diff --git a/MANIFEST.in b/MANIFEST.in
index 6154f1db0f6bdba5fc6a689dfe5e99f3ef4513a2..7e877d8ac59d89a3ea540ee0bc0dbc89dbcdbb73 100644
--- a/MANIFEST.in
+++ b/MANIFEST.in
@@ -1,3 +1,3 @@
 include LICENSE README.rst buildout.cfg develop.cfg version.txt requirements.txt test-requirements.txt
 recursive-include doc *.py *.rst
-recursive-include bob/bio/base/test/data *.lst *.hdf5 *-dev *.pos
+recursive-include bob/bio/base/test/data *.* *-dev
diff --git a/bob/bio/base/score/__init__.py b/bob/bio/base/score/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..df3dd386139b9bf99822c93b8424dcc76fcff968
--- /dev/null
+++ b/bob/bio/base/score/__init__.py
@@ -0,0 +1,6 @@
+from .load import (open_file, split, cmc, split_four_column, four_column,
+                   split_five_column, five_column, scores, load_score,
+                   dump_score, cmc_four_column, cmc_five_column
+                  )
+from .openbr import (write_matrix, write_score_file)
+
diff --git a/bob/bio/base/score/load.py b/bob/bio/base/score/load.py
new file mode 100644
index 0000000000000000000000000000000000000000..7a5d76cacba631b1ab09f8049773e43f9910cb7f
--- /dev/null
+++ b/bob/bio/base/score/load.py
@@ -0,0 +1,553 @@
+#!/usr/bin/env python
+# vim: set fileencoding=utf-8 :
+# Mon 23 May 2011 16:23:05 CEST
+
+"""A set of utilities to load score files with different formats.
+"""
+
+import numpy
+import csv
+import tarfile
+import os
+import sys
+
+import logging
+logger = logging.getLogger('bob.bio.base')
+
+
+def open_file(filename, mode='rt'):
+  """Opens the given score file for reading.
+
+  Score files might be raw text files, or a tar-file including a single score
+  file inside.
+
+
+  Parameters:
+
+    filename (:py:class:`str`, ``file-like``): The name of the score file to
+      open, or a file-like object open for reading. If a file name is given,
+      the according file might be a raw text file or a (compressed) tar file
+      containing a raw text file.
+
+
+  Returns:
+
+
+    ``file-like``: A read-only file-like object as it would be returned by
+    :py:func:`open`.
+
+  """
+
+  if not isinstance(filename, str) and hasattr(filename, 'read'):
+    # It seems that this is an open file
+    return filename
+
+  if not os.path.isfile(filename):
+    raise IOError("Score file '%s' does not exist." % filename)
+  if not tarfile.is_tarfile(filename):
+    return open(filename, mode)
+
+  # open the tar file for reading
+  tar = tarfile.open(filename, 'r')
+  # get the first file in the tar file
+  tar_info = tar.next()
+  while tar_info is not None and not tar_info.isfile():
+    tar_info = tar.next()
+  # check that one file was found in the archive
+  if tar_info is None:
+    raise IOError(
+        "The given file is a .tar file, but it does not contain any file.")
+
+  # open the file for reading
+  return tar.extractfile(tar_info)
+
+
+def four_column(filename):
+  """Loads a score set from a single file and yield its lines
+
+  Loads a score set from a single file and yield its lines (to avoid loading
+  the score file at once into memory).  This function verifies that all fields
+  are correctly placed and contain valid fields.  The score file must contain
+  the following information in each line:
+
+  .. code-block:: text
+
+     claimed_id real_id test_label score
+
+
+  Parameters:
+
+    filename (:py:class:`str`, ``file-like``): The file object that will be
+      opened with :py:func:`open_file` containing the scores.
+
+
+  Yields:
+
+    str: The claimed identity -- the client name of the model that was used in
+    the comparison
+
+    str: The real identity -- the client name of the probe that was used in the
+    comparison
+
+    str: A label of the probe -- usually the probe file name, or the probe id
+
+    float: The result of the comparison of the model and the probe
+
+  """
+  return _iterate_score_file(filename)
+
+
+def split_four_column(filename):
+  """Loads a score set from a single file and splits the scores
+
+  Loads a score set from a single file and splits the scores between negatives
+  and positives. The score file has to respect the 4 column format as defined
+  in the method :py:func:`four_column`.
+
+  This method avoids loading and allocating memory for the strings present in
+  the file. We only keep the scores.
+
+
+  Parameters:
+
+    filename (:py:class:`str`, ``file-like``): The file object that will be
+      opened with :py:func:`open_file` containing the scores.
+
+
+  Returns:
+
+    array: negatives, 1D float array containing the list of scores, for which
+      the ``claimed_id`` and the ``real_id`` are different
+      (see :py:func:`four_column`)
+
+    array: positives, 1D float array containing the list of scores, for which
+      the ``claimed_id`` and the ``real_id`` are identical
+      (see :py:func:`four_column`)
+
+  """
+
+  score_lines = four_column(filename)
+  return _split_scores(score_lines, 1)
+
+
+def cmc_four_column(filename):
+  """Loads scores to compute CMC curves from a file in four column format.
+
+  The four column file needs to be in the same format as described in
+  :py:func:`four_column`, and the ``test_label`` (column 3) has to contain the
+  test/probe file name or a probe id.
+
+  This function returns a list of tuples.  For each probe file, the tuple
+  consists of a list of negative scores and a list of positive scores.
+  Usually, the list of positive scores should contain only one element, but
+  more are allowed.  The result of this function can directly be passed to,
+  e.g., the :py:func:`bob.measure.cmc` function.
+
+
+  Parameters:
+
+    filename (:py:class:`str`, ``file-like``): The file object that will be
+      opened with :py:func:`open_file` containing the scores.
+
+
+  Returns:
+
+    :any:`list`: A list of tuples, where each tuple contains the
+    ``negative`` and ``positive`` scores for one probe of the database. Both
+    ``negatives`` and ``positives`` can be either an 1D
+    :py:class:`numpy.ndarray` of type ``float``, or ``None``.
+
+  """
+
+  score_lines = four_column(filename)
+  return _split_cmc_scores(score_lines, 1)
+
+
+def five_column(filename):
+  """Loads a score set from a single file and yield its lines
+
+  Loads a score set from a single file and yield its lines (to avoid loading
+  the score file at once into memory).  This function verifies that all fields
+  are correctly placed and contain valid fields.  The score file must contain
+  the following information in each line:
+
+  .. code-block:: text
+
+     claimed_id model_label real_id test_label score
+
+
+  Parameters:
+
+    filename (:py:class:`str`, ``file-like``): The file object that will be
+      opened with :py:func:`open_file` containing the scores.
+
+
+  Yields:
+
+    str: The claimed identity -- the client name of the model that was used in
+    the comparison
+
+    str: A label for the model -- usually the model file name, or the model id
+
+    str: The real identity -- the client name of the probe that was used in the
+    comparison
+
+    str: A label of the probe -- usually the probe file name, or the probe id
+
+    float: The result of the comparison of the model and the probe
+
+  """
+
+  return _iterate_score_file(filename)
+
+
+def split_five_column(filename):
+  """Loads a score set from a single file and splits the scores
+
+  Loads a score set from a single file in five column format and splits the
+  scores between negatives and positives. The score file has to respect the 5
+  column format as defined in the method :py:func:`five_column`.
+
+  This method avoids loading and allocating memory for the strings present in
+  the file. We only keep the scores.
+
+
+  Parameters:
+
+    filename (:py:class:`str`, ``file-like``): The file object that will be
+      opened with :py:func:`open_file` containing the scores.
+
+
+  Returns:
+
+    array: negatives, 1D float array containing the list of scores, for which
+      the ``claimed_id`` and the ``real_id`` are different
+      (see :py:func:`four_column`)
+
+    array: positives, 1D float array containing the list of scores, for which
+      the ``claimed_id`` and the ``real_id`` are identical
+      (see :py:func:`four_column`)
+
+  """
+
+  score_lines = four_column(filename)
+  return _split_scores(score_lines, 2)
+
+
+def cmc_five_column(filename):
+  """Loads scores to compute CMC curves from a file in five column format.
+
+  The five column file needs to be in the same format as described in
+  :py:func:`five_column`, and the ``test_label`` (column 4) has to contain the
+  test/probe file name or a probe id.
+
+  This function returns a list of tuples.  For each probe file, the tuple
+  consists of a list of negative scores and a list of positive scores.
+  Usually, the list of positive scores should contain only one element, but
+  more are allowed.  The result of this function can directly be passed to,
+  e.g., the :py:func:`bob.measure.cmc` function.
+
+
+  Parameters:
+
+    filename (:py:class:`str`, ``file-like``): The file object that will be
+      opened with :py:func:`open_file` containing the scores.
+
+
+  Returns:
+
+    :any:`list`: A list of tuples, where each tuple contains the
+    ``negative`` and ``positive`` scores for one probe of the database.
+
+  """
+  score_lines = four_column(filename)
+  return _split_cmc_scores(score_lines, 2)
+
+
+def scores(filename, ncolumns=None):
+  """scores(filename, ncolumns=None) -> tuple
+
+  Loads the scores from the given score file and yield its lines.
+  Depending on the score file format, four or five elements are yielded, see
+  :py:func:`bob.bio.base.score.load.four_column` and
+  :py:func:`bob.bio.base.score.load.five_column` for details.
+
+  Parameters:
+
+  filename:  :py:class:`str`, ``file-like``:
+    The file object that will be opened with :py:func:`open_file` containing the scores.
+
+  ncolumns: any
+    ignored
+
+  Yields:
+
+  tuple:
+    see :py:func:`bob.bio.base.score.load.four_column` or
+    :py:func:`bob.bio.base.score.load.five_column`
+  """
+  return _iterate_score_file(filename)
+
+
+def split(filename, ncolumns=None):
+  """split(filename, ncolumns=None) -> negatives, positives
+
+  Loads the scores from the given score file and splits them into positives and negatives.
+
+  Depending on the score file format, it calls see :py:func:`split_four_column` 
+  and :py:func:`split_five_column` for details.
+
+  Parameters:
+
+  filename:  :py:class:`str`, ``file-like``:
+    The file object that will be opened with :py:func:`open_file` containing the scores.
+
+  ncolumns: int or ``None``
+    If specified to be ``4`` or ``5``, the score file will be assumed to be in the given format.
+    If not specified, the score file format will be estimated automatically
+
+  Returns:
+
+  negatives: 1D :py:class:`numpy.ndarray` of type float
+    This array contains the list of scores, for which the ``claimed_id`` and the ``real_id`` are different (see :py:func:`four_column`)
+
+  positives: 1D :py:class:`numpy.ndarray` of type float
+    This array contains the list of scores, for which the ``claimed_id`` and the ``real_id`` are identical (see :py:func:`four_column`)
+
+  """
+  ncolumns = _estimate_score_file_format(filename, ncolumns)
+  if ncolumns == 4:
+    return split_four_column(filename)
+  else:
+    assert ncolumns == 5
+    return split_five_column(filename)
+
+
+def cmc(filename, ncolumns=None):
+  """cmc(filename, ncolumns=None) -> list
+
+  Loads scores to compute CMC curves.
+
+  Depending on the score file format, it calls see
+  :py:func:`bob.bio.base.score.load.cmc_four_column` and
+  `:py:func:`bob.bio.base.score.load.cmc_five_column` for details.
+
+  Parameters:
+
+    filename (:py:class:`str` or ``file-like``): The file object that will be
+      opened with :py:func:`open_file` containing the scores.
+
+    ncolumns: (:py:class:`int`, Optional): If specified to be ``4`` or ``5``,
+      the score file will be assumed to be in the given format.  If not
+      specified, the score file format will be estimated automatically
+
+  Returns:
+
+  :any:`list`: [(neg,pos)] A list of tuples, where each tuple contains the
+  ``negative`` and ``positive`` scores for one probe of the database.
