic_machine = bob.learn.linear.BICMachine(self.use_dffs) - else: - self.bic_machine = bob.learn.linear.BICMachine(False) - self.M_I = None - self.M_E = None - - - def _trainset_for(self, pairs): - """Computes the array containing the comparison results for the given set of image pairs.""" - return numpy.vstack([self.comparison_function(f1, f2) for (f1, f2) in pairs]) - - - def train_enroller(self, train_features, enroller_file): - """Trains the BIC by computing intra-personal and extra-personal subspaces. - - First, two lists of pairs are computed, which contain intra-personal and extra-personal feature pairs, respectively. - Afterward, the comparison vectors are computed using the ``comparison_function`` specified in the constructor. - Finally, the :py:class:`bob.learn.linear.BICTrainer` is used to train a :py:class:`bob.learn.linear.BICMachine`. - - **Parameters:** - train_features : [[object]] - A list of lists of feature vectors, which are used to train the BIC. - Each sub-list contains the features of one client. +logger = logging.getLogger("bob.bio.base") - enroller_file : str - A writable file, into which the resulting :py:class:`bob.learn.linear.BICMachine` will be written. - """ - # compute intrapersonal and extrapersonal pairs - logger.info(" -> Computing pairs") - intra_pairs, extra_pairs = bob.learn.linear.bic_intra_extra_pairs(train_features) - # limit pairs, if desired - if self.maximum_pair_count is not None: - if len(intra_pairs) > self.maximum_pair_count: - logger.info(" -> Limiting intrapersonal pairs from %d to %d" %(len(intra_pairs), self.maximum_pair_count)) - intra_pairs = utils.selected_elements(intra_pairs, self.maximum_pair_count) - if len(extra_pairs) > self.maximum_pair_count: - logger.info(" -> Limiting extrapersonal pairs from %d to %d" %(len(extra_pairs), self.maximum_pair_count)) - extra_pairs = utils.selected_elements(extra_pairs, self.maximum_pair_count) +class BIC(Algorithm): + """Computes the Intrapersonal/Extrapersonal classifier using a generic feature type and feature comparison function. + In this generic implementation, any distance or similarity vector that results as a comparison of two feature vectors can be used. + Currently two different versions are implemented: One with [MWP98]_ and one without (a generalization of [GW09]_) subspace projection of the features. + The implementation of the BIC training is taken from :ref:`bob.learn.linear <bob.learn.linear>`. - # train the BIC Machine with these pairs - logger.info(" -> Computing %d intrapersonal results", len(intra_pairs)) - intra_vectors = self._trainset_for(intra_pairs) - logger.info(" -> Computing %d extrapersonal results", len(extra_pairs)) - extra_vectors = self._trainset_for(extra_pairs) + **Parameters:** - logger.info(" -> Training BIC machine") - trainer = bob.learn.linear.BICTrainer(self.M_I, self.M_E) if self.M_I is not None else bob.learn.linear.BICTrainer() - trainer.train(intra_vectors, extra_vectors, self.bic_machine) + comparison_function : function + The function to compare the features in the original feature space. + For a given pair of features, this function is supposed to compute a vector of similarity (or distance) values. + In the easiest case, it just computes the element-wise difference of the feature vectors, but more difficult functions can be applied, and the function might be specialized for the features you put in. - # save the machine to file - self.bic_machine.save(bob.io.base.HDF5File(enroller_file, 'w')) + maximum_training_pair_count : int or None + Limit the number of training image pairs to the given value, i.e., to avoid memory issues. + subspace_dimensions : (int, int) or None + A tuple of sizes of the intrapersonal and extrapersonal subspaces. + If given, subspace projection is performed (cf. [MWP98]_) and the subspace projection matrices are truncated to the given sizes. + If omitted, no subspace projection is performed (cf. [GW09]_). - def load_enroller(self, enroller_file): - """Reads the :py:class:`bob.learn.linear.BICMachine` from file. + uses_dffs : bool + Only valid, when ``subspace_dimensions`` are specified. + Use the *Distance From Feature Space* (DFFS) (cf. [MWP98]_) during scoring. + Use this flag with care! - The :py:attr:`bob.learn.linear.BICMachine.use_DFFS` will be overwritten by the ``use_dffs`` value specified in this class' constructor. + read_function : function + A function to read a feature from :py:class:`bob.io.base.HDF5File`. + This function need to be appropriate to read the type of features that you are using. + By default, :py:func:`bob.bio.base.load` is used. - **Parameters:** + write_function : function + A function to write a feature to :py:class:`bob.io.base.HDF5File`. + This function is used to write the model and need to be appropriate to write the type of features that you are using. + By default, :py:func:`bob.bio.base.save` is used. - enroller_file : str - An existing file, from which the :py:class:`bob.learn.linear.BICMachine` will be read. + kwargs : ``key=value`` pairs + A list of keyword arguments directly passed to the :py:class:`Algorithm` base class constructor. """ - self.bic_machine.load(bob.io.base.HDF5File(enroller_file, 'r')) - # to set this should not be required, but just in case - # you re-use a trained enroller file that hat different setup of use_DFFS - self.bic_machine.use_DFFS = self.use_dffs + def __init__( + self, + comparison_function, + # the function to be used to compare two features; this highly depends on the type of features that are used + maximum_training_pair_count=None, + # if set, limit the number of training pairs to the given number in a non-random manner + subspace_dimensions=None, + # if set as a pair (intra_dim, extra_dim), PCA subspace truncation for the two classes is performed + uses_dffs=False, + # use the distance from feature space; only valid when PCA truncation is enabled; WARNING: uses this flag with care + read_function=utils.load, + write_function=utils.save, + **kwargs # parameters directly sent to the base class + ): + + # call base class function and register that this tool requires training for the enrollment + Algorithm.__init__( + self, + requires_enroller_training=True, + + comparison_function=str(comparison_function), + maximum_training_pair_count=maximum_training_pair_count, + subspace_dimensions=subspace_dimensions, + uses_dffs=uses_dffs, + read_function=str(read_function), + write_function=str(write_function), + + **kwargs + ) + + # set up the BIC tool + self.comparison_function = comparison_function + self.read_function = read_function + self.write_function = write_function + self.maximum_pair_count = maximum_training_pair_count + self.use_dffs = uses_dffs + if subspace_dimensions is not None: + self.M_I = subspace_dimensions[0] + self.M_E = subspace_dimensions[1] + self.bic_machine = bob.learn.linear.BICMachine(self.use_dffs) + else: + self.bic_machine = bob.learn.linear.BICMachine(False) + self.M_I = None + self.M_E = None + + def _trainset_for(self, pairs): + """Computes the array containing the comparison results for the given set of image pairs.""" + return numpy.vstack([self.comparison_function(f1, f2) for (f1, f2) in pairs]) + + def train_enroller(self, train_features, enroller_file): + """Trains the BIC by computing intra-personal and extra-personal subspaces. + + First, two lists of pairs are computed, which contain intra-personal and extra-personal feature pairs, respectively. + Afterward, the comparison vectors are computed using the ``comparison_function`` specified in the constructor. + Finally, the :py:class:`bob.learn.linear.BICTrainer` is used to train a :py:class:`bob.learn.linear.BICMachine`. + + **Parameters:** + + train_features : [[object]] + A list of lists of feature vectors, which are used to train the BIC. + Each sub-list contains the features of one client. + + enroller_file : str + A writable file, into which the resulting :py:class:`bob.learn.linear.BICMachine` will be written. + """ + + # compute intrapersonal and extrapersonal pairs + logger.info(" -> Computing pairs") + intra_pairs, extra_pairs = bob.learn.linear.bic_intra_extra_pairs(train_features) + # limit pairs, if desired + if self.maximum_pair_count is not None: + if len(intra_pairs) > self.maximum_pair_count: + logger.info( + " -> Limiting intrapersonal pairs from %d to %d" % (len(intra_pairs), self.maximum_pair_count)) + intra_pairs = utils.selected_elements(intra_pairs, self.maximum_pair_count) + if len(extra_pairs) > self.maximum_pair_count: + logger.info( + " -> Limiting extrapersonal pairs from %d to %d" % (len(extra_pairs), self.maximum_pair_count)) + extra_pairs = utils.selected_elements(extra_pairs, self.maximum_pair_count) + + # train the BIC Machine with these pairs + logger.info(" -> Computing %d intrapersonal results", len(intra_pairs)) + intra_vectors = self._trainset_for(intra_pairs) + logger.info(" -> Computing %d extrapersonal results", len(extra_pairs)) + extra_vectors = self._trainset_for(extra_pairs) + + logger.info(" -> Training BIC machine") + trainer = bob.learn.linear.BICTrainer(self.M_I, + self.M_E) if self.M_I is not None else bob.learn.linear.BICTrainer() + trainer.train(intra_vectors, extra_vectors, self.bic_machine) + + # save the machine to file + self.bic_machine.save(bob.io.base.HDF5File(enroller_file, 'w')) + + def load_enroller(self, enroller_file): + """Reads the :py:class:`bob.learn.linear.BICMachine` from file. + + The :py:attr:`bob.learn.linear.BICMachine.use_DFFS` will be overwritten by the ``use_dffs`` value specified in this class' constructor. + + **Parameters:** + + enroller_file : str + An existing file, from which the :py:class:`bob.learn.linear.BICMachine` will be read. + """ + self.bic_machine.load(bob.io.base.HDF5File(enroller_file, 'r')) + # to set this should not be required, but just in case + # you re-use a trained enroller file that hat different setup of use_DFFS + self.bic_machine.use_DFFS = self.use_dffs + + def enroll(self, enroll_features): + """enroll(enroll_features) -> model - def enroll(self, enroll_features): - """enroll(enroll_features) -> model + Enrolls the model by storing all given input features. + The features must be writable with the ``write_function`` defined in the constructor. - Enrolls the model by storing all given input features. - The features must be writable with the ``write_function`` defined in the constructor. + **Parameters:** + + enroll_features : [object] + The list of projected features to enroll the model from. + + **Returns:** + + model : [object] + The enrolled model (which is identical to the input features). + """ + return enroll_features - **Parameters:** + def write_model(self, model, model_file): + """Writes all features of the model into one HDF5 file. - enroll_features : [object] - The list of projected features to enroll the model from. + To write the features, the ``write_function`` specified in the constructor is employed. - **Returns:** + **Parameters:** - model : [object] - The enrolled model (which is identical to the input features). - """ - return enroll_features + model : [object] + The model to write, which is a list of features. + model_file : str or :py:class:`bob.io.base.HDF5File` + The file (open for writing) or a file name to write into. + """ + hdf5 = model_file if isinstance(model_file, bob.io.base.HDF5File) else bob.io.base.HDF5File(model_file, 'w') + for i, f in enumerate(model): + hdf5.create_group("Feature%d" % i) + hdf5.cd("Feature%d" % i) + self.write_function(f, hdf5) + hdf5.cd("..") - def write_model(self, model, model_file): - """Writes all features of the model into one HDF5 file. + def read_model(self, model_file): + """read_model(model_file) -> model - To write the features, the ``write_function`` specified in the constructor is employed. + Reads all features of the model from the given HDF5 file. - **Parameters:** + To read the features, the ``read_function`` specified in the constructor is employed. - model : [object] - The model to write, which is a list of features. + **Parameters:** - model_file : str or :py:class:`bob.io.base.HDF5File` - The file (open for writing) or a file name to write into. - """ - hdf5 = model_file if isinstance(model_file, bob.io.base.HDF5File) else bob.io.base.HDF5File(model_file, 'w') - for i, f in enumerate(model): - hdf5.create_group("Feature%d" % i) - hdf5.cd("Feature%d" % i) - self.write_function(f, hdf5) - hdf5.cd("..") - - - def read_model(self, model_file): - """read_model(model_file) -> model + model_file : str or :py:class:`bob.io.base.HDF5File` + The file (open for reading) or the name of an existing file to read from. - Reads all features of the model from the given HDF5 file. + **Returns:** - To read the features, the ``read_function`` specified in the constructor is employed. - - **Parameters:** + model : [object] + The read model, which is a list of features. + """ + hdf5 = bob.io.base.HDF5File(model_file) + i = 0 + model = [] + while hdf5.has_group("Feature%d" % i): + hdf5.cd("Feature%d" % i) + model.append(self.read_function(hdf5)) + hdf5.cd("..") + i += 1 + return model - model_file : str or :py:class:`bob.io.base.HDF5File` - The file (open for reading) or the name of an existing file to read from. + def read_probe(self, probe_file): + """read_probe(probe_file) -> probe - **Returns:** + Reads the probe feature from the given HDF5 file. - model : [object] - The read model, which is a list of features. - """ - hdf5 = bob.io.base.HDF5File(model_file) - i = 0 - model = [] - while hdf5.has_group("Feature%d" % i): - hdf5.cd("Feature%d" % i) - model.append(self.read_function(hdf5)) - hdf5.cd("..") - i += 1 - return model + To read the feature, the ``read_function`` specified in the constructor is employed. + **Parameters:** - def read_probe(self, probe_file): - """read_probe(probe_file) -> probe + probe_file : str or :py:class:`bob.io.base.HDF5File` + The file (open for reading) or the name of an existing file to read from. - Reads the probe feature from the given HDF5 file. + **Returns:** - To read the feature, the ``read_function`` specified in the constructor is employed. + probe : object + The read probe, which is a feature. + """ + return self.read_function(bob.io.base.HDF5File(probe_file)) - **Parameters:** + def score(self, model, probe): + """score(model, probe) -> float - probe_file : str or :py:class:`bob.io.base.HDF5File` - The file (open for reading) or the name of an existing file to read from. + Computes the BIC score between the model and the probe. + First, the ``comparison_function`` is used to create the comparison vectors between all model features and the probe feature. + Then, a BIC score is computed for each comparison vector, and the BIC scores are fused using the :py:func:`model_fusion_function` defined in the :py:class:`Algorithm` base class. - **Returns:** + **Parameters:** - probe : object - The read probe, which is a feature. - """ - return self.read_function(bob.io.base.HDF5File(probe_file)) + model : [object] + The model storing all model features. + probe : object + The probe feature. - def score(self, model, probe): - """score(model, probe) -> float + **Returns:** - Computes the BIC score between the model and the probe. - First, the ``comparison_function`` is used to create the comparison vectors between all model features and the probe feature. - Then, a BIC score is computed for each comparison vector, and the BIC scores are fused using the :py:func:`model_fusion_function` defined in the :py:class:`Algorithm` base class. + score : float + A fused BIC similarity value between ``model`` and ``probe``. + """ + # compute average score for the models + scores = [] + for i in range(len(model)): + diff = self.comparison_function(model[i], probe) + assert len(diff) == self.bic_machine.input_size + scores.append(self.bic_machine(diff)) + return self.model_fusion_function(scores) - **Parameters:** + # re-define unused functions, just so that they do not get documented + def train_projector(*args, **kwargs): + raise NotImplementedError() - model : [object] - The model storing all model features. + def load_projector(*args, **kwargs): + pass - probe : object - The probe feature. + def project(*args, **kwargs): + raise