diff --git a/bob/bio/base/pipelines/vanilla_biometrics/annotated_legacy.py b/bob/bio/base/pipelines/vanilla_biometrics/annotated_legacy.py index 3013f87dedb50202a588d32c03fd5e33f84d5653..34d35a50753ec41e0b056dda5f4300ebed659b29 100644 --- a/bob/bio/base/pipelines/vanilla_biometrics/annotated_legacy.py +++ b/bob/bio/base/pipelines/vanilla_biometrics/annotated_legacy.py @@ -274,7 +274,7 @@ class SampleLoaderAnnotated(SampleLoader): try: # preprocessing is required, and checkpointing, do it now data = func(s.data, annotations=s.annotations) - except: + except: data = func(s.data) @@ -294,15 +294,17 @@ class SampleLoaderAnnotated(SampleLoader): # because we are checkpointing, we return a DelayedSample # instead of normal (preloaded) sample. This allows the next # phase to avoid loading it would it be unnecessary (e.g. next - # phase is already check-pointed) + # phase is already check-pointed) + #reader = bob.io.base.load reader = ( getattr(func, "read_data") if hasattr(func, "read_data") else getattr(func, "read_feature") ) + reader = reader.__func__ # The reader object might not be picklable samples.append( DelayedSample( - functools.partial(reader, candidate), parent=s + functools.partial(reader, None, candidate), parent=s ) ) else: diff --git a/bob/bio/base/pipelines/vanilla_biometrics/blocks.py b/bob/bio/base/pipelines/vanilla_biometrics/blocks.py index c53483fb74a1765b3ab641a6573cec1e1a17bdc6..0e0c9b7f7a6c34a4adb5f98307a51735b5ca27da 100644 --- a/bob/bio/base/pipelines/vanilla_biometrics/blocks.py +++ b/bob/bio/base/pipelines/vanilla_biometrics/blocks.py @@ -107,8 +107,9 @@ class SampleLoader: if hasattr(func, "read_data") else getattr(func, "read_feature") ) + reader = reader.__func__ # The reader object might not be picklable samples.append( - DelayedSample(functools.partial(reader, candidate), parent=s) + DelayedSample(functools.partial(reader, None, candidate), parent=s) ) else: # if checkpointing is not required, load the data and preprocess it diff --git a/bob/bio/base/pipelines/vanilla_biometrics/legacy.py b/bob/bio/base/pipelines/vanilla_biometrics/legacy.py index 961e2c27e6444f35d7c262028027da43d87df73b..c8bbb4ef62a94c64857f4819b39790cc7e119c0c 100644 --- a/bob/bio/base/pipelines/vanilla_biometrics/legacy.py +++ b/bob/bio/base/pipelines/vanilla_biometrics/legacy.py @@ -9,7 +9,7 @@ import functools import bob.io.base from bob.pipelines.sample.sample import DelayedSample, SampleSet, Sample - +import numpy class DatabaseConnector: """Wraps a bob.bio.base database and generates conforming samples @@ -316,17 +316,17 @@ class AlgorithmAdaptor: self.load() if self.model.requires_projector_training: return self.model.enroll( - [self.model.project(s.data) for s in k.samples] + numpy.array([self.model.project(s.data) for s in k.samples]) ) else: - return [s.data for s in k.samples] + return self.model.enroll(numpy.array([s.data for s in k.samples])) def write_enrolled(self, k, path): self.model.write_model(k, path) model = _CachedModel(self.algorithm, path) - retval = [] + retval = [] for k in references: if checkpoint is not None: candidate = os.path.join(os.path.join(checkpoint, k.path + ".hdf5")) @@ -334,7 +334,7 @@ class AlgorithmAdaptor: # create new checkpoint bob.io.base.create_directories_safe(os.path.dirname(candidate)) enrolled = model.enroll(k) - model.model.write_model(enrolled, candidate) + model.model.write_model(enrolled, candidate) retval.append( DelayedSample( functools.partial(model.model.read_model, candidate), parent=k diff --git a/bob/bio/base/pipelines/vanilla_biometrics/pipeline.py b/bob/bio/base/pipelines/vanilla_biometrics/pipeline.py index da9cb4ff066457762ebec0b9135261ace3749614..6c9214cbf3f0fe20dcae380765987e3e74d7ba07 100644 --- a/bob/bio/base/pipelines/vanilla_biometrics/pipeline.py +++ b/bob/bio/base/pipelines/vanilla_biometrics/pipeline.py @@ -108,7 +108,7 @@ def biometric_pipeline( ## Create biometric samples biometric_references = create_biometric_reference(background_model,references,loader,algorithm,npartitions,checkpoints) - ## Scores all probes + ## Scores all probes return compute_scores(background_model, biometric_references, probes, loader, algorithm, npartitions, checkpoints) @@ -354,12 +354,13 @@ def compute_scores( db = dask.bag.from_sequence(probes, npartitions=npartitions) db = db.map_partitions(loader, checkpoints.get("probes", {})) + ## TODO: Here, we are sending all computed biometric references to all ## probes. It would be more efficient if only the models related to each ## probe are sent to the probing split. An option would be to use caching ## and allow the ``score`` function above to load the required data from ## the disk, directly. A second option would be to generate named delays - ## for each model and then associate them here. - all_references = dask.delayed(list)(references) + ## for each model and then associate them here. + all_references = dask.delayed(list)(references) return db.map_partitions(algorithm.score, all_references, background_model)