+
+  """
+  ncolumns = _estimate_score_file_format(filename, ncolumns)
+  if ncolumns == 4:
+    return cmc_four_column(filename)
+  else:
+    assert ncolumns == 5
+    return cmc_five_column(filename)
+
+
+def load_score(filename, ncolumns=None, minimal=False, **kwargs):
+  """Load scores using numpy.loadtxt and return the data as a numpy array.
+
+  Parameters:
+
+    filename (:py:class:`str`, ``file-like``): The file object that will be
+      opened with :py:func:`open_file` containing the scores.
+
+    ncolumns (:py:class:`int`, optional): 4, 5 or None (the default),
+      specifying the number of columns in the score file. If None is provided,
+      the number of columns will be guessed.
+
+    minimal (:py:class:`bool`, optional): If True, only loads ``claimed_id``, ``real_id``,
+      and ``scores``.
+
+    **kwargs: Keyword arguments passed to :py:func:`numpy.genfromtxt`
+
+
+  Returns:
+
+    array: An array which contains not only the actual scores but also the
+    ``claimed_id``, ``real_id``, ``test_label`` and ``['model_label']``
+
+  """
+
+  def convertfunc(x):
+    return x
+
+  ncolumns = _estimate_score_file_format(filename, ncolumns)
+
+  usecols = kwargs.pop('usecols', None)
+  if ncolumns == 4:
+    names = ('claimed_id', 'real_id', 'test_label', 'score')
+    converters = {
+        0: convertfunc,
+        1: convertfunc,
+        2: convertfunc,
+        3: float}
+    if minimal:
+      usecols = (0, 1, 3)
+
+  elif ncolumns == 5:
+    names = ('claimed_id', 'model_label', 'real_id', 'test_label', 'score')
+    converters = {
+        0: convertfunc,
+        1: convertfunc,
+        2: convertfunc,
+        3: convertfunc,
+        4: float}
+    if minimal:
+      usecols = (0, 2, 4)
+  else:
+    raise ValueError("ncolumns of 4 and 5 are supported only.")
+
+  score_lines = numpy.genfromtxt(
+      open_file(filename, mode='rb'), dtype=None, names=names,
+      converters=converters, invalid_raise=True, usecols=usecols, **kwargs)
+  new_dtype = []
+  for name in score_lines.dtype.names[:-1]:
+    new_dtype.append((name, str(score_lines.dtype[name]).replace('S', 'U')))
+  new_dtype.append(('score', float))
+  score_lines = numpy.array(score_lines, new_dtype)
+  return score_lines
+
+
+def get_negatives_positives(score_lines):
+  """Take the output of load_score and return negatives and positives.  This
+  function aims to replace split_four_column and split_five_column but takes a
+  different input. It's up to you to use which one.
+  """
+
+  pos_mask = score_lines['claimed_id'] == score_lines['real_id']
+  positives = score_lines['score'][pos_mask]
+  negatives = score_lines['score'][numpy.logical_not(pos_mask)]
+  return (negatives, positives)
+
+
+def get_negatives_positives_from_file(filename, **kwargs):
+  """Loads the scores first efficiently and then calls
+  get_negatives_positives"""
+  score_lines = load_score(filename, minimal=True, **kwargs)
+  return get_negatives_positives(score_lines)
+
+
+def get_negatives_positives_all(score_lines_list):
+  """Take a list of outputs of load_score and return stacked negatives and
+  positives.
+  """
+
+  negatives, positives = [], []
+  for score_lines in score_lines_list:
+    neg_pos = get_negatives_positives(score_lines)
+    negatives.append(neg_pos[0])
+    positives.append(neg_pos[1])
+  negatives = numpy.vstack(negatives).T
+  positives = numpy.vstack(positives).T
+  return (negatives, positives)
+
+
+def get_all_scores(score_lines_list):
+  """Take a list of outputs of load_score and return stacked scores"""
+
+  return numpy.vstack([score_lines['score']
+                       for score_lines in score_lines_list]).T
+
+
+def dump_score(filename, score_lines):
+  """Dump scores that were loaded using :py:func:`load_score`
+  The number of columns is automatically detected.
+  """
+
+  if len(score_lines.dtype) == 5:
+    fmt = '%s %s %s %s %.9f'
+  elif len(score_lines.dtype) == 4:
+    fmt = '%s %s %s %.9f'
+  else:
+    raise ValueError("Only scores with 4 and 5 columns are supported.")
+  numpy.savetxt(filename, score_lines, fmt=fmt)
+
+
+def _estimate_score_file_format(filename, ncolumns=None):
+  """Estimates the score file format from the given score file.
+  If ``ncolumns`` is in ``(4,5)``, then ``ncolumns`` is returned instead.
+  """
+  if ncolumns in (4, 5):
+    return ncolumns
+
+  f = open_file(filename, 'rb')
+  try:
+    line = f.readline()
+    ncolumns = len(line.split())
+  except Exception:
+    logger.warn('Could not guess the number of columns in file: {}. '
+                'Assuming 4 column format.'.format(filename))
+    ncolumns = 4
+  finally:
+    f.close()
+  return ncolumns
+
+
+def _iterate_score_file(filename):
+  """Opens the score file for reading and yields the score file line by line in a tuple/list.
+
+  The last element of the line (which is the score) will be transformed to float, the other elements will be str
+  """
+  opened = open_file(filename, 'rb')
+  if sys.version_info.major > 2:
+    import io
+    if not isinstance(opened, io.TextIOWrapper):
+      opened = io.TextIOWrapper(opened, newline="")
+
+  reader = csv.reader(opened, delimiter=' ')
+  for splits in reader:
+    splits[-1] = float(splits[-1])
+    yield splits
+
+
+def _split_scores(score_lines, real_id_index, claimed_id_index=0, score_index=-1):
+  """Take the output of :py:func:`four_column` or :py:func:`five_column` and return negatives and positives.
+  """
+  positives, negatives = [], []
+  for line in score_lines:
+    which = positives if line[claimed_id_index] == line[
+        real_id_index] else negatives
+    which.append(line[score_index])
+
+  return (numpy.array(negatives), numpy.array(positives))
+
+
+def _split_cmc_scores(score_lines, real_id_index, probe_name_index=None, claimed_id_index=0, score_index=-1):
+  """Takes the output of :py:func:`four_column` or :py:func:`five_column` and return cmc scores.
+  """
+  if probe_name_index is None:
+    probe_name_index = real_id_index + 1
+  # extract positives and negatives
+  pos_dict = {}
+  neg_dict = {}
+  # read four column list
+  for line in score_lines:
+    which = pos_dict if line[claimed_id_index] == line[
+        real_id_index] else neg_dict
+    probe_name = line[probe_name_index]
+    # append score
+    if probe_name not in which:
+      which[probe_name] = []
+    which[probe_name].append(line[score_index])
+
+  # convert to lists of tuples of ndarrays (or None)
+  probe_names = sorted(set(neg_dict.keys()).union(set(pos_dict.keys())))
+  # get all scores in the desired format
+  return [(
+      numpy.array(neg_dict[probe_name],
+                  numpy.float64) if probe_name in neg_dict else None,
+      numpy.array(pos_dict[probe_name],
+                  numpy.float64) if probe_name in pos_dict else None
+  ) for probe_name in probe_names]
diff --git a/bob/bio/base/score/openbr.py b/bob/bio/base/score/openbr.py
new file mode 100644
index 0000000000000000000000000000000000000000..51010f7df69e4e2f34782508aa258f46db01d68d
--- /dev/null
+++ b/bob/bio/base/score/openbr.py
@@ -0,0 +1,368 @@
+#!/usr/bin/env python
+# vim: set fileencoding=utf-8 :
+
+
+"""This file includes functionality to convert between Bob's four column or
+   five column score files and the Matrix files used in OpenBR."""
+
+
+import numpy
+import sys
+import logging
+logger = logging.getLogger("bob.measure")
+
+from .load import open_file, four_column, five_column
+
+
+def write_matrix(
+        score_file,
+        matrix_file,
+        mask_file,
+        model_names=None,
+        probe_names=None,
+        score_file_format='4column',
+        gallery_file_name='unknown-gallery.lst',
+        probe_file_name='unknown-probe.lst',
+        search=None):
+  """Writes the OpenBR matrix and mask files (version 2), given a score file.
+
+  If gallery and probe names are provided, the matrices in both files will be
+  sorted by gallery and probe names.  Otherwise, the order will be the same as
+  given in the score file.
+
+  If ``search`` is given (as an integer), the resulting matrix files will be in
+  the *search* format, keeping the given number of gallery scores with the
+  highest values for each probe.
+
+  .. warning::
+
+     When provided with a 4-column score file, this function will work only, if
+     there is only a single model id for each client.
+
+  Parameters:
+
+    score_file (str): The 4 or 5 column style score file written by bob.
+
+    matrix_file (str): The OpenBR matrix file that should be written.
+      Usually, the file name extension is ``.mtx``
+
+    mask_file (str): The OpenBR mask file that should be written.
+      The mask file defines, which values are positives, negatives or to be
+      ignored.  Usually, the file name extension is ``.mask``
+
+    model_names (:py:class:`str`, optional): If given, the matrix will be
+      written in the same order as the given model names.  The model names must
+      be identical with the second column in the 5-column ``score_file``.
+
+      .. note::
+
+         If the score file is in four column format, the model_names must be
+         the client ids stored in the first column.  In this case, there might
+         be only a single model per client
+
+      Only the scores of the given models will be considered.
+
+    probe_names (:any:`list`, optional): A list of strings. If given,
+      the matrix will be written in the same order as the given probe names
+      (the ``path`` of the probe).  The probe names are identical to the third
+      column of the 4-column (or the fourth column of the 5-column)
+      ``score_file``.  Only the scores of the given probe names will be
+      considered in this case.
+
+    score_file_format (:py:class:`str`, optional): One of ``('4column',
+      '5column')``. The format, in which the ``score_file`` is; defaults to
+      ``'4column'``
+
+    gallery_file_name (:py:class:`str`, optional): The name of the gallery file
+      that will be written in the header of the OpenBR files.
+
+    probe_file_name (:py:class:`str`, optional): The name of the probe file that
+      will be written in the header of the OpenBR files.
+
+    search (:py:class:`int`, optional): If given, the scores will be sorted per
+      probe, keeping the specified number of highest scores.  If the given
+      number is higher than the models, ``NaN`` values will be added, and the
+      mask will contain ``0x00`` values.