NotImplementedError() - **Returns:** + def write_feature(*args, **kwargs): + raise NotImplementedError() - score : float - A fused BIC similarity value between ``model`` and ``probe``. - """ - # compute average score for the models - scores = [] - for i in range(len(model)): - diff = self.comparison_function(model[i], probe) - assert len(diff) == self.bic_machine.input_size - scores.append(self.bic_machine(diff)) - return self.model_fusion_function(scores) - - # re-define unused functions, just so that they do not get documented - def train_projector(*args,**kwargs): raise NotImplementedError() - def load_projector(*args,**kwargs): pass - def project(*args,**kwargs): raise NotImplementedError() - def write_feature(*args,**kwargs): raise NotImplementedError() - def read_feature(*args,**kwargs): raise NotImplementedError() + def read_feature(*args, **kwargs): + raise NotImplementedError() diff --git a/bob/bio/base/database/database.py b/bob/bio/base/database/database.py index 7393ee4d1200479d138d3eefbbd775f8eb85380d..8e6f76f886b06384f9aa1131f2289972e8147dd9 100644 --- a/bob/bio/base/database/database.py +++ b/bob/bio/base/database/database.py @@ -10,7 +10,64 @@ import bob.db.base import bob.bio.base.database + class BioDatabase(six.with_metaclass(abc.ABCMeta, bob.db.base.Database)): + """This class represents the basic API for database access. + Please use this class as a base class for your database access classes. + Do not forget to call the constructor of this base class in your derived class. + + **Parameters:** + + name : str + A unique name for the database. + + all_files_options : dict + Dictionary of options passed to the :py:meth:`bob.bio.base.database.BioDatabase.objects` database query when retrieving all data. + + extractor_training_options : dict + Dictionary of options passed to the :py:meth:`bob.bio.base.database.BioDatabase.objects` database query used to retrieve the files for the extractor training. + + projector_training_options : dict + Dictionary of options passed to the :py:meth:`bob.bio.base.database.BioDatabase.objects` database query used to retrieve the files for the projector training. + + enroller_training_options : dict + Dictionary of options passed to the :py:meth:`bob.bio.base.database.BioDatabase.objects` database query used to retrieve the files for the enroller training. + + check_original_files_for_existence : bool + Enables to test for the original data files when querying the database. + + original_directory : str + The directory where the original data of the database are stored. + + original_extension : str + The file name extension of the original data. + + annotation_directory : str + The directory where the image annotations of the database are stored, if any. + + annotation_extension : str + The file name extension of the annotation files. + + annotation_type : str + The type of the annotation file to read, see `bob.db.base.annotations.read_annotation_file` for accepted formats. + + protocol : str or ``None`` + The name of the protocol that defines the default experimental setup for this database. + + .. todo:: Check if the ``None`` protocol is supported. + + training_depends_on_protocol : bool + Specifies, if the training set used for training the extractor and the projector depend on the protocol. + This flag is used to avoid re-computation of data when running on the different protocols of the same database. + + models_depend_on_protocol : bool + Specifies, if the models depend on the protocol. + This flag is used to avoid re-computation of models when running on the different protocols of the same database. + + kwargs : ``key=value`` pairs + The arguments of the :py:class:`Database` base class constructor. + + """ def __init__( self, name, @@ -32,62 +89,6 @@ class BioDatabase(six.with_metaclass(abc.ABCMeta, bob.db.base.Database)): models_depend_on_protocol=False, **kwargs ): - """This class represents the basic API for database access. - Please use this class as a base class for your database access classes. - Do not forget to call the constructor of this base class in your derived class. - - **Parameters:** - - name : str - A unique name for the database. - - all_files_options : dict - Dictionary of options passed to the :py:meth:`bob.bio.base.database.BioDatabase.objects` database query when retrieving all data. - - extractor_training_options : dict - Dictionary of options passed to the :py:meth:`bob.bio.base.database.BioDatabase.objects` database query used to retrieve the files for the extractor training. - - projector_training_options : dict - Dictionary of options passed to the :py:meth:`bob.bio.base.database.BioDatabase.objects` database query used to retrieve the files for the projector training. - - enroller_training_options : dict - Dictionary of options passed to the :py:meth:`bob.bio.base.database.BioDatabase.objects` database query used to retrieve the files for the enroller training. - - check_original_files_for_existence : bool - Enables to test for the original data files when querying the database. - - original_directory : str - The directory where the original data of the database are stored. - - original_extension : str - The file name extension of the original data. - - annotation_directory : str - The directory where the image annotations of the database are stored, if any. - - annotation_extension : str - The file name extension of the annotation files. - - annotation_type : str - The type of the annotation file to read, see :py:func:`bob.bio.base.database.read_annotation_file` for accepted formats. - - protocol : str or ``None`` - The name of the protocol that defines the default experimental setup for this database. - - .. todo:: Check if the ``None`` protocol is supported. - - training_depends_on_protocol : bool - Specifies, if the training set used for training the extractor and the projector depend on the protocol. - This flag is used to avoid re-computation of data when running on the different protocols of the same database. - - models_depend_on_protocol : bool - Specifies, if the models depend on the protocol. - This flag is used to avoid re-computation of models when running on the different protocols of the same database. - - kwargs : ``key=value`` pairs - The arguments of the :py:class:`Database` base class constructor. - - """ assert isinstance(name, str) @@ -214,13 +215,13 @@ class BioDatabase(six.with_metaclass(abc.ABCMeta, bob.db.base.Database)): **Parameters:** - files : [:py:class:`File`] + files : [:py:class:`BioFile`] The list of files to be uniquified and sorted. **Returns:** - sorted : [:py:class:`File`] - The sorted list of files, with duplicate :py:attr:`File.id`\s being removed. + sorted : [:py:class:`BioFile`] + The sorted list of files, with duplicate `BioFile.id`\s being removed. """ # sort files using their sort function sorted_files = sorted(files) @@ -242,13 +243,13 @@ class BioDatabase(six.with_metaclass(abc.ABCMeta, bob.db.base.Database)): **Parameters:** - files : :py:class:`File` - A list of files that should be split up by :py:attr:`File.client_id`. + files : :py:class:`BioFile` + A list of files that should be split up by `BioFile.client_id`. **Returns:** - files_by_client : [[:py:class:`File`]] - The list of lists of files, where each sub-list groups the files with the same :py:attr:`File.client_id` + files_by_client : [[:py:class:`BioFile`]] + The list of lists of files, where each sub-list groups the files with the same `BioFile.client_id` """ client_files = {} for file in files: @@ -264,11 +265,11 @@ class BioDatabase(six.with_metaclass(abc.ABCMeta, bob.db.base.Database)): def annotations(self, file): """ Returns the annotations for the given File object, if available. - It uses :py:func:`bob.bio.base.database.read_annotation_file` to load the annotations. + It uses `bob.db.base.annotations.read_annotation_file` to load the annotations. **Parameters:** - file : :py:class:`File` + file : :py:class:`BioFile` The file for which annotations should be returned. **Returns:** @@ -293,7 +294,7 @@ class BioDatabase(six.with_metaclass(abc.ABCMeta, bob.db.base.Database)): **Parameters:** - files : [:py:class:`File`] + files : [:py:class:`BioFile`] The list of file object to retrieve the file names for. directory : str @@ -323,7 +324,7 @@ class BioDatabase(six.with_metaclass(abc.ABCMeta, bob.db.base.Database)): **Parameters:** - files : [:py:class:`File`] + files : [:py:class:`BioFile`] The list of file object to retrieve the original data file names for. **Returns:** @@ -413,7 +414,7 @@ class BioDatabase(six.with_metaclass(abc.ABCMeta, bob.db.base.Database)): Keyword parameters: - file : :py:class:`File` or a derivative + file : :py:class:`BioFile` or a derivative The File objects for which the file name should be retrieved Return value : str @@ -444,7 +445,7 @@ class BioDatabase(six.with_metaclass(abc.ABCMeta, bob.db.base.Database)): **Returns:** - files : [:py:class:`File`] + files : [:py:class:`BioFile`] The sorted and unique list of all files of the database. """ return self.sort(self.objects(protocol=self.protocol, groups=groups, **self.all_files_options)) @@ -467,7 +468,7 @@ class BioDatabase(six.with_metaclass(abc.ABCMeta, bob.db.base.Database)): **Returns:** - files : [:py:class:`File`] or [[:py:class:`File`]] + files : [:py:class:`BioFile`] or [[:py:class:`BioFile`]] The (arranged) list of files used for the training of the given step. """ if step is None: @@ -502,7 +503,7 @@ class BioDatabase(six.with_metaclass(abc.ABCMeta, bob.db.base.Database)): **Returns:** - files : [:py:class:`File`] + files : [:py:class:`BioFile`] The sorted and unique list of test files of the database. """ return self.sort(self.objects(protocol=self.protocol, groups=groups, **self.all_files_options)) @@ -551,7 +552,7 @@ class BioDatabase(six.with_metaclass(abc.ABCMeta, bob.db.base.Database)): **Returns:** - files : [:py:class:`File`] + files : [:py:class:`BioFile`] The list of files used for to probe the model with the given model id. """ if model_id is not None: @@ -605,7 +606,7 @@ class BioDatabase(six.with_metaclass(abc.ABCMeta, bob.db.base.Database)): **Returns:** - files : [:py:class:`FileSet`] or something similar + files : [:py:class:`BioFileSet`] or something similar The list of file sets used to probe the model with the given model id.""" if model_id is not None: file_sets = self.object_sets(protocol=self.protocol, groups=group, model_ids=(model_id,), purposes='probe', @@ -714,7 +715,7 @@ class ZTBioDatabase(BioDatabase): **Returns:** - files : [:py:class:`File`] + files : [:py:class:`BioFile`] The sorted and unique list of all files of the database. """ files = self.objects(protocol=self.protocol, groups=groups, **self.all_files_options) @@ -776,7 +777,7 @@ class ZTBioDatabase(BioDatabase): **Returns:** - files : [:py:class:`File`] + files : [:py:class:`BioFile`] The sorted list of files used for to enroll the model with the given model id. """ return self.sort(self.tobjects(protocol=self.protocol, groups=group, model_ids=(t_model_id,))) @@ -785,7 +786,7 @@ class ZTBioDatabase(BioDatabase): """z_probe_files(group = 'dev') -> files Returns a list of probe files used to compute the Z-Norm, respecting the current protocol. - The Z-probe files can be limited using the ``z_probe_options`` in the query to :py:meth:`ZTBioDatabase.z_probe_files` + The Z-probe files can be limited using the ``z_probe_options`` in the query to :py:meth:`bob.bio.base.database.ZTBioDatabase.z_probe_files` **Parameters:** @@ -794,7 +795,7 @@ class ZTBioDatabase(BioDatabase): **Returns:** - files : [:py:class:`File`] + files : [:py:class:`BioFile`] The unique list of files used to compute the Z-norm. """ return self.sort(self.zobjects(protocol=self.protocol, groups=group, **self.z_probe_options)) @@ -812,7 +813,7 @@ class ZTBioDatabase(BioDatabase): **Returns:** - files : [:py:class:`FileSet`] + files : [:py:class:`BioFileSet`] The unique list of file sets used to compute the Z-norm. """ raise NotImplementedError("Please implement this function in derived classes") @@ -822,12 +823,16 @@ class ZTBioDatabase(BioDatabase): Returns the client id for the given T-Norm model id. In this base class implementation, we just use the :py:meth:`client_id_from_model_id` function. Overload this function if you need another behavior. + **Parameters:** + t_model_id : int or str A unique ID that identifies the T-Norm model. group : one of ``('dev', 'eval')`` The group to get the client ids for. + **Returns:** + client_id : [int] or [str] A unique ID that identifies the client, to which the T-Norm model belongs. """ diff --git a/bob/bio/base/database/file.py b/bob/bio/base/database/file.py index 3dca312725b7e1cb231d22d43445aea4acbd14b2..d196203edc9089a9c61fdf5134dfe6b0b9d60245 100644 --- a/bob/bio/base/database/file.py +++ b/bob/bio/base/database/file.py @@ -18,7 +18,7 @@ class BioFile(bob.db.base.File): The id of the client this file belongs to. Its type depends on your implementation. If you use an SQL database, this should be an SQL type like Integer or String. - For path and file_id, please refer to :py:class:`bob.db.base.File` constructor + For path and file_id, please refer to :py:class:`bob.db.base.file.File` constructor """ bob.db.base.File.__init__(self, path, file_id) @@ -28,34 +28,36 @@ class BioFile(bob.db.base.File): class BioFileSet(BioFile): - """This class defines the minimum interface of a set of database files that needs to be exported. - Use this class, whenever the database provides several files that belong to the same probe. - Each file set has an id, and a list of associated files, which are of type :py:class:`BioFile` of the same client. - The file set id can be anything hashable, but needs to be unique all over the database. - **Parameters:** - file_set_id : str or int - A unique ID that identifies the file set. - files : [:py:class:`BioFile`] - A non-empty list of BioFile objects that should be stored inside this file. - All files of that list need to have the same client ID. - """ - - def __init__(self, file_set_id, files, path=None): - - # don't accept empty file lists - assert len(files), "Cannot create an empty BioFileSet" - - # call base class constructor - BioFile.__init__(self, files[0].client_id, "+".join(f.path for f in files) if path is None else path, file_set_id) - - # check that all files come from the same client - assert all(f.client_id == self.client_id for f in files) - - # The list of files contained in this set - self.files = files - """The list of :py:class:`BioFile` objects stored in this file set""" - - def __lt__(self, other): - """Defines an order between file sets by using the order of the file set ids.""" - # compare two BioFile set objects by comparing their IDs - return self.id < other.id + """This class defines the minimum interface of a set of database files that needs to be exported. + Use this class, whenever the database provides several files that belong to the same probe. + Each file set has an id, and a list of associated files, which are of type :py:class:`BioFile` of the same client. + The file set id can be anything hashable, but needs to be unique all over the database. + + **Parameters:** + + file_set_id : str or int + A unique ID that identifies the file set. + files : [:py:class:`BioFile`] + A non-empty list of BioFile objects that should be stored inside this file. + All files of that list need to have the same client ID. + """ + + def __init__(self, file_set_id, files, path=None): + # don't accept empty file lists + assert len(files), "Cannot create an empty BioFileSet" + + # call base class constructor + BioFile.