+
+  """
+
+  def _write_matrix(filename, matrix):
+    # Helper function to write a matrix file as required by OpenBR
+    with open(filename, 'wb') as f:
+      # write the first four lines
+      header = "S2\n%s\n%s\nM%s %d %d " % (
+          gallery_file_name, probe_file_name, 'B' if matrix.dtype == numpy.uint8 else 'F', matrix.shape[0], matrix.shape[1])
+      footer = "\n"
+      if sys.version_info[0] > 2:
+        header, footer = header.encode('utf-8'), footer.encode('utf-8')
+      f.write(header)
+      # write magic number
+      numpy.array(0x12345678, numpy.int32).tofile(f)
+      f.write(footer)
+      # write the matrix
+      matrix.tofile(f)
+
+  # define read functions, and which information should be read
+  read_function = {'4column': four_column,
+                   '5column': five_column}[score_file_format]
+  offset = {'4column': 0, '5column': 1}[score_file_format]
+
+  # first, read the score file and estimate model and probe names, if not given
+  if model_names is None or probe_names is None:
+    model_names, probe_names = [], []
+    model_set, probe_set = set(), set()
+
+    # read the score file
+    for line in read_function(score_file):
+      model, probe = line[offset], line[2 + offset]
+      if model not in model_set:
+        model_names.append(model)
+        model_set.add(model)
+      if probe not in probe_set:
+        probe_names.append(probe)
+        probe_set.add(probe)
+
+  if search is None:
+    # create a shortcut to get indices for client and probe subset (to
+    # increase speed)
+    model_dict, probe_dict = {}, {}
+    for i, m in enumerate(model_names):
+      model_dict[m] = i
+    for i, p in enumerate(probe_names):
+      probe_dict[p] = i
+
+    # create the matrices in the desired size
+    matrix = numpy.ndarray((len(probe_names), len(model_names)), numpy.float32)
+    matrix[:] = numpy.nan
+    mask = numpy.zeros(matrix.shape, numpy.uint8)
+
+    # now, iterate through the score file and fill in the matrix
+    for line in read_function(score_file):
+      client, model, id, probe, score = line[0], line[offset], line[
+          1 + offset], line[2 + offset], line[3 + offset]
+
+      assert model in model_dict, "model " + model + " unknown"
+      assert probe in probe_dict, "probe " + probe + " unknown"
+
+      model_index = model_dict[model]
+      probe_index = probe_dict[probe]
+
+      # check, if we have already written something into that matrix element
+      if mask[probe_index, model_index]:
+        logger.warn("Overwriting existing matrix '%f' element of client '%s' and probe '%s' with '%f'", matrix[
+                    probe_index, model_index], client, probe, score)
+
+      matrix[probe_index, model_index] = score
+      mask[probe_index, model_index] = 0xff if client == id else 0x7f
+
+  else:
+    # get the correct search parameter, if negative
+    if search < 0:
+      search = len(model_names)
+
+    # create the matrices in the desired size
+    matrix = numpy.ndarray((len(probe_names), search), numpy.float32)
+    matrix[:] = numpy.nan
+    mask = numpy.zeros(matrix.shape, numpy.uint8)
+
+    # get the scores, sorted by probe
+    scores = {}
+    for line in read_function(score_file):
+      client, model, id, probe, score = line[0], line[offset], line[
+          1 + offset], line[2 + offset], line[3 + offset]
+
+      if probe not in scores:
+        scores[probe] = []
+      scores[probe].append((score, 0xff if client == id else 0x7f))
+
+    # go ahead and sort the scores per probe
+    sorted_scores = {}
+    for k, v in scores.items():
+      sorted_scores[k] = sorted(v, key=lambda x: x[0], reverse=True)
+
+    # now, write matrix
+    for p, probe in enumerate(probe_names):
+      if probe in scores:
+        for m in range(min(search, len(sorted_scores[probe]))):
+          matrix[p, m], mask[p, m] = sorted_scores[probe][m]
+
+  # OK, now finally write the file in the desired format
+  _write_matrix(mask_file, mask)
+  _write_matrix(matrix_file, matrix)
+
+
+def write_score_file(
+    matrix_file,
+    mask_file,
+    score_file,
+    models_ids=None,
+    probes_ids=None,
+    model_names=None,
+    probe_names=None,
+    score_file_format='4column',
+    replace_nan=None
+):
+  """Writes the Bob score file in the desired format from OpenBR files.
+
+  Writes a Bob score file in the desired format (four or five column), given
+  the OpenBR matrix and mask files.
+
+  In principle, the score file can be written based on the matrix and mask
+  files, and the format suffice the requirements to compute CMC curves.
+  However, the contents of the score files can be adapted.  If given, the
+  ``models_ids`` and ``probes_ids`` define the **client ids** of model and
+  probe, and they have to be in the same order as used to compute the OpenBR
+  matrix.  The ``model_names`` and ``probe_names`` define the **paths** of
+  model and probe, and they should be in the same order as the ids.
+
+  In rare cases, the OpenBR matrix contains NaN values, which Bob's score files
+  cannot handle.  You can use the ``replace_nan`` parameter to decide, what to
+  do with these values.  By default (``None``), these values are ignored, i.e.,
+  not written into the score file.  This is, what OpenBR is doing as well.
+  However, you can also set ``replace_nan`` to any value, which will be written
+  instead of the NaN values.
+
+
+  Parameters:
+
+    matrix_file (str): The OpenBR matrix file that should be read. Usually, the
+      file name extension is ``.mtx``
+
+    mask_file (str): The OpenBR mask file that should be read. Usually, the
+      file name extension is ``.mask``
+
+    score_file (str): Path to the 4 or 5 column style score file that should be
+      written.
+
+    models_ids (:any:`list`, optional): A list of strings with the client
+      ids of the models that will be written in the first column of the score
+      file.  If given, the size must be identical to the number of models
+      (gallery templates) in the OpenBR files.  If not given, client ids of the
+      model will be identical to the **gallery index** in the matrix file.
+
+    probes_ids (:any:`list`, optional): A list of strings with the client
+      ids of the probes that will be written in the second/third column of the
+      four/five column score file.  If given, the size must be identical to the
+      number of probe templates in the OpenBR files.  It will be checked that
+      the OpenBR mask fits to the model/probe client ids.  If not given, the
+      probe ids will be estimated automatically, i.e., to fit the OpenBR
+      matrix.
+
+    model_names (:any:`list`, optional): A list of strings with the model
+      path written in the second column of the five column score file. If not
+      given, the model index in the OpenBR file will be used.
+
+      .. note::
+
+         This entry is ignored in the four column score file format.
+
+    probe_names (:any:`list`, optional): A list of probe path to be
+      written in the third/fourth column in the four/five column score file. If
+      given, the size must be identical to the number of probe templates in the
+      OpenBR files. If not given, the probe index in the OpenBR file will be
+      used.
+
+    score_file_format (:py:class:`str`, optional): One of ``('4column',
+      '5column')``. The format, in which the ``score_file`` is; defaults to
+      ``'4column'``
+
+    replace_nan (:py:class:`float`, optional): If NaN values are encountered in
+      the OpenBR matrix (which are not ignored due to the mask being non-NULL),
+      this value will be written instead. If ``None``, the values will not be
+      written in the score file at all.
+
+  """
+
+  def _read_matrix(filename):
+    py3 = sys.version_info[0] >= 3
+    # Helper function to read a matrix file as written by OpenBR
+    with open(filename, 'rb') as f:
+      # get version
+      header = f.readline()
+      if py3:
+        header = header.decode("utf-8")
+      assert header[:2] == "S2"
+      # skip gallery and probe files
+      f.readline()
+      f.readline()
+      # read size and type of matrix
+      size = f.readline()
+      if py3:
+        size = size.decode("utf-8")
+      splits = size.rstrip().split()
+      # TODO: check the endianess of the magic number stored in split[3]
+      assert splits[0][0] == 'M'
+      w, h = int(splits[1]), int(splits[2])
+      # read matrix data
+      data = numpy.fromfile(
+          f, dtype={'B': numpy.uint8, 'F': numpy.float32}[splits[0][1]])
+      assert data.shape[0] == w * h
+      data.shape = (w, h)
+    return data
+
+  # check parameters
+  if score_file_format not in ("4column", "5column"):
+    raise ValueError(
+        "The given score file format %s is not known; choose one of ('4column', '5column')" % score_file_format)
+  # get type of score file
+  four_col = score_file_format == "4column"
+
+  # read the two matrices
+  scores = _read_matrix(matrix_file)
+  mask = _read_matrix(mask_file)
+
+  # generate the id lists, if not given
+  if models_ids is None:
+    models_ids = [str(g + 1) for g in range(mask.shape[1])]
+  assert len(models_ids) == mask.shape[1]
+
+  if probes_ids is None:
+    probes_ids = []
+    # iterate over all probes
+    for p in range(mask.shape[0]):
+      # get indices, where model and probe id should be identical
+      equal_indices = numpy.where(mask[p] == 0xff)
+      if len(equal_indices):
+        # model id found, use the first one
+        probes_ids.append(models_ids[equal_indices[0][0]])
+      else:
+        # no model found; add non-existing id
+        probes_ids.append("unknown")
+  else:
+    assert len(probes_ids) == mask.shape[0]
+    # check that the probes client ids are in the correct order
+    for p in range(mask.shape[0]):
+      for g in range(mask.shape[1]):
+        if mask[p, g] == 0x7f:
+          if models_ids[g] == probes_ids[p]:
+            raise ValueError("The probe id %s with index %d should not be identical to model id %s with index %d" % (
+                probes_ids[p], p, models_ids[g], g))
+        elif mask[p, g] == 0xff:
+          if models_ids[g] != probes_ids[p]:
+            raise ValueError("The probe id %s with index %d should be identical to model id %s with index %d" % (
+                probes_ids[p], p, models_ids[g], g))
+
+  # generate model and probe names, if not given
+  if not four_col and model_names is None:
+    model_names = [str(g + 1) for g in range(mask.shape[1])]
+  if probe_names is None:
+    probe_names = [str(p + 1) for p in range(mask.shape[0])]
+
+  # iterate through the files and write scores
+  with open(score_file, 'w') as f:
+    for g in range(mask.shape[1]):
+      for p in range(mask.shape[0]):
+        if mask[p, g]:
+          score = scores[p, g]
+          # handle NaN values
+          if numpy.isnan(score):
+            if replace_nan is None:
+              continue
+            score = replace_nan
+          # write score file
+          if four_col:
+            f.write("%s %s %s %3.8f\n" %
+                    (models_ids[g], probes_ids[p], probe_names[p], score))
+          else:
+            f.write("%s %s %s %s %3.8f\n" % (models_ids[g], model_names[
+                    g], probes_ids[p], probe_names[p], score))
diff --git a/bob/bio/base/script/collect_results.py b/bob/bio/base/script/collect_results.py
index 6e1cc0681258b967339dc466bff96bc7470185b9..df08375cf7202a6086df0803f353a2abfd9f6dd9 100644
--- a/bob/bio/base/script/collect_results.py
+++ b/bob/bio/base/script/collect_results.py
@@ -29,8 +29,9 @@ import sys, os,  glob
 import argparse
 import numpy
 
-import bob.measure
 import bob.core
+from .. import score
+
 logger = bob.core.log.setup("bob.bio.base")
 
 def command_line_arguments(command_line_parameters):
@@ -80,9 +81,9 @@ class Result:
   def _calculate(self, dev_file, eval_file = None):
     """Calculates the EER and HTER or FRR based on the threshold criterion."""
     if self.m_args.criterion in ("RR", "DIR"):
-      scores_dev = bob.measure.load.cmc(dev_file)
+      scores_dev = score.cmc(dev_file)
       if eval_file is not None:
-        scores_eval = bob.measure.load.cmc(eval_file)
+        scores_eval = score.cmc(eval_file)
 
       if self.m_args.criterion == "DIR":
         # get negatives without positives
@@ -110,7 +111,7 @@ class Result:
 
     else:
 
-      dev_neg, dev_pos = bob.measure.load.split(dev_file)
+      dev_neg, dev_pos = score.split(dev_file)
 
       # switch which threshold function to use
       if self.m_args.criterion == 'EER':
@@ -127,7 +128,7 @@ class Result:
       dev_hter = (dev_far + dev_frr)/2.0
 
       if eval_file:
-        eval_neg, eval_pos = bob.measure.load.split(eval_file)
+        eval_neg, eval_pos = score.split(eval_file)
         eval_far, eval_frr = bob.measure.farfrr(eval_neg, eval_pos, threshold)
         eval_hter = (eval_far + eval_frr)/2.0
       else:
diff --git a/bob/bio/base/script/evaluate.py b/bob/bio/base/script/evaluate.py
index 21c27ee876fac1eb0c6f9748b79993dd73f10c71..8d285f70953599bb36cb1eed02e8cee5a046d6c7 100644
--- a/bob/bio/base/script/evaluate.py
+++ b/bob/bio/base/script/evaluate.py
@@ -1,465 +1,467 @@
-#!/usr/bin/env python
-# vim: set fileencoding=utf-8 :
-
-"""This script evaluates the given score files and computes EER, HTER.
-It also is able to plot CMC and ROC curves.
-You can set the environment variable BOB_NO_STYLE_CHANGES to any value to avoid
-this script from changing the matplotlib style values. """
-
-from __future__ import print_function
-
-# matplotlib stuff
-import matplotlib
-from matplotlib import pyplot
-pyplot.switch_backend('pdf')  # switch to non-X backend
-from matplotlib.backends.backend_pdf import PdfPages
-
-# import bob.measure after matplotlib, so that it cannot define the backend
-import bob.measure
-
-import argparse
-import numpy
-import math
-import os
-
-
-if not os.environ.get('BOB_NO_STYLE_CHANGES'):
-  # make the fig size smaller so that everything becomes bigger
-  matplotlib.rc('figure', figsize=(4, 3))
-
-
-import bob.core
-logger = bob.core.log.setup("bob.bio.base")
-
-
-def command_line_arguments(command_line_parameters):
-  """Parse the program options"""
-
-  # set up command line parser
-  parser = argparse.ArgumentParser(description=__doc__,
-      formatter_class=argparse.ArgumentDefaultsHelpFormatter)
-
-  parser.add_argument('-d', '--dev-files', required=True, nargs='+', help = "A list of score files of the development set.")
-  parser.add_argument('-e', '--eval-files', nargs='+', help = "A list of score files of the evaluation set; if given it must be the same number of files as the --dev-files.")
-
-  parser.add_argument('-s', '--directory', default = '.', help = "A directory, where to find the --dev-files and the --eval-files")
-
-  parser.add_argument('-c', '--criterion', choices = ('EER', 'HTER', 'FAR'), help = "If given, the threshold of the development set will be computed with this criterion.")
-  parser.add_argument('-f', '--far-value', type=float, default=0.001, help = "The FAR value for which to evaluate (only for --criterion FAR)")
-  parser.add_argument('-x', '--cllr', action = 'store_true', help = "If given, Cllr and minCllr will be computed.")
-  parser.add_argument('-m', '--mindcf', action = 'store_true', help = "If given, minDCF will be computed.")
-  parser.add_argument('--cost', default=0.99,  help='Cost for FAR in minDCF')
-  parser.add_argument('-r', '--rr', action = 'store_true', help = "If given, the Recognition Rate will be computed.")
-  parser.add_argument('-o', '--rank', type=int, default=1, help = "The rank for which to plot the DIR curve")
-  parser.add_argument('-t', '--thresholds', type=float, nargs='+', help = "If given, the Recognition Rate will incorporate an Open Set handling, rejecting all scores that are below the given threshold; when multiple thresholds are given, they are applied in the same order as the --dev-files.")
-  parser.add_argument('-l', '--legends', nargs='+', help = "A list of legend strings used for ROC, CMC and DET plots; if given, must be the same number than --dev-files.")
-  parser.add_argument('-F', '--legend-font-size', type=int, default=10, help = "Set the font size of the legends.")
-  parser.add_argument('-P', '--legend-position', type=int, help = "Set the font size of the legends.")
-  parser.add_argument('-T', '--title', nargs = '+', help = "Overwrite the default title of the plot for development (and evaluation) set")
-  parser.add_argument('-R', '--roc', help = "If given, ROC curves will be plotted into the given pdf file.")
-  parser.add_argument('-D', '--det', help = "If given, DET curves will be plotted into the given pdf file.")
-  parser.add_argument('-C', '--cmc', help = "If given, CMC curves will be plotted into the given pdf file.")
-  parser.add_argument('-O', '--dir', help = "If given, DIR curves will be plotted into the given pdf file; This is an open-set measure, which cannot be applied to closed set score files.")
-  parser.add_argument('-E', '--epc', help = "If given, EPC curves will be plotted into the given pdf file. For this plot --eval-files is mandatory.")
-  parser.add_argument('-M', '--min-far-value', type=float, default=1e-4, help = "Select the minimum FAR value used in ROC plots; should be a power of 10.")
-  parser.add_argument('-L', '--far-line-at', type=float, help = "If given, draw a veritcal line at this FAR value in the ROC plots.")
-
-  # add verbose option
-  bob.core.log.add_command_line_option(parser)
-
-  # parse arguments
-  args = parser.parse_args(command_line_parameters)
-
-  # set verbosity level
-  bob.core.log.set_verbosity_level(logger, args.verbose)
-
-  # some sanity checks:
-  for f in args.dev_files + (args.eval_files or []):
-    real_file = os.path.join(args.directory, f)
-    if not os.path.exists(real_file):
-      raise ValueError("The provided score file '%s' does not exist" % real_file)
-
-  if args.eval_files is not None and len(args.dev_files) != len(args.eval_files):
-    logger.error("The number of --dev-files (%d) and --eval-files (%d) are not identical", len(args.dev_files), len(args.eval_files))
-
-  # update legends when they are not specified on command line
-  if args.legends is None:
-    args.legends = [f.replace('_', '-') for f in args.dev_files]
-    logger.warn("Legends are not specified; using legends estimated from --dev-files: %s", args.legends)
-
-  # check that the legends have the same length as the dev-files
-  if len(args.dev_files) != len(args.legends):
-    logger.error("The number of --dev-files (%d) and --legends (%d) are not identical", len(args.dev_files), len(args.legends))
-
-  if args.thresholds is not None:
-    if len(args.thresholds) == 1:
-      args.thresholds = args.thresholds * len(args.dev_files)
-    elif len(args.thresholds) != len(args.dev_files):
-      logger.error("If given, the number of --thresholds imust be either 1, or the same as --dev-files (%d), but it is %d", len(args.dev_files), len(args.thresholds))
-  else:
-    args.thresholds = [None] * len(args.dev_files)
-
-  if args.title is not None:
-    if args.eval_files is None and len(args.title) != 1:
-      logger.warning("Ignoring the title for the evaluation set, as no evaluation set is given")
-    if args.eval_files is not None and len(args.title) < 2:
-      logger.error("The title for the evaluation set is not specified")
-
-  return args
-
-def _add_far_labels(min_far):
-  # compute and apply tick marks
-  assert min_far > 0
-  ticks = [min_far]
-  while ticks[-1] < 1.: ticks.append(ticks[-1] * 10.)
-  pyplot.xticks(ticks)
-  pyplot.axis([min_far, 1., -0.01, 1.01])
-
-
-
-def _plot_roc(frrs, colors, labels, title, fontsize=10, position=None, farfrrs=None, min_far=None):
-  if position is None: position = 'lower right'
-  figure = pyplot.figure()
-
-  # plot FAR and CAR for each algorithm
-  for i in range(len(frrs)):
-    pyplot.semilogx([f for f in frrs[i][0]], [1. - f for f in frrs[i][1]], color=colors[i], label=labels[i])
-    if isinstance(farfrrs, list):
-      pyplot.plot(farfrrs[i][0], (1.-farfrrs[i][1]), 'o', color=colors[i], markeredgecolor=colors[i])
-
-  # plot vertical bar, if desired
-  if farfrrs is not None:
-    if isinstance(farfrrs, float):
-      pyplot.plot([farfrrs,farfrrs],[0.,1.], "--", color='black')
-    else:
-      pyplot.plot([x[0] for x in farfrrs], [(1.-x[1]) for x in farfrrs], '--', color='black')
-
-  _add_far_labels(min_far)
-
-  # set label, legend and title
-  pyplot.xlabel('FMR')
-  pyplot.ylabel('1 - FNMR')
-  pyplot.grid(True, color=(0.6,0.6,0.6))
-  pyplot.legend(loc=position, prop = {'size':fontsize})
-  pyplot.title(title)
-
-  return figure
-
-
-def _plot_det(dets, colors, labels, title, fontsize=10, position=None):
-  if position is None: position = 'upper right'
-  # open new page for current plot
-  figure = pyplot.figure(figsize=(matplotlib.rcParams['figure.figsize'][0],
-                                  matplotlib.rcParams['figure.figsize'][0] * 0.975))
-  pyplot.grid(True)
-
-  # plot the DET curves
-  for i in range(len(dets)):
-    pyplot.plot(dets[i][0], dets[i][1], color=colors[i], label=labels[i])
-
-  # change axes accordingly
-  det_list = [0.0002, 0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 0.7, 0.9, 0.95]
-  ticks = [bob.measure.ppndf(d) for d in det_list]
-  labels = [("%.5f" % d).rstrip('0').rstrip('.') for d in det_list]
-  pyplot.xticks(ticks, [l if i % 2 else "" for i,l in enumerate(labels)])
-  pyplot.yticks(ticks, labels)
-  pyplot.axis((ticks[0], ticks[-1], ticks[0], ticks[-1]))
-
-  pyplot.xlabel('FMR')
-  pyplot.ylabel('FNMR')
-  pyplot.legend(loc=position, prop = {'size':fontsize})
-  pyplot.title(title)
-
-  return figure
-
-
-def _plot_cmc(cmcs, colors, labels, title, fontsize=10, position=None):
-  if position is None: position = 'lower right'
-  # open new page for current plot
-  figure = pyplot.figure()
-
-  max_R = 0
-  # plot the CMC curves
-  for i in range(len(cmcs)):
-    probs = bob.measure.cmc(cmcs[i])
-    R = len(probs)
-    pyplot.semilogx(range(1, R+1), probs, figure=figure, color=colors[i], label=labels[i])
-    max_R = max(R, max_R)
-
-  # change axes accordingly
-  ticks = [int(t) for t in pyplot.xticks()[0]]
-  pyplot.xlabel('Rank')
-  pyplot.ylabel('Probability')
-  pyplot.xticks(ticks, [str(t) for t in ticks])
-  pyplot.axis([0, max_R, -0.01, 1.01])
-  pyplot.legend(loc=position, prop = {'size':fontsize})
-  pyplot.title(title)
-
-  return figure
-
-
-def _plot_dir(cmc_scores, far_values, rank, colors, labels, title, fontsize=10, position=None):
-  if position is None: position = 'lower right'
-  # open new page for current plot
-  figure = pyplot.figure()
-
-  # for each probe, for which no positives exists, get the highest negative
-  # score; and sort them to compute the FAR thresholds
-  for i, cmcs in enumerate(cmc_scores):
-    negatives = sorted(max(neg) for neg, pos in cmcs if (pos is None or not numpy.array(pos).size) and neg is not None)
-    if not negatives:
-      raise ValueError("There need to be at least one pair with only negative scores")
-
-    # compute thresholds based on FAR values
-    thresholds = [bob.measure.far_threshold(negatives, [], v, True) for v in far_values]
-
-    # compute detection and identification rate based on the thresholds for
-    # the given rank
-    rates = [bob.measure.detection_identification_rate(cmcs, t, rank) for t in thresholds]
-
-    # plot DIR curve
-    pyplot.semilogx(far_values, rates, figure=figure, color=colors[i], label=labels[i])
-
-  # finalize plot
-  _add_far_labels(far_values[0])
-
-  pyplot.xlabel('FAR')
-  pyplot.ylabel('DIR')
-  pyplot.legend(loc=position, prop = {'size':fontsize})
-  pyplot.title(title)
-
-  return figure
-
-
-def _plot_epc(scores_dev, scores_eval, colors, labels, title, fontsize=10, position=None):
-  if position is None: position = 'upper center'
-  # open new page for current plot
-  figure = pyplot.figure()
-
-  # plot the DET curves
-  for i in range(len(scores_dev)):
-    x,y = bob.measure.epc(scores_dev[i][0], scores_dev[i][1], scores_eval[i][0], scores_eval[i][1], 100)
-    pyplot.plot(x, y, color=colors[i], label=labels[i])
-
-  # change axes accordingly
-  pyplot.xlabel('alpha')
-  pyplot.ylabel('HTER')
-  pyplot.title(title)
-  pyplot.axis([-0.01, 1.01, -0.01, 0.51])
-  pyplot.grid(True)
-  pyplot.legend(loc=position, prop = {'size':fontsize})
-  pyplot.title(title)
-
-  return figure
-
-
-def remove_nan(scores):
-    """removes the NaNs from the scores"""
-    nans = numpy.isnan(scores)
-    sum_nans = sum(nans)
-    total = len(scores)
-    return scores[numpy.where(~nans)], sum_nans, total
-
-
-def get_fta(scores):
-    """calculates the Failure To Acquire (FtA) rate"""
-    fta_sum, fta_total = 0, 0
-    neg, sum_nans, total = remove_nan(scores[0])
-    fta_sum += sum_nans
-    fta_total += total
-    pos, sum_nans, total = remove_nan(scores[1])
-    fta_sum += sum_nans
-    fta_total += total
-    return (neg, pos, fta_sum * 100 / float(fta_total))
-
-
-def main(command_line_parameters=None):
-  """Reads score files, computes error measures and plots curves."""