__init__(self, files[0].client_id, "+".join(f.path for f in files) if path is None else path, + file_set_id) + + # check that all files come from the same client + assert all(f.client_id == self.client_id for f in files) + + # The list of files contained in this set + self.files = files + """The list of :py:class:`BioFile` objects stored in this file set""" + + def __lt__(self, other): + """Defines an order between file sets by using the order of the file set ids.""" + # compare two BioFile set objects by comparing their IDs + return self.id < other.id diff --git a/bob/bio/base/extractor/Extractor.py b/bob/bio/base/extractor/Extractor.py index 4a0dbcd8f0c3aded41d11eecbbfafd44a8da4a67..b4c238d203e4a3111404a9c9ae2ce86aad2c73fa 100644 --- a/bob/bio/base/extractor/Extractor.py +++ b/bob/bio/base/extractor/Extractor.py @@ -24,7 +24,7 @@ class Extractor: Ignored, if ``requires_training`` is ``False`` kwargs : ``key=value`` pairs - A list of keyword arguments to be written in the :py:meth:`__str__` function. + A list of keyword arguments to be written in the `__str__` function. """ def __init__( @@ -89,7 +89,7 @@ class Extractor: **Parameters:** feature : object - The extracted feature, i.e., what is returned from :py:meth:`__call__`. + The extracted feature, i.e., what is returned from `__call__`. feature_file : str or :py:class:`bob.io.base.HDF5File` The file open for writing, or the name of the file to write. diff --git a/bob/bio/base/extractor/Linearize.py b/bob/bio/base/extractor/Linearize.py index be71e0fe1ad621ffbb1c70029e297d2baff22325..e69de5d1b953120ab72191464a940ce5a80557ff 100644 --- a/bob/bio/base/extractor/Linearize.py +++ b/bob/bio/base/extractor/Linearize.py @@ -6,40 +6,41 @@ from .Extractor import Extractor import numpy -class Linearize (Extractor): - """Extracts features by simply concatenating all elements of the data into one long vector. - If a ``dtype`` is specified in the contructor, it is assured that the resulting - """ +class Linearize(Extractor): + """Extracts features by simply concatenating all elements of the data into one long vector. - def __init__(self, dtype=None): - """If the ``dtype`` parameter is given, it specifies the data type that is enforced for the features.""" - Extractor.__init__(self, dtype = dtype) - self.dtype = dtype + If a ``dtype`` is specified in the contructor, it is assured that the resulting + """ - def __call__(self, data): - """__call__(data) -> data + def __init__(self, dtype=None): + """If the ``dtype`` parameter is given, it specifies the data type that is enforced for the features.""" + Extractor.__init__(self, dtype=dtype) + self.dtype = dtype - Takes data of arbitrary dimensions and linearizes it into a 1D vector; enforcing the data type, if desired. + def __call__(self, data): + """__call__(data) -> data - **Parameters:** + Takes data of arbitrary dimensions and linearizes it into a 1D vector; enforcing the data type, if desired. - data : :py:class:`numpy.ndarray` - The preprocessed data to be transformed into one vector. + **Parameters:** - **Returns:** + data : :py:class:`numpy.ndarray` + The preprocessed data to be transformed into one vector. - data : 1D :py:class:`numpy.ndarray` - The extracted feature vector, of the desired ``dtype`` (if specified). - """ - assert isinstance(data, numpy.ndarray) + **Returns:** + + data : 1D :py:class:`numpy.ndarray` + The extracted feature vector, of the desired ``dtype`` (if specified). + """ + assert isinstance(data, numpy.ndarray) - linear = numpy.reshape(data, data.size) - if self.dtype is not None: - linear = linear.astype(self.dtype) - return linear + linear = numpy.reshape(data, data.size) + if self.dtype is not None: + linear = linear.astype(self.dtype) + return linear + # re-define unused functions, just so that they do not get documented + def train(*args, **kwargs): raise NotImplementedError() - # re-define unused functions, just so that they do not get documented - def train(*args,**kwargs): raise NotImplementedError() - def load(*args,**kwargs): pass + def load(*args, **kwargs): pass diff --git a/bob/bio/base/preprocessor/Preprocessor.py b/bob/bio/base/preprocessor/Preprocessor.py index 6c61cabd18c5831afae1757a1ca0c1015c23d12a..4ab8de669df7e60e19e48967cfdc08030f48290a 100644 --- a/bob/bio/base/preprocessor/Preprocessor.py +++ b/bob/bio/base/preprocessor/Preprocessor.py @@ -5,104 +5,101 @@ from .. import utils -class Preprocessor: - """This is the base class for all preprocessors. - It defines the minimum requirements for all derived proprocessor classes. - - **Parameters:** - - writes_data : bool - Select, if the preprocessor actually writes preprocessed images, or if it is simply returning values. - - read_original_data: callable - This function is used to read the original data from file. - It takes three inputs: A :py:class:`bob.bio.base.database.BioFile` (or one of its derivatives), the original directory (as ``str``) and the original extension (as ``str``). - kwargs : ``key=value`` pairs - A list of keyword arguments to be written in the :py:meth:`__str__` function. - """ +class Preprocessor: + """This is the base class for all preprocessors. + It defines the minimum requirements for all derived proprocessor classes. - def __init__(self, writes_data = True, read_original_data = utils.read_original_data, **kwargs): - # Each class needs to have a constructor taking - # all the parameters that are required for the preprocessing as arguments - self.writes_data = writes_data - self.read_original_data = read_original_data - self._kwargs = kwargs - pass + **Parameters:** + writes_data : bool + Select, if the preprocessor actually writes preprocessed images, or if it is simply returning values. - # The call function (i.e. the operator() in C++ terms) - def __call__(self, data, annotations): - """__call__(data, annotations) -> dara + read_original_data: callable + This function is used to read the original data from file. + It takes three inputs: A :py:class:`bob.bio.base.database.BioFile` (or one of its derivatives), the original directory (as ``str``) and the original extension (as ``str``). - This is the call function that you have to overwrite in the derived class. - The parameters that this function will receive are: + kwargs : ``key=value`` pairs + A list of keyword arguments to be written in the `__str__` function. + """ - **Parameters:** + def __init__(self, writes_data=True, read_original_data=utils.read_original_data, **kwargs): + # Each class needs to have a constructor taking + # all the parameters that are required for the preprocessing as arguments + self.writes_data = writes_data + self.read_original_data = read_original_data + self._kwargs = kwargs + pass - data : object - The original data that needs preprocessing, usually a :py:class:`numpy.ndarray`, but might be different. + # The call function (i.e. the operator() in C++ terms) + def __call__(self, data, annotations): + """__call__(data, annotations) -> dara - annotations : {} or None - The annotations (if any) that belongs to the given ``data``; as a dictionary. - The type of the annotation depends on your kind of problem. + This is the call function that you have to overwrite in the derived class. + The parameters that this function will receive are: - **Returns:** + **Parameters:** - data : object - The *preprocessed* data, usually a :py:class:`numpy.ndarray`, but might be different. - """ - raise NotImplementedError("Please overwrite this function in your derived class") + data : object + The original data that needs preprocessing, usually a :py:class:`numpy.ndarray`, but might be different. + annotations : {} or None + The annotations (if any) that belongs to the given ``data``; as a dictionary. + The type of the annotation depends on your kind of problem. - def __str__(self): - """__str__() -> info + **Returns:** - This function returns all parameters of this class (and its derived class). + data : object + The *preprocessed* data, usually a :py:class:`numpy.ndarray`, but might be different. + """ + raise NotImplementedError("Please overwrite this function in your derived class") - **Returns:** + def __str__(self): + """__str__() -> info - info : str - A string containing the full information of all parameters of this (and the derived) class. - """ - return utils.pretty_print(self, self._kwargs) + This function returns all parameters of this class (and its derived class). - ############################################################ - ### Special functions that might be overwritten on need - ############################################################ + **Returns:** + info : str + A string containing the full information of all parameters of this (and the