-
-  args = command_line_arguments(command_line_parameters)
-
-  # get some colors for plotting
-  if len(args.dev_files) > 10:
-    cmap = pyplot.cm.get_cmap(name='magma')
-    colors = [cmap(i) for i in numpy.linspace(0, 1.0, len(args.dev_files) + 1)]
-  else:
-    # matplotlib 2.0 default color cycler list: Vega category10 palette
-    colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728',
-              '#9467bd', '#8c564b', '#e377c2', '#7f7f7f',
-              '#bcbd22', '#17becf']
-
-  if args.criterion or args.roc or args.det or args.epc or args.cllr or args.mindcf:
-
-    # First, read the score files
-    logger.info("Loading %d score files of the development set", len(args.dev_files))
-    scores_dev = [bob.measure.load.split(os.path.join(args.directory, f)) for f in args.dev_files]
-    # remove nans
-    scores_dev = [get_fta(s) for s in scores_dev]
-
-    if args.eval_files:
-      logger.info("Loading %d score files of the evaluation set", len(args.eval_files))
-      scores_eval = [bob.measure.load.split(os.path.join(args.directory, f)) for f in args.eval_files]
-      # remove nans
-      scores_eval = [get_fta(s) for s in scores_eval]
-
-
-    if args.criterion:
-      logger.info("Computing %s on the development " % args.criterion + ("and HTER on the evaluation set" if args.eval_files else "set"))
-      for i in range(len(scores_dev)):
-        # compute threshold on development set
-        if args.criterion == 'FAR':
-          threshold = bob.measure.far_threshold(scores_dev[i][0], scores_dev[i][1], args.far_value/100.)
-        else:
-          threshold = {'EER': bob.measure.eer_threshold, 'HTER' : bob.measure.min_hter_threshold} [args.criterion](scores_dev[i][0], scores_dev[i][1])
-        # apply threshold to development set
-        far, frr = bob.measure.farfrr(scores_dev[i][0], scores_dev[i][1], threshold)
-        if args.criterion == 'FAR':
-          print("The FRR at FAR=%.1E of the development set of '%s' is %2.3f%% (CAR: %2.3f%%)" % (args.far_value, args.legends[i], frr * 100., 100.*(1-frr)))
-        else:
-          print("The %s of the development set of '%s' is %2.3f%%" % (args.criterion, args.legends[i], (far + frr) * 50.)) # / 2 * 100%
-        if args.eval_files:
-          # apply threshold to evaluation set
-          far, frr = bob.measure.farfrr(scores_eval[i][0], scores_eval[i][1], threshold)
-          if args.criterion == 'FAR':
-            print("The FRR of the evaluation set of '%s' is %2.3f%% (CAR: %2.3f%%)" % (args.legends[i], frr * 100., 100.*(1-frr))) # / 2 * 100%
-          else:
-            print("The HTER of the evaluation set of '%s' is %2.3f%%" % (args.legends[i], (far + frr) * 50.)) # / 2 * 100%
-
-
-    if args.mindcf:
-      logger.info("Computing minDCF on the development " + ("and on the evaluation set" if args.eval_files else "set"))
-      for i in range(len(scores_dev)):
-        # compute threshold on development set
-        threshold = bob.measure.min_weighted_error_rate_threshold(scores_dev[i][0], scores_dev[i][1], args.cost)
-        # apply threshold to development set
-        far, frr = bob.measure.farfrr(scores_dev[i][0], scores_dev[i][1], threshold)
-        print("The minDCF of the development set of '%s' is %2.3f%%" % (args.legends[i], (args.cost * far + (1-args.cost) * frr) * 100. ))
-        if args.eval_files:
-          # compute threshold on evaluation set
-          threshold = bob.measure.min_weighted_error_rate_threshold(scores_eval[i][0], scores_eval[i][1], args.cost)
-          # apply threshold to evaluation set
-          far, frr = bob.measure.farfrr(scores_eval[i][0], scores_eval[i][1], threshold)
-          print("The minDCF of the evaluation set of '%s' is %2.3f%%" % (args.legends[i], (args.cost * far + (1-args.cost) * frr) * 100. ))
-
-
-    if args.cllr:
-      logger.info("Computing Cllr and minCllr on the development " + ("and on the evaluation set" if args.eval_files else "set"))
-      for i in range(len(scores_dev)):
-        cllr = bob.measure.calibration.cllr(scores_dev[i][0], scores_dev[i][1])
-        min_cllr = bob.measure.calibration.min_cllr(scores_dev[i][0], scores_dev[i][1])
-        print("Calibration performance on development set of '%s' is Cllr %1.5f and minCllr %1.5f " % (args.legends[i], cllr, min_cllr))
-        if args.eval_files:
-          cllr = bob.measure.calibration.cllr(scores_eval[i][0], scores_eval[i][1])
-          min_cllr = bob.measure.calibration.min_cllr(scores_eval[i][0], scores_eval[i][1])
-          print("Calibration performance on evaluation set of '%s' is Cllr %1.5f and minCllr %1.5f" % (args.legends[i], cllr, min_cllr))
-
-
-    if args.roc:
-      logger.info("Computing CAR curves on the development " + ("and on the evaluation set" if args.eval_files else "set"))
-      min_far = int(math.floor(math.log(args.min_far_value, 10)))
-      fars = [math.pow(10., i * 0.25) for i in range(min_far * 4, 0)] + [1.]
-      frrs_dev = [bob.measure.roc_for_far(scores[0], scores[1], fars) for scores in scores_dev]
-      if args.eval_files:
-        frrs_eval = [bob.measure.roc_for_far(scores[0], scores[1], fars) for scores in scores_eval]
-
-      logger.info("Plotting ROC curves to file '%s'", args.roc)
-      try:
-        # create a multi-page PDF for the ROC curve
-        pdf = PdfPages(args.roc)
-        # create a separate figure for dev and eval
-        pdf.savefig(_plot_roc(frrs_dev, colors, args.legends, args.title[0] if args.title is not None else "ROC for development set", args.legend_font_size, args.legend_position, args.far_line_at, min_far=args.min_far_value), bbox_inches='tight')
-        del frrs_dev
-        if args.eval_files:
-          if args.far_line_at is not None:
-            farfrrs = []
-            for i in range(len(scores_dev)):
-              threshold = bob.measure.far_threshold(scores_dev[i][0], scores_dev[i][1], args.far_line_at)
-              farfrrs.append(bob.measure.farfrr(scores_eval[i][0], scores_eval[i][1], threshold))
-          else:
-            farfrrs = None
-          pdf.savefig(_plot_roc(frrs_eval, colors, args.legends, args.title[1] if args.title is not None else "ROC for evaluation set", args.legend_font_size, args.legend_position, farfrrs, min_far=args.min_far_value), bbox_inches='tight')
-          del frrs_eval
-        pdf.close()
-      except RuntimeError as e:
-        raise RuntimeError("During plotting of ROC curves, the following exception occured:\n%s" % e)
-
-    if args.det:
-      logger.info("Computing DET curves on the development " + ("and on the evaluation set" if args.eval_files else "set"))
-      dets_dev = [bob.measure.det(scores[0], scores[1], 1000) for scores in scores_dev]
-      if args.eval_files:
-        dets_eval = [bob.measure.det(scores[0], scores[1], 1000) for scores in scores_eval]
-
-      logger.info("Plotting DET curves to file '%s'", args.det)
-      try:
-        # create a multi-page PDF for the DET curve
-        pdf = PdfPages(args.det)
-        # create a separate figure for dev and eval
-        pdf.savefig(_plot_det(dets_dev, colors, args.legends, args.title[0] if args.title is not None else "DET for development set", args.legend_font_size, args.legend_position), bbox_inches='tight')
-        del dets_dev
-        if args.eval_files:
-          pdf.savefig(_plot_det(dets_eval, colors, args.legends, args.title[1] if args.title is not None else "DET for evaluation set", args.legend_font_size, args.legend_position), bbox_inches='tight')
-          del dets_eval
-        pdf.close()
-      except RuntimeError as e:
-        raise RuntimeError("During plotting of DET curves, the following exception occured:\n%s" % e)
-
-
-    if args.epc:
-      logger.info("Plotting EPC curves to file '%s'", args.epc)
-
-      if not args.eval_files:
-        raise ValueError("To plot the EPC curve the evaluation scores are necessary. Please, set it with the --eval-files option.")
-
-      try:
-        # create a multi-page PDF for the EPC curve
-        pdf = PdfPages(args.epc)
-        pdf.savefig(_plot_epc(scores_dev, scores_eval, colors, args.legends, args.title[0] if args.title is not None else "" , args.legend_font_size, args.legend_position), bbox_inches='tight')
-        pdf.close()
-      except RuntimeError as e:
-        raise RuntimeError("During plotting of EPC curves, the following exception occured:\n%s" % e)
-
-
-
-  if args.cmc or args.rr or args.dir:
-    logger.info("Loading CMC data on the development " + ("and on the evaluation set" if args.eval_files else "set"))
-    cmcs_dev = [bob.measure.load.cmc(os.path.join(args.directory, f)) for f in args.dev_files]
-    if args.eval_files:
-      cmcs_eval = [bob.measure.load.cmc(os.path.join(args.directory, f)) for f in args.eval_files]
-
-    if args.cmc:
-      logger.info("Plotting CMC curves to file '%s'", args.cmc)
-      try:
-        # create a multi-page PDF for the CMC curve
-        pdf = PdfPages(args.cmc)
-        # create a separate figure for dev and eval
-        pdf.savefig(_plot_cmc(cmcs_dev, colors, args.legends, args.title[0] if args.title is not None else "CMC curve for development set", args.legend_font_size, args.legend_position), bbox_inches='tight')
-        if args.eval_files:
-          pdf.savefig(_plot_cmc(cmcs_eval, colors, args.legends, args.title[1] if args.title is not None else "CMC curve for evaluation set", args.legend_font_size, args.legend_position), bbox_inches='tight')
-        pdf.close()
-      except RuntimeError as e:
-        raise RuntimeError("During plotting of CMC curves, the following exception occured:\n%s\nUsually this happens when the label contains characters that LaTeX cannot parse." % e)
-
-    if args.rr:
-      logger.info("Computing recognition rate on the development " + ("and on the evaluation set" if args.eval_files else "set"))
-      for i in range(len(cmcs_dev)):
-        rr = bob.measure.recognition_rate(cmcs_dev[i], args.thresholds[i])
-        print("The Recognition Rate of the development set of '%s' is %2.3f%%" % (args.legends[i], rr * 100.))
-        if args.eval_files:
-          rr = bob.measure.recognition_rate(cmcs_eval[i], args.thresholds[i])
-          print("The Recognition Rate of the development set of '%s' is %2.3f%%" % (args.legends[i], rr * 100.))
-
-    if args.dir:
-      # compute false alarm values to evaluate
-      min_far = int(math.floor(math.log(args.min_far_value, 10)))
-      fars = [math.pow(10., i * 0.25) for i in range(min_far * 4, 0)] + [1.]
-      logger.info("Plotting DIR curves to file '%s'", args.dir)
-      try:
-        # create a multi-page PDF for the DIR curve
-        pdf = PdfPages(args.dir)
-        # create a separate figure for dev and eval
-        pdf.savefig(_plot_dir(cmcs_dev, fars, args.rank, colors, args.legends, args.title[0] if args.title is not None else "DIR curve for development set", args.legend_font_size, args.legend_position), bbox_inches='tight')
-        if args.eval_files:
-          pdf.savefig(_plot_dir(cmcs_eval, fars, args.rank, colors, args.legends, args.title[1] if args.title is not None else "DIR curve for evaluation set", args.legend_font_size, args.legend_position), bbox_inches='tight')
-        pdf.close()
-      except RuntimeError as e:
-        raise RuntimeError("During plotting of DIR curves, the following exception occured:\n%s" % e)
+#!/usr/bin/env python
+# vim: set fileencoding=utf-8 :
+
+"""This script evaluates the given score files and computes EER, HTER.
+It also is able to plot CMC and ROC curves.
+You can set the environment variable BOB_NO_STYLE_CHANGES to any value to avoid
+this script from changing the matplotlib style values. """
+
+from __future__ import print_function
+
+# matplotlib stuff
+import matplotlib
+from matplotlib import pyplot
+pyplot.switch_backend('pdf')  # switch to non-X backend
+from matplotlib.backends.backend_pdf import PdfPages
+
+# import bob.measure after matplotlib, so that it cannot define the backend
+
+import argparse
+import numpy
+import math
+import os
+
+import bob.measure
+from .. import score
+
+
+if not os.environ.get('BOB_NO_STYLE_CHANGES'):
+  # make the fig size smaller so that everything becomes bigger
+  matplotlib.rc('figure', figsize=(4, 3))
+
+
+import bob.core
+logger = bob.core.log.setup("bob.bio.base")
+
+
+def command_line_arguments(command_line_parameters):
+  """Parse the program options"""
+
+  # set up command line parser
+  parser = argparse.ArgumentParser(description=__doc__,
+      formatter_class=argparse.ArgumentDefaultsHelpFormatter)
+
+  parser.add_argument('-d', '--dev-files', required=True, nargs='+', help = "A list of score files of the development set.")
+  parser.add_argument('-e', '--eval-files', nargs='+', help = "A list of score files of the evaluation set; if given it must be the same number of files as the --dev-files.")
+
+  parser.add_argument('-s', '--directory', default = '.', help = "A directory, where to find the --dev-files and the --eval-files")
+
+  parser.add_argument('-c', '--criterion', choices = ('EER', 'HTER', 'FAR'), help = "If given, the threshold of the development set will be computed with this criterion.")
+  parser.add_argument('-f', '--far-value', type=float, default=0.001, help = "The FAR value for which to evaluate (only for --criterion FAR)")
+  parser.add_argument('-x', '--cllr', action = 'store_true', help = "If given, Cllr and minCllr will be computed.")
+  parser.add_argument('-m', '--mindcf', action = 'store_true', help = "If given, minDCF will be computed.")
+  parser.add_argument('--cost', default=0.99,  help='Cost for FAR in minDCF')
+  parser.add_argument('-r', '--rr', action = 'store_true', help = "If given, the Recognition Rate will be computed.")
+  parser.add_argument('-o', '--rank', type=int, default=1, help = "The rank for which to plot the DIR curve")
+  parser.add_argument('-t', '--thresholds', type=float, nargs='+', help = "If given, the Recognition Rate will incorporate an Open Set handling, rejecting all scores that are below the given threshold; when multiple thresholds are given, they are applied in the same order as the --dev-files.")
+  parser.add_argument('-l', '--legends', nargs='+', help = "A list of legend strings used for ROC, CMC and DET plots; if given, must be the same number than --dev-files.")
+  parser.add_argument('-F', '--legend-font-size', type=int, default=10, help = "Set the font size of the legends.")
+  parser.add_argument('-P', '--legend-position', type=int, help = "Set the font size of the legends.")
+  parser.add_argument('-T', '--title', nargs = '+', help = "Overwrite the default title of the plot for development (and evaluation) set")
+  parser.add_argument('-R', '--roc', help = "If given, ROC curves will be plotted into the given pdf file.")
+  parser.add_argument('-D', '--det', help = "If given, DET curves will be plotted into the given pdf file.")
+  parser.add_argument('-C', '--cmc', help = "If given, CMC curves will be plotted into the given pdf file.")
+  parser.add_argument('-O', '--dir', help = "If given, DIR curves will be plotted into the given pdf file; This is an open-set measure, which cannot be applied to closed set score files.")
+  parser.add_argument('-E', '--epc', help = "If given, EPC curves will be plotted into the given pdf file. For this plot --eval-files is mandatory.")
+  parser.add_argument('-M', '--min-far-value', type=float, default=1e-4, help = "Select the minimum FAR value used in ROC plots; should be a power of 10.")
+  parser.add_argument('-L', '--far-line-at', type=float, help = "If given, draw a veritcal line at this FAR value in the ROC plots.")
+
+  # add verbose option
+  bob.core.log.add_command_line_option(parser)
+
+  # parse arguments
+  args = parser.parse_args(command_line_parameters)
+
+  # set verbosity level
+  bob.core.log.set_verbosity_level(logger, args.verbose)
+
+  # some sanity checks:
+  for f in args.dev_files + (args.eval_files or []):
+    real_file = os.path.join(args.directory, f)
+    if not os.path.exists(real_file):
+      raise ValueError("The provided score file '%s' does not exist" % real_file)
+
+  if args.eval_files is not None and len(args.dev_files) != len(args.eval_files):
+    logger.error("The number of --dev-files (%d) and --eval-files (%d) are not identical", len(args.dev_files), len(args.eval_files))
+
+  # update legends when they are not specified on command line
+  if args.legends is None:
+    args.legends = [f.replace('_', '-') for f in args.dev_files]
+    logger.warn("Legends are not specified; using legends estimated from --dev-files: %s", args.legends)
+
+  # check that the legends have the same length as the dev-files
+  if len(args.dev_files) != len(args.legends):
+    logger.error("The number of --dev-files (%d) and --legends (%d) are not identical", len(args.dev_files), len(args.legends))
+
+  if args.thresholds is not None:
+    if len(args.thresholds) == 1:
+      args.thresholds = args.thresholds * len(args.dev_files)
+    elif len(args.thresholds) != len(args.dev_files):
+      logger.error("If given, the number of --thresholds imust be either 1, or the same as --dev-files (%d), but it is %d", len(args.dev_files), len(args.thresholds))
+  else:
+    args.thresholds = [None] * len(args.dev_files)
+
+  if args.title is not None:
+    if args.eval_files is None and len(args.title) != 1:
+      logger.warning("Ignoring the title for the evaluation set, as no evaluation set is given")
+    if args.eval_files is not None and len(args.title) < 2:
+      logger.error("The title for the evaluation set is not specified")
+
+  return args
+
+def _add_far_labels(min_far):
+  # compute and apply tick marks
+  assert min_far > 0
+  ticks = [min_far]
+  while ticks[-1] < 1.: ticks.append(ticks[-1] * 10.)
+  pyplot.xticks(ticks)
+  pyplot.axis([min_far, 1., -0.01, 1.01])
+
+
+
+def _plot_roc(frrs, colors, labels, title, fontsize=10, position=None, farfrrs=None, min_far=None):
+  if position is None: position = 'lower right'
+  figure = pyplot.figure()
+
+  # plot FAR and CAR for each algorithm
+  for i in range(len(frrs)):
+    pyplot.semilogx([f for f in frrs[i][0]], [1. - f for f in frrs[i][1]], color=colors[i], label=labels[i])
+    if isinstance(farfrrs, list):
+      pyplot.plot(farfrrs[i][0], (1.-farfrrs[i][1]), 'o', color=colors[i], markeredgecolor=colors[i])
+
+  # plot vertical bar, if desired
+  if farfrrs is not None:
+    if isinstance(farfrrs, float):
+      pyplot.plot([farfrrs,farfrrs],[0.,1.], "--", color='black')
+    else:
+      pyplot.plot([x[0] for x in farfrrs], [(1.-x[1]) for x in farfrrs], '--', color='black')
+
+  _add_far_labels(min_far)
+
+  # set label, legend and title
+  pyplot.xlabel('FMR')
+  pyplot.ylabel('1 - FNMR')
+  pyplot.grid(True, color=(0.6,0.6,0.6))
+  pyplot.legend(loc=position, prop = {'size':fontsize})
+  pyplot.title(title)
+
+  return figure
+
+
+def _plot_det(dets, colors, labels, title, fontsize=10, position=None):
+  if position is None: position = 'upper right'
+  # open new page for current plot
+  figure = pyplot.figure(figsize=(matplotlib.rcParams['figure.figsize'][0],
+                                  matplotlib.rcParams['figure.figsize'][0] * 0.975))
+  pyplot.grid(True)
+
+  # plot the DET curves
+  for i in range(len(dets)):
+    pyplot.plot(dets[i][0], dets[i][1], color=colors[i], label=labels[i])
+
+  # change axes accordingly
+  det_list = [0.0002, 0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 0.7, 0.9, 0.95]
+  ticks = [bob.measure.ppndf(d) for d in det_list]
+  labels = [("%.5f" % d).rstrip('0').rstrip('.') for d in det_list]
+  pyplot.xticks(ticks, [l if i % 2 else "" for i,l in enumerate(labels)])
+  pyplot.yticks(ticks, labels)
+  pyplot.axis((ticks[0], ticks[-1], ticks[0], ticks[-1]))
+
+  pyplot.xlabel('FMR')
+  pyplot.ylabel('FNMR')
+  pyplot.legend(loc=position, prop = {'size':fontsize})
+  pyplot.title(title)
+
+  return figure
+
+
+def _plot_cmc(cmcs, colors, labels, title, fontsize=10, position=None):
+  if position is None: position = 'lower right'
+  # open new page for current plot
+  figure = pyplot.figure()
+
+  max_R = 0
+  # plot the CMC curves
+  for i in range(len(cmcs)):
+    probs = bob.measure.cmc(cmcs[i])
+    R = len(probs)
+    pyplot.semilogx(range(1, R+1), probs, figure=figure, color=colors[i], label=labels[i])
+    max_R = max(R, max_R)
+
+  # change axes accordingly
+  ticks = [int(t) for t in pyplot.xticks()[0]]
+  pyplot.xlabel('Rank')
+  pyplot.ylabel('Probability')
+  pyplot.xticks(ticks, [str(t) for t in ticks])
+  pyplot.axis([0, max_R, -0.01, 1.01])
+  pyplot.legend(loc=position, prop = {'size':fontsize})
+  pyplot.title(title)
+
+  return figure
+
+
+def _plot_dir(cmc_scores, far_values, rank, colors, labels, title, fontsize=10, position=None):
+  if position is None: position = 'lower right'
+  # open new page for current plot
+  figure = pyplot.figure()
+
+  # for each probe, for which no positives exists, get the highest negative
+  # score; and sort them to compute the FAR thresholds
+  for i, cmcs in enumerate(cmc_scores):
+    negatives = sorted(max(neg) for neg, pos in cmcs if (pos is None or not numpy.array(pos).size) and neg is not None)
+    if not negatives:
+      raise ValueError("There need to be at least one pair with only negative scores")
+
+    # compute thresholds based on FAR values
+    thresholds = [bob.measure.far_threshold(negatives, [], v, True) for v in far_values]
+
+    # compute detection and identification rate based on the thresholds for
+    # the given rank
+    rates = [bob.measure.detection_identification_rate(cmcs, t, rank) for t in thresholds]
+
+    # plot DIR curve
+    pyplot.semilogx(far_values, rates, figure=figure, color=colors[i], label=labels[i])
+
+  # finalize plot
+  _add_far_labels(far_values[0])
+
+  pyplot.xlabel('FAR')
+  pyplot.ylabel('DIR')
+  pyplot.legend(loc=position, prop = {'size':fontsize})
+  pyplot.title(title)
+
+  return figure
+
+
+def _plot_epc(scores_dev, scores_eval, colors, labels, title, fontsize=10, position=None):
+  if position is None: position = 'upper center'
+  # open new page for current plot
+  figure = pyplot.figure()
+
+  # plot the DET curves
+  for i in range(len(scores_dev)):
+    x,y = bob.measure.epc(scores_dev[i][0], scores_dev[i][1], scores_eval[i][0], scores_eval[i][1], 100)
+    pyplot.plot(x, y, color=colors[i], label=labels[i])
+
+  # change axes accordingly
+  pyplot.xlabel('alpha')
+  pyplot.ylabel('HTER')
+  pyplot.title(title)
+  pyplot.axis([-0.01, 1.01, -0.01, 0.51])
+  pyplot.grid(True)
+  pyplot.legend(loc=position, prop = {'size':fontsize})
+  pyplot.title(title)
+
+  return figure
+
+
+def remove_nan(scores):
+    """removes the NaNs from the scores"""
+    nans = numpy.isnan(scores)
+    sum_nans = sum(nans)
+    total = len(scores)
+    return scores[numpy.where(~nans)], sum_nans, total
+
+
+def get_fta(scores):
+    """calculates the Failure To Acquire (FtA) rate"""
+    fta_sum, fta_total = 0, 0
+    neg, sum_nans, total = remove_nan(scores[0])
+    fta_sum += sum_nans
+    fta_total += total
+    pos, sum_nans, total = remove_nan(scores[1])
+    fta_sum += sum_nans
+    fta_total += total
+    return (neg, pos, fta_sum * 100 / float(fta_total))
+
+
+def main(command_line_parameters=None):
+  """Reads score files, computes error measures and plots curves."""