derived) class. + """ + return utils.pretty_print(self, self._kwargs) - def write_data(self, data, data_file): - """Writes the given *preprocessed* data to a file with the given name. - In this base class implementation, we simply use :py:func:`bob.bio.base.save` for that. - If you have a different format (e.g. not images), please overwrite this function. + ############################################################ + ### Special functions that might be overwritten on need + ############################################################ - **Parameters:** + def write_data(self, data, data_file): + """Writes the given *preprocessed* data to a file with the given name. + In this base class implementation, we simply use :py:func:`bob.bio.base.save` for that. + If you have a different format (e.g. not images), please overwrite this function. - data : object - The preprocessed data, i.e., what is returned from :py:meth:`__call__`. + **Parameters:** - data_file : str or :py:class:`bob.io.base.HDF5File` - The file open for writing, or the name of the file to write. - """ - utils.save(data, data_file) + data : object + The preprocessed data, i.e., what is returned from `__call__`. + data_file : str or :py:class:`bob.io.base.HDF5File` + The file open for writing, or the name of the file to write. + """ + utils.save(data, data_file) - def read_data(self, data_file): - """read_data(data_file) -> data + def read_data(self, data_file): + """read_data(data_file) -> data - Reads the *preprocessed* data from file. - In this base class implementation, it uses :py:func:`bob.bio.base.load` to do that. - If you have different format, please overwrite this function. + Reads the *preprocessed* data from file. + In this base class implementation, it uses :py:func:`bob.bio.base.load` to do that. + If you have different format, please overwrite this function. - **Parameters:** + **Parameters:** - data_file : str or :py:class:`bob.io.base.HDF5File` - The file open for reading or the name of the file to read from. + data_file : str or :py:class:`bob.io.base.HDF5File` + The file open for reading or the name of the file to read from. - **Returns:** + **Returns:** - data : object (usually :py:class:`numpy.ndarray`) - The preprocessed data read from file. - """ - return utils.load(data_file) + data : object (usually :py:class:`numpy.ndarray`) + The preprocessed data read from file. + """ + return utils.load(data_file) diff --git a/bob/bio/base/tools/FileSelector.py b/bob/bio/base/tools/FileSelector.py index 16592e26b1fd04593eb3d84e442daf3260ff93ba..90e3f0a401399bf1f77338fa62a9bb57e6dd6774 100644 --- a/bob/bio/base/tools/FileSelector.py +++ b/bob/bio/base/tools/FileSelector.py @@ -6,7 +6,7 @@ import os from .. import utils @utils.Singleton -class FileSelector: +class FileSelector(object): """This class provides shortcuts for selecting different files for different stages of the verification process. It communicates with the database and provides lists of file names for all steps of the tool chain. @@ -15,7 +15,7 @@ class FileSelector: **Parameters:** - database : :py:class:`bob.bio.base.database.Database` or derived + database : :py:class:`bob.bio.base.database.BioDatabase` or derived The database object that provides the list of files. preprocessed_directory : str diff --git a/bob/bio/base/tools/command_line.py b/bob/bio/base/tools/command_line.py index f88e960c01413e802a730d54b1e9e105733c64fe..4b992f396393ba906b3a68da10c7ac256d0a7815 100644 --- a/bob/bio/base/tools/command_line.py +++ b/bob/bio/base/tools/command_line.py @@ -8,7 +8,6 @@ logger = bob.core.log.setup("bob.bio.base") from .. import utils from . import FileSelector -from bob.bio.base.database import BioDatabase """Execute biometric recognition algorithms on a certain biometric database. """ @@ -201,6 +200,7 @@ def initialize(parsers, command_line_parameters = None, skips = []): .. note:: The database, preprocessor, extractor, algorithm and grid (if specified) are actual instances of the according classes. """ + from bob.bio.base.database import BioDatabase # add execute-only flags to command line options if skips is not None: diff --git a/bob/bio/base/utils/singleton.py b/bob/bio/base/utils/singleton.py index 9a2092c47024cff8271206db463ef6542629ebbe..5bae6ff4b8e37edb759696a9f9437347f57dfebc 100644 --- a/bob/bio/base/utils/singleton.py +++ b/bob/bio/base/utils/singleton.py @@ -1,13 +1,13 @@ # A singleton class decorator, based on http://stackoverflow.com/a/7346105/3301902 -class Singleton: +class Singleton(object): """ A non-thread-safe helper class to ease implementing singletons. This should be used as a **decorator** -- not a metaclass -- to the class that should be a singleton. The decorated class can define one `__init__` function that takes an arbitrary list of parameters. - To get the singleton instance, use the :py:meth:`instance` method. Trying to use :py:meth:`__call__` will result in a :py:class:`TypeError` being raised. + To get the singleton instance, use the :py:meth:`instance` method. Trying to use `__call__` will result in a `TypeError` being raised. Limitations: @@ -21,6 +21,7 @@ class Singleton: self.__doc__ = decorated.__doc__ self.__name__ = decorated.__name__ self.__module__ = decorated.__module__ + self.__mro__ = decorated.__mro__ self.__bases__ = [] self._instance = None diff --git a/doc/conf.py b/doc/conf.py index c4202fa542699899cfda121e7d4b36abe24e0db2..ce755618fcee4e8455c9cba433ea731b2a9b2421 100644 --- a/doc/conf.py +++ b/doc/conf.py @@ -216,8 +216,13 @@ autodoc_default_flags = [ ] # For inter-documentation mapping: -from bob.extension.utils import link_documentation -intersphinx_mapping = link_documentation() +from bob.extension.utils import link_documentation, load_requirements +sphinx_requirements = "./extra-intersphinx.txt" +if os.path.exists(sphinx_requirements): + intersphinx_mapping = link_documentation(additional_packages=load_requirements(sphinx_requirements)) +else: + intersphinx_mapping = link_documentation() + # We want to remove all private (i.e. _. or __.__) members # that are not in the list of accepted functions diff --git a/doc/extra-intersphinx.txt b/doc/extra-intersphinx.txt new file mode 100644 index 0000000000000000000000000000000000000000..da9c656f1edb88f35193fac0ac4880cb6d881c65 --- /dev/null +++ b/doc/extra-intersphinx.txt @@ -0,0 +1,11 @@ +python +numpy +bob.bio.face +bob.bio.speaker +bob.bio.gmm +bob.bio.video +bob.bio.csu +bob.bio.spear +bob.learn.linear +gridtk +bob.db.youtube \ No newline at end of file diff --git a/doc/implementation.rst b/doc/implementation.rst index 0777226226cac24dea92cde04eb3663af261ec4f..a6e6f630c2849e9ea5f34e482174381e61a7c27f 100644 --- a/doc/implementation.rst +++ b/doc/implementation.rst @@ -196,7 +196,6 @@ Here is a list of implementations: * :ref:`bob.bio.face <bob.bio.face>` : :ref:`bob.bio.face.implemented` * :ref:`bob.bio.video <bob.bio.video>` : :ref:`bob.bio.video.implemented` * :ref:`bob.bio.gmm <bob.bio.gmm>` : :ref:`bob.bio.gmm.implemented` -* :ref:`bob.bio.csu <bob.bio.csu>` : :ref:`bob.bio.csu.implemented` .. * :ref:`bob.bio.spear <bob.bio.spear>` : :ref:`bob.bio.spear.implemented` @@ -218,56 +217,58 @@ Verification Database Interface ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ For most of the data sets, we rely on the database interfaces from Bob_. -Particularly, all databases that are derived from the :py:class:`bob.bio.base.database.BioDatabase` (click :ref:`here <verification_databases>` for a list of implemented databases) are supported by a special derivation of the databases from above. -For these databases, the special :py:class:`bob.bio.base.database.DatabaseBob` interface is provided, which takes the Bob_ database as parameter. -Several such databases are defined in the according packages, i.e., :ref:`bob.bio.spear <bob.bio.spear>`, :ref:`bob.bio.face <bob.bio.face>` and :ref:`bob.bio.video <bob.bio.video>`. -For Bob_'s ZT-norm databases, we provide the :py:class:`bob.bio.base.database.DatabaseBobZT` interface. -Additionally, a generic database interface, which is derived from :py:class:`bob.bio.base.database.DatabaseBobZT`, is