+
+  args = command_line_arguments(command_line_parameters)
+
+  # get some colors for plotting
+  if len(args.dev_files) > 10:
+    cmap = pyplot.cm.get_cmap(name='magma')
+    colors = [cmap(i) for i in numpy.linspace(0, 1.0, len(args.dev_files) + 1)]
+  else:
+    # matplotlib 2.0 default color cycler list: Vega category10 palette
+    colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728',
+              '#9467bd', '#8c564b', '#e377c2', '#7f7f7f',
+              '#bcbd22', '#17becf']
+
+  if args.criterion or args.roc or args.det or args.epc or args.cllr or args.mindcf:
+
+    # First, read the score files
+    logger.info("Loading %d score files of the development set", len(args.dev_files))
+    scores_dev = [score.split(os.path.join(args.directory, f)) for f in args.dev_files]
+    # remove nans
+    scores_dev = [get_fta(s) for s in scores_dev]
+
+    if args.eval_files:
+      logger.info("Loading %d score files of the evaluation set", len(args.eval_files))
+      scores_eval = [score.split(os.path.join(args.directory, f)) for f in args.eval_files]
+      # remove nans
+      scores_eval = [get_fta(s) for s in scores_eval]
+
+
+    if args.criterion:
+      logger.info("Computing %s on the development " % args.criterion + ("and HTER on the evaluation set" if args.eval_files else "set"))
+      for i in range(len(scores_dev)):
+        # compute threshold on development set
+        if args.criterion == 'FAR':
+          threshold = bob.measure.far_threshold(scores_dev[i][0], scores_dev[i][1], args.far_value/100.)
+        else:
+          threshold = {'EER': bob.measure.eer_threshold, 'HTER' : bob.measure.min_hter_threshold} [args.criterion](scores_dev[i][0], scores_dev[i][1])
+        # apply threshold to development set
+        far, frr = bob.measure.farfrr(scores_dev[i][0], scores_dev[i][1], threshold)
+        if args.criterion == 'FAR':
+          print("The FRR at FAR=%.1E of the development set of '%s' is %2.3f%% (CAR: %2.3f%%)" % (args.far_value, args.legends[i], frr * 100., 100.*(1-frr)))
+        else:
+          print("The %s of the development set of '%s' is %2.3f%%" % (args.criterion, args.legends[i], (far + frr) * 50.)) # / 2 * 100%
+        if args.eval_files:
+          # apply threshold to evaluation set
+          far, frr = bob.measure.farfrr(scores_eval[i][0], scores_eval[i][1], threshold)
+          if args.criterion == 'FAR':
+            print("The FRR of the evaluation set of '%s' is %2.3f%% (CAR: %2.3f%%)" % (args.legends[i], frr * 100., 100.*(1-frr))) # / 2 * 100%
+          else:
+            print("The HTER of the evaluation set of '%s' is %2.3f%%" % (args.legends[i], (far + frr) * 50.)) # / 2 * 100%
+
+
+    if args.mindcf:
+      logger.info("Computing minDCF on the development " + ("and on the evaluation set" if args.eval_files else "set"))
+      for i in range(len(scores_dev)):
+        # compute threshold on development set
+        threshold = bob.measure.min_weighted_error_rate_threshold(scores_dev[i][0], scores_dev[i][1], args.cost)
+        # apply threshold to development set
+        far, frr = bob.measure.farfrr(scores_dev[i][0], scores_dev[i][1], threshold)
+        print("The minDCF of the development set of '%s' is %2.3f%%" % (args.legends[i], (args.cost * far + (1-args.cost) * frr) * 100. ))
+        if args.eval_files:
+          # compute threshold on evaluation set
+          threshold = bob.measure.min_weighted_error_rate_threshold(scores_eval[i][0], scores_eval[i][1], args.cost)
+          # apply threshold to evaluation set
+          far, frr = bob.measure.farfrr(scores_eval[i][0], scores_eval[i][1], threshold)
+          print("The minDCF of the evaluation set of '%s' is %2.3f%%" % (args.legends[i], (args.cost * far + (1-args.cost) * frr) * 100. ))
+
+
+    if args.cllr:
+      logger.info("Computing Cllr and minCllr on the development " + ("and on the evaluation set" if args.eval_files else "set"))
+      for i in range(len(scores_dev)):
+        cllr = bob.measure.calibration.cllr(scores_dev[i][0], scores_dev[i][1])
+        min_cllr = bob.measure.calibration.min_cllr(scores_dev[i][0], scores_dev[i][1])
+        print("Calibration performance on development set of '%s' is Cllr %1.5f and minCllr %1.5f " % (args.legends[i], cllr, min_cllr))
+        if args.eval_files:
+          cllr = bob.measure.calibration.cllr(scores_eval[i][0], scores_eval[i][1])
+          min_cllr = bob.measure.calibration.min_cllr(scores_eval[i][0], scores_eval[i][1])
+          print("Calibration performance on evaluation set of '%s' is Cllr %1.5f and minCllr %1.5f" % (args.legends[i], cllr, min_cllr))
+
+
+    if args.roc:
+      logger.info("Computing CAR curves on the development " + ("and on the evaluation set" if args.eval_files else "set"))
+      min_far = int(math.floor(math.log(args.min_far_value, 10)))
+      fars = [math.pow(10., i * 0.25) for i in range(min_far * 4, 0)] + [1.]
+      frrs_dev = [bob.measure.roc_for_far(scores[0], scores[1], fars) for scores in scores_dev]
+      if args.eval_files:
+        frrs_eval = [bob.measure.roc_for_far(scores[0], scores[1], fars) for scores in scores_eval]
+
+      logger.info("Plotting ROC curves to file '%s'", args.roc)
+      try:
+        # create a multi-page PDF for the ROC curve
+        pdf = PdfPages(args.roc)
+        # create a separate figure for dev and eval
+        pdf.savefig(_plot_roc(frrs_dev, colors, args.legends, args.title[0] if args.title is not None else "ROC for development set", args.legend_font_size, args.legend_position, args.far_line_at, min_far=args.min_far_value), bbox_inches='tight')
+        del frrs_dev
+        if args.eval_files:
+          if args.far_line_at is not None:
+            farfrrs = []
+            for i in range(len(scores_dev)):
+              threshold = bob.measure.far_threshold(scores_dev[i][0], scores_dev[i][1], args.far_line_at)
+              farfrrs.append(bob.measure.farfrr(scores_eval[i][0], scores_eval[i][1], threshold))
+          else:
+            farfrrs = None
+          pdf.savefig(_plot_roc(frrs_eval, colors, args.legends, args.title[1] if args.title is not None else "ROC for evaluation set", args.legend_font_size, args.legend_position, farfrrs, min_far=args.min_far_value), bbox_inches='tight')
+          del frrs_eval
+        pdf.close()
+      except RuntimeError as e:
+        raise RuntimeError("During plotting of ROC curves, the following exception occured:\n%s" % e)
+
+    if args.det:
+      logger.info("Computing DET curves on the development " + ("and on the evaluation set" if args.eval_files else "set"))
+      dets_dev = [bob.measure.det(scores[0], scores[1], 1000) for scores in scores_dev]
+      if args.eval_files:
+        dets_eval = [bob.measure.det(scores[0], scores[1], 1000) for scores in scores_eval]
+
+      logger.info("Plotting DET curves to file '%s'", args.det)
+      try:
+        # create a multi-page PDF for the DET curve
+        pdf = PdfPages(args.det)
+        # create a separate figure for dev and eval
+        pdf.savefig(_plot_det(dets_dev, colors, args.legends, args.title[0] if args.title is not None else "DET for development set", args.legend_font_size, args.legend_position), bbox_inches='tight')
+        del dets_dev
+        if args.eval_files:
+          pdf.savefig(_plot_det(dets_eval, colors, args.legends, args.title[1] if args.title is not None else "DET for evaluation set", args.legend_font_size, args.legend_position), bbox_inches='tight')
+          del dets_eval
+        pdf.close()
+      except RuntimeError as e:
+        raise RuntimeError("During plotting of DET curves, the following exception occured:\n%s" % e)
+
+
+    if args.epc:
+      logger.info("Plotting EPC curves to file '%s'", args.epc)
+
+      if not args.eval_files:
+        raise ValueError("To plot the EPC curve the evaluation scores are necessary. Please, set it with the --eval-files option.")
+
+      try:
+        # create a multi-page PDF for the EPC curve
+        pdf = PdfPages(args.epc)
+        pdf.savefig(_plot_epc(scores_dev, scores_eval, colors, args.legends, args.title[0] if args.title is not None else "" , args.legend_font_size, args.legend_position), bbox_inches='tight')
+        pdf.close()
+      except RuntimeError as e:
+        raise RuntimeError("During plotting of EPC curves, the following exception occured:\n%s" % e)
+
+
+
+  if args.cmc or args.rr or args.dir:
+    logger.info("Loading CMC data on the development " + ("and on the evaluation set" if args.eval_files else "set"))
+    cmcs_dev = [score.cmc(os.path.join(args.directory, f)) for f in args.dev_files]
+    if args.eval_files:
+      cmcs_eval = [score.cmc(os.path.join(args.directory, f)) for f in args.eval_files]
+
+    if args.cmc:
+      logger.info("Plotting CMC curves to file '%s'", args.cmc)
+      try:
+        # create a multi-page PDF for the CMC curve
+        pdf = PdfPages(args.cmc)
+        # create a separate figure for dev and eval
+        pdf.savefig(_plot_cmc(cmcs_dev, colors, args.legends, args.title[0] if args.title is not None else "CMC curve for development set", args.legend_font_size, args.legend_position), bbox_inches='tight')
+        if args.eval_files:
+          pdf.savefig(_plot_cmc(cmcs_eval, colors, args.legends, args.title[1] if args.title is not None else "CMC curve for evaluation set", args.legend_font_size, args.legend_position), bbox_inches='tight')
+        pdf.close()
+      except RuntimeError as e:
+        raise RuntimeError("During plotting of CMC curves, the following exception occured:\n%s\nUsually this happens when the label contains characters that LaTeX cannot parse." % e)
+
+    if args.rr:
+      logger.info("Computing recognition rate on the development " + ("and on the evaluation set" if args.eval_files else "set"))
+      for i in range(len(cmcs_dev)):
+        rr = bob.measure.recognition_rate(cmcs_dev[i], args.thresholds[i])
+        print("The Recognition Rate of the development set of '%s' is %2.3f%%" % (args.legends[i], rr * 100.))