the :py:class:`bob.bio.base.database.DatabaseFileList`. -This database interfaces with the :py:class:`bob.db.verification.filelist.Database`, which is a generic database based on file lists, implementing the :py:class:`bob.bio.base.database.BioDatabase` interface. +Particularly, all databases that are derived from the :py:class:`bob.bio.base.database.BioDatabase` (click `here <https://github.com/idiap/bob/wiki/Packages>`_ for a list of implemented databases) are supported by a special derivation of the databases from above. +For these databases, the special :py:class:`bob.bio.base.database.BioDatabase` interface is provided, which takes the Bob_ database as parameter. +Several such databases are defined in the according packages, i.e., :ref:`bob.bio.spear <bob.bio.spear>`, :ref:`bob.bio.face <bob.bio.face>` and :ref:`bob.bio.video <bob.bio.video>`. +For Bob_'s ZT-norm databases, we provide the :py:class:`bob.bio.base.database.ZTBioDatabase` interface. Defining your own Database ~~~~~~~~~~~~~~~~~~~~~~~~~~ +.. + If you have your own database that you want to execute the recognition experiments on, you should first check if you could use the :ref:`Verifcation File List Database <bob.db.bio_filelist>` interface by defining appropriate file lists for the training set, the model set, and the probes. + In most of the cases, the :py:class:`bob.db.bio_filelist.Database` should be sufficient to run experiments. + Please refer to the documentation :ref:`Documentation <bob.db.bio_filelist>` of this database for more instructions on how to configure this database. -If you have your own database that you want to execute the recognition experiments on, you should first check if you could use the :ref:`Verifcation FileList Database <bob.db.verification.filelist>` interface by defining appropriate file lists for the training set, the model set, and the probes. -In most of the cases, the :py:class:`bob.db.verification.filelist.Database` should be sufficient to run experiments. -Please refer to the documentation :ref:`Documentation <bob.db.verification.filelist>` of this database for more instructions on how to configure this database. +To "plug" your own database in this framework you have to write your own database class by deriving :py:class:`bob.bio.base.database.BioDatabase`. +In this case, you have to derive your class from the :py:class:`bob.bio.base.database.BioDatabase`, and provide the following functions: -In case you want to have a more complicated interface to your database, you are welcome to write your own database wrapper class. -In this case, you have to derive your class from the :py:class:`bob.bio.base.database.Database`, and provide the following functions: -* ``__init__(self, <your-parameters>, **kwargs)``: Constructor of your database interface. - Please call the base class constructor, providing all the required parameters, e.g. by ``bob.bio.base.database.Database.__init__(self, **kwargs)``. -* ``all_files(self)``: Returns a list of all :py:class:`bob.bio.base.database.File` objects of the database. - The list needs to be sorted by the file id (you can use the ``self.sort(files)`` function for sorting). -* ``training_files(self, step, arrange_by_client = False)``: A sorted list of the :py:class:`bob.bio.base.database.File` objects that is used for training. - If ``arrange_by_clients`` is enabled, you might want to use the :py:meth:`bob.bio.base.database.Database.arrange_by_client` function to perform the job. -* ``model_ids(self, group = 'dev'): The ids for the models (usually, there is only one model per client and, thus, you can simply use the client ids) for the given group. +* ``__init__(self, <your-parameters>, **kwargs)`` Constructor of your database interface. + Please call the base class constructor, providing all the required parameters, e.g. by ``super(<your_db>,self).__init__(self, **kwargs)``. Usually, providing ids for the group ``'dev'`` should be sufficient. -* ``client_id_from_model_id(self, model_id)``: Returns the client id for the given model id. -* ``enroll_files(self, model_id, group='dev')``: Returns the list of model :py:class:`bob.bio.base.database.File` objects for the given model id. -* ``probe_files(self, model_id=None, group='dev')``: Returns the list of probe files, the given model_id should be compared with. - Usually, all probe files are compared with all model files. - In this case, you can just ignore the ``model_id``. - If the ``model_id`` is ``None``, this function is supposed to return *all* probe files for all models of the given group. + +* ``objects(self, groups=None, protocol=None, purposes=None, model_ids=None, **kwargs)`` + This function must return a list of ``bob.db.base.database.BioFile`` objects with your data. + The keyword arguments are possible filters that you may use. + +* ``model_ids_with_protocol(self, groups, protocol, **kwargs)`` + This function must return a list of model ids for the given groups and given protocol. + In this context models are basically them "templates" used for enrollment. Additionally, you can define more lists that can be used for ZT score normalization. -In this case, derive you class from :py:class:`bob.bio.base.database.DatabaseZT` instead, and additionally overwrite the following functions: +If you don't know what ZT score normalization is, just forget about it and move on. +If you know and want to use it, just derive your class from :py:class:`bob.bio.base.database.ZTBioDatabase` instead, and additionally overwrite the following functions: -* ``t_model_ids(self, group = 'dev')``: The ids for the T-Norm models for the given group. -* ``t_enroll_files(self, model_id, group='dev')``: Returns the list of model :py:class:`bob.bio.base.database.File` objects for the given T-Norm model id. -* ``z_probe_files(self, group='dev')``: Returns the list of Z-probe :py:class:`bob.bio.base.database.File` objects, with which all the models and T-Norm models are compared. +* ``tobjects(self, groups=None, protocol=None, model_ids=None, **kwargs)`` + This function must return a list of ``bob.db.base.database.BioFile`` objects used for `T` normalization. + +* ``zobjects(self, groups=None, protocol=None, **kwargs)`` + This function must return a list of ``bob.db.base.database.BioFile`` objects used for `Z` normalization. + +* ``tmodel_ids_with_protocol(self, protocol=None, groups=None, **kwargs)`` + The ids for the T norm models for the given group and protocol. .. note: For a proper biometric recognition protocol, the identities from the models and the T-Norm models, as well as the Z-probes should be different. -For some protocols, a single probe consists of several features, see :ref:`bob.bio.base.algorithms` about strategies how to incorporate several probe files into one score. -If your database should provide this functionality, please overwrite: - -* ``uses_probe_file_sets(self)``: Return ``True`` if the current protocol of the database provides multiple files for one probe. -* ``probe_file_sets(self, model_id=None, group='dev')``: Returns a list of lists of :py:class:`bob.bio.base.database.FileSet` objects. -* ``z_probe_file_sets(self, model_id=None, group='dev')``: Returns a list of lists of Z-probe :py:class:`bob.bio.base.database.FileSet` objects (only needed if the base class is :py:class:`bob.bio.base.database.DatabaseZT`). +.. + For some protocols, a single probe consists of several features, see :ref:`bob.bio.base.algorithms` about strategies how to incorporate several probe files into one score. + If your database should provide this functionality, please overwrite: + * ``uses_probe_file_sets(self)``: Return ``True`` if the current protocol of the database provides multiple files for one probe. + * ``probe_file_sets(self, model_id=None, group='dev')``: Returns a list of lists of :py:class:`bob.bio.base.database.FileSet` objects. + * ``z_probe_file_sets(self, model_id=None, group='dev')``: Returns a list of lists of Z-probe :py:class:`bob.bio.base.database.FileSet` objects (only needed if the base class is :py:class:`bob.bio.base.database.DatabaseZT`). .. _bob.bio.base.configuration-files: @@ -282,7 +283,7 @@ In ``bob.bio`` this is achieved by providing these parameters in configuration f In these files, an *instance* of one of the tools is generated, and assigned to a variable with a specific name. These variable names are: -* ``database`` for an instance of a (derivation of a) :py:class:`bob.bio.base.database.Database` +* ``database`` for an instance of a (derivation of a) :py:class:`bob.bio.base.database.BioDatabase` * ``preprocessor`` for an instance of a (derivation of a) :py:class:`bob.bio.base.preprocessor.Preprocessor` * ``extractor`` for an instance of a (derivation of a) :py:class:`bob.bio.base.extractor.Extractor` * ``algorithm`` for an instance of a (derivation of a) :py:class:`bob.bio.base.algorithm.Algorithm` @@ -313,7 +314,7 @@ The process of registering a resource is relatively easy. We use the SetupTools_ mechanism of registering so-called entry points in the ``setup.py`` file of the according ``bob.bio`` package. Particularly, we use a specific list of entry points, which are: -* ``bob.bio.database`` to register an instance of a (derivation of a) :py:class:`bob.bio.base.database.Database` +* ``bob.bio.database`` to register an instance of a (derivation of a) :py:class:`bob.bio.base.database.BioDatabase` * ``bob.bio.preprocessor`` to register an instance of a (derivation of a) :py:class:`bob.bio.base.preprocessor.Preprocessor` * ``bob.bio.extractor`` to register an instance of a (derivation of a) :py:class:`bob.bio.base.extractor.Extractor` * ``bob.bio.algorithm`` to register an instance of a (derivation of a) :py:class:`bob.bio.base.algorithm.Algorithm` diff --git a/doc/implemented.rst b/doc/implemented.rst index e753ab0bca98efa0034530874a42b5ff70f2e9d2..d2a9489173cc214ea52ba072874f844f30ce74b6 100644 --- a/doc/implemented.rst +++ b/doc/implemented.rst @@ -14,8 +14,6 @@ Base Classes bob.bio.base.preprocessor.Preprocessor bob.bio.base.extractor.Extractor bob.bio.base.algorithm.Algorithm - bob.bio.base.database.Database - bob.bio.base.database.DatabaseZT bob.bio.base.grid.Grid @@ -30,9 +28,8 @@ Implementations bob.bio.base.algorithm.LDA bob.bio.base.algorithm.PLDA bob.bio.base.algorithm.BIC - bob.bio.base.database.DatabaseBob - bob.bio.base.database.DatabaseBobZT - bob.bio.base.database.DatabaseFileList + bob.bio.base.database.BioDatabase + bob.bio.base.database.ZTBioDatabase Preprocessors @@ -60,7 +57,6 @@ Grid Configuration .. automodule:: bob.bio.base.grid - .. data:: PREDEFINED_QUEUES A dictionary of predefined queue keywords, which are adapted to the Idiap_ SGE. @@ -68,12 +64,5 @@ Grid Configuration .. adapted from http://stackoverflow.com/a/29789910/3301902 to ge a nice dictionary content view - .. exec:: - import json - from bob.bio.base.grid import PREDEFINED_QUEUES - json_obj = json.dumps(PREDEFINED_QUEUES, sort_keys=True, indent=2) - json_obj = json_obj.replace("\n", "\n ") - print ('.. code-block:: JavaScript\n\n PREDEFINED_QUEUES = %s\n\n' % json_obj) - .. include:: links.rst diff --git a/doc/installation.rst b/doc/installation.rst index f3811adc0a20cb8b205573663dc3be59b3f11bb6..d2d7acd24068413dd722748a2dcb518a0eb31c83 100644 --- a/doc/installation.rst +++ b/doc/installation.rst @@ -17,7 +17,24 @@ Please make sure that you have read the `Dependencies <https://github.com/idiap/ Currently, running Bob_ under MS Windows in not yet supported. However, we found that running Bob_ in a virtual Unix environment such as the one provided by VirtualBox_ is a good alternative. -The most simple and most convenient way to use the ``bob.bio`` tools is to use a ``zc.buildout`` package, as explained in more detail `here <https://github.com/idiap/bob/wiki/Installation#using-zcbuildout-for-production>`__. +Installation via conda +---------------------- + +The most simple and most convenient way to use the ``bob.bio`` tools is to install it using `conda <http://conda.pydata.org/docs/intro.html>`_. +We offer pre-compiled binary installations of Bob_ and ``bob.bio`` with conda. +After setting up your conda environment (you can find the instructions `here <https://gitlab.idiap.ch/bob/bob/wikis/Installation>`_), use the sequence of commands to +first search the ``bob.bio`` in the conda-forge channel and then install it. + +.. code-block:: sh + + $ conda search bob.bio # searching + $ conda install bob.bio.base # Install the base package + + +Installation via zc.buildout +---------------------------- + +Another convenient way to use the ``bob.bio`` tools is to use a ``zc.buildout`` package, as explained in more detail `here <https://github.com/idiap/bob/wiki/Installation#using-zcbuildout-for-production>`__. There, in the ``eggs`` section of the ``buildout.cfg`` file, simply list the ``bob.bio`` packages that you want, like: .. code-block:: python @@ -30,7 +47,7 @@ There, in the ``eggs`` section of the ``buildout.cfg`` file, simply list the ``b gridtk in order to download and install all packages that are required for your experiments. -In the example above, you might want to run a video face recognition experiments using the :py:class:`bob.bio.face.preprocessor.FaceDetector` and the :py:class:`bob.bio.face.extractor.DCTBlocks` feature extractor defined in :ref:`bob.bio.face <bob.bio.face>`, the :py:class:`bob.bio.gmm.algorithm.IVector` algorithm defined in :ref:`bob.bio.gmm <bob.bio.gmm>` and the video extensions defined in :ref:`bob.bio.video <bob.bio.video>`, using the YouTube faces database interface defined in :ref:`bob.db.youtube <bob.db.youtube>`. +In the example above, you might want to run a video face recognition experiments using the :py:class:`bob.bio.face.preprocessor.FaceDetect` and the :py:class:`bob.bio.face.extractor.DCTBlocks` feature extractor defined in :ref:`bob.bio.face <bob.bio.face>`, the :py:class:`bob.bio.gmm.algorithm.IVector` algorithm defined in :ref:`bob.bio.gmm <bob.bio.gmm>` and the video extensions defined in :ref:`bob.bio.video <bob.bio.video>`, using the YouTube faces database interface defined in :ref:`bob.db.youtube <bob.db.youtube>`. Running the simple command line: .. code-block:: sh @@ -42,12 +59,12 @@ will the download and install all dependent packages locally (relative to your c Databases -~~~~~~~~~ +--------- With ``bob.bio`` you will run biometric recognition experiments using some default biometric recognition databases. Though the verification protocols are implemented in ``bob.bio``, the original data are **not included**. To download the original data of the databases, please refer to the according Web-pages. -For a list of supported databases including their download URLs, please refer to the :ref:`verification_databases`. +For a list of supported databases including their download URLs, please refer to the `verification_databases <https://github.com/idiap/bob/wiki/Packages>`_. After downloading the original data for the databases, you will need to tell ``bob.bio``, where these databases can be found. For this purpose, we have decided to implement a special file, where you can set your directories. @@ -69,7 +86,7 @@ Please use ``./bin/databases.py`` for a list of known databases, where you can s Test your Installation -~~~~~~~~~~~~~~~~~~~~~~ +---------------------- One of the scripts that were generated during the bootstrap/buildout step is a test script. To verify your installation, you should run the script running the nose tests for each of the ``bob.bio`` packages: @@ -104,8 +121,9 @@ In case any of the tests fail for unexplainable reasons, please file a bug repor In other versions, some of the tests may fail. + Generate this documentation -~~~~~~~~~~~~~~~~~~~~~~~~~~~ +--------------------------- Generally, the documentation of this package is `available online <http://pythonhosted.org/bob.bio.base>`__, and this should be your preferred resource. However, to generate this documentation locally, you call: diff --git a/requirements.txt b/requirements.txt index 5f863c468a4d0b8e4e819b893f7a5baf3c46b72e..f484724d65e8f992ce0d9fafd9b49108df5d4cda 100644 --- a/requirements.txt +++ b/requirements.txt @@ -9,5 +9,6 @@ bob.learn.linear bob.math bob.measure bob.sp +gridtk scipy setuptools