+        if args.eval_files:
+          rr = bob.measure.recognition_rate(cmcs_eval[i], args.thresholds[i])
+          print("The Recognition Rate of the development set of '%s' is %2.3f%%" % (args.legends[i], rr * 100.))
+
+    if args.dir:
+      # compute false alarm values to evaluate
+      min_far = int(math.floor(math.log(args.min_far_value, 10)))
+      fars = [math.pow(10., i * 0.25) for i in range(min_far * 4, 0)] + [1.]
+      logger.info("Plotting DIR curves to file '%s'", args.dir)
+      try:
+        # create a multi-page PDF for the DIR curve
+        pdf = PdfPages(args.dir)
+        # create a separate figure for dev and eval
+        pdf.savefig(_plot_dir(cmcs_dev, fars, args.rank, colors, args.legends, args.title[0] if args.title is not None else "DIR curve for development set", args.legend_font_size, args.legend_position), bbox_inches='tight')
+        if args.eval_files:
+          pdf.savefig(_plot_dir(cmcs_eval, fars, args.rank, colors, args.legends, args.title[1] if args.title is not None else "DIR curve for evaluation set", args.legend_font_size, args.legend_position), bbox_inches='tight')
+        pdf.close()
+      except RuntimeError as e:
+        raise RuntimeError("During plotting of DIR curves, the following exception occured:\n%s" % e)
diff --git a/bob/bio/base/script/fuse_scores.py b/bob/bio/base/script/fuse_scores.py
index 29152981af9d3e823da7c04ca0a3474b0f8ef1d1..220791dc0086d83c4190c20d6fd06e07c7b0054f 100755
--- a/bob/bio/base/script/fuse_scores.py
+++ b/bob/bio/base/script/fuse_scores.py
@@ -17,6 +17,7 @@ import bob, os, sys
 import bob.learn.linear
 
 import bob.core
+from .. import score
 logger = bob.core.log.setup("bob.bio.base")
 
 def parse_command_line(command_line_options):
@@ -66,7 +67,7 @@ def main(command_line_options = None):
   for i in range(n_systems):
     logger.info("Loading development set score file '%s'", args.dev_files[i])
     # pythonic way: create inline dictionary "{...}", index with desired value "[...]", execute function "(...)"
-    data.append({'4column' : bob.measure.load.split_four_column, '5column' : bob.measure.load.split_five_column}[args.parser](args.dev_files[i]))
+    data.append({'4column' : score.split_four_column, '5column' : score.split_five_column}[args.parser](args.dev_files[i]))
   import numpy
 
   trainer = bob.learn.linear.CGLogRegTrainer(0.5, args.convergence_threshold, args.max_iterations, mean_std_norm=not args.no_whitening)
@@ -78,7 +79,7 @@ def main(command_line_options = None):
   gen_data_dev = []
   for i in range(n_systems):
     logger.info("Loading development set score file '%s'", args.dev_files[i])
-    gen_data_dev.append({'4column' : bob.measure.load.four_column, '5column' : bob.measure.load.five_column}[args.parser](args.dev_files[i]))
+    gen_data_dev.append({'4column' : score.four_column, '5column' : score.five_column}[args.parser](args.dev_files[i]))
 
   logger.info("Writing fused development set score file '%s'", args.fused_dev_file)
   outf = open(args.fused_dev_file, 'w')
@@ -99,7 +100,7 @@ def main(command_line_options = None):
     gen_data_eval = []
     for i in range(n_systems):
       logger.info("Loading evaluation set score file '%s'", args.eval_files[i])
-      gen_data_eval.append({'4column' : bob.measure.load.four_column, '5column' : bob.measure.load.five_column}[args.parser](args.eval_files[i]))
+      gen_data_eval.append({'4column' : score.four_column, '5column' : score.five_column}[args.parser](args.eval_files[i]))
 
     logger.info("Writing fused evaluation set score file '%s'", args.fused_eval_file)
     outf = open(args.fused_eval_file, 'w')
diff --git a/bob/bio/base/test/data/dev-4col.tar.gz b/bob/bio/base/test/data/dev-4col.tar.gz
new file mode 100644
index 0000000000000000000000000000000000000000..a903eaa18e8f219b24a59933ef43987cb5f9fe76
Binary files /dev/null and b/bob/bio/base/test/data/dev-4col.tar.gz differ
diff --git a/bob/bio/base/test/data/dev-4col.txt b/bob/bio/base/test/data/dev-4col.txt
new file mode 100644
index 0000000000000000000000000000000000000000..be5f2d89447b7c47ff2a99c26fea82d3b4aeb8a8
--- /dev/null
+++ b/bob/bio/base/test/data/dev-4col.txt
@@ -0,0 +1,910 @@
+f_1001 f_1001 x 0.006299
+f_1001 f_1001 x 0.111554
+f_1001 f_1001 x -0.092548
+f_1001 f_1001 x -0.030429
+f_1001 f_1001 x -0.004657
+f_1001 f_1003 x -0.070376
+f_1001 f_1003 x -0.076431
+f_1001 f_1003 x -0.09103
+f_1001 f_1003 x -0.119019
+f_1001 f_1003 x -0.119581
+f_1002 f_1002 x -0.076412
+f_1002 f_1002 x -0.007193
+f_1002 f_1002 x -0.068236
+f_1002 f_1002 x 0.001462
+f_1002 f_1002 x -0.089528
+f_1002 f_1004 x -0.177674
+f_1002 f_1004 x -0.116451
+f_1002 f_1004 x -0.105341
+f_1002 f_1004 x -0.15466
+f_1002 f_1004 x -0.18616
+f_1003 f_1003 x 0.259138
+f_1003 f_1003 x 0.332629
+f_1003 f_1003 x 0.311423
+f_1003 f_1003 x 0.162215
+f_1003 f_1003 x 0.048613
+f_1003 f_1005 x -0.074399
+f_1003 f_1005 x -0.04628
+f_1003 f_1005 x -0.014418
+f_1003 f_1005 x 0.00478
+f_1003 f_1005 x -0.016143
+f_1004 f_1004 x 0.133522
+f_1004 f_1004 x 0.233416
+f_1004 f_1004 x 0.157029
+f_1004 f_1004 x 0.163154
+f_1004 f_1004 x 0.188569
+f_1004 f_1006 x -0.111788
+f_1004 f_1006 x -0.146505
+f_1004 f_1006 x -0.085332
+f_1004 f_1006 x -0.143158
+f_1004 f_1006 x -0.126225
+f_1005 f_1005 x 0.102271
+f_1005 f_1005 x 0.045251
+f_1005 f_1005 x 0.044341
+f_1005 f_1005 x 0.03692
+f_1005 f_1005 x -0.013536
+f_1005 f_1007 x 0.019496
+f_1005 f_1007 x -0.00295
+f_1005 f_1007 x -0.027841
+f_1005 f_1007 x -0.038533
+f_1005 f_1007 x -0.130486
+f_1006 f_1006 x 0.155776
+f_1006 f_1006 x 0.030909
+f_1006 f_1006 x 0.245848
+f_1006 f_1006 x 0.450645
+f_1006 f_1006 x 0.19262
+f_1006 f_1008 x -0.09691
+f_1006 f_1008 x -0.109712
+f_1006 f_1008 x -0.070605
+f_1006 f_1008 x -0.066152
+f_1006 f_1008 x -0.037858
+f_1007 f_1007 x 0.293177
+f_1007 f_1007 x 0.271007
+f_1007 f_1007 x 0.318237
+f_1007 f_1007 x 0.186197
+f_1007 f_1007 x 0.352784
+f_1007 f_1009 x -0.050168
+f_1007 f_1009 x 0.024759
+f_1007 f_1009 x -0.066628
+f_1007 f_1009 x -0.04056
+f_1007 f_1009 x 0.010592
+f_1008 f_1008 x 0.09707
+f_1008 f_1008 x -0.022928
+f_1008 f_1008 x 0.028861
+f_1008 f_1008 x 0.04206
+f_1008 f_1008 x 0.066096
+f_1008 f_1010 x -0.063427
+f_1008 f_1010 x 0.03159
+f_1008 f_1010 x -0.049853
+f_1008 f_1010 x -0.035822
+f_1008 f_1010 x -0.075959
+f_1009 f_1009 x 0.077973
+f_1009 f_1009 x 0.138974
+f_1009 f_1009 x 0.078081
+f_1009 f_1009 x 0.098706
+f_1009 f_1009 x -0.061095
+f_1009 f_1011 x -0.145006
+f_1009 f_1011 x -0.137257
+f_1009 f_1011 x -0.142997
+f_1009 f_1011 x -0.143305
+f_1009 f_1011 x -0.131891
+f_1010 f_1010 x 0.07374
+f_1010 f_1010 x 0.12733
+f_1010 f_1010 x 0.071941
+f_1010 f_1010 x 0.093608
+f_1010 f_1010 x 0.132198
+f_1010 f_1012 x 0.102712
+f_1010 f_1012 x -0.044807
+f_1010 f_1012 x -0.00116
+f_1010 f_1012 x 0.030686
+f_1010 f_1012 x -0.036943
+f_1011 f_1011 x 0.232048
+f_1011 f_1011 x 0.22864
+f_1011 f_1011 x 0.132145
+f_1011 f_1011 x 0.165999
+f_1011 f_1011 x 0.120414
+f_1011 f_1013 x -0.12074
+f_1011 f_1013 x -0.117955
+f_1011 f_1013 x -0.076039
+f_1011 f_1013 x -0.07393
+f_1011 f_1013 x -0.103342
+f_1012 f_1001 x -0.020321
+f_1012 f_1001 x -0.05211
+f_1012 f_1001 x -0.056951
+f_1012 f_1001 x 0.013234
+f_1012 f_1001 x -0.014755
+f_1012 f_1012 x -0.020073
+f_1012 f_1012 x 0.051658
+f_1012 f_1012 x 0.032461
+f_1012 f_1012 x 0.067917
+f_1012 f_1012 x 0.052605
+f_1013 f_1002 x -0.105477
+f_1013 f_1002 x -0.110275
+f_1013 f_1002 x -0.118202
+f_1013 f_1002 x -0.041612
+f_1013 f_1002 x -0.133065
+f_1013 f_1013 x 0.003664
+f_1013 f_1013 x 0.025006
+f_1013 f_1013 x 0.008643
+f_1013 f_1013 x 0.027281
+f_1013 f_1013 x 0.028362
+m_1027 m_1027 x 0.286687
+m_1027 m_1027 x 0.183224
+m_1027 m_1027 x 0.321388
+m_1027 m_1027 x 0.42079
+m_1027 m_1027 x 0.53976
+m_1027 m_1029 x -0.08594
+m_1027 m_1029 x -0.121272
+m_1027 m_1029 x -0.113022
+m_1027 m_1029 x -0.160544
+m_1027 m_1029 x -0.090424
+m_1028 m_1028 x 0.017651
+m_1028 m_1028 x 0.150004
+m_1028 m_1028 x 0.159424
+m_1028 m_1028 x 0.052019
+m_1028 m_1028 x 0.127836
+m_1028 m_1030 x -0.141315
+m_1028 m_1030 x -0.029844
+m_1028 m_1030 x -0.022167
+m_1028 m_1030 x -0.071379
+m_1028 m_1030 x -0.099675
+m_1029 m_1029 x -0.003534
+m_1029 m_1029 x 0.024651
+m_1029 m_1029 x 0.060505
+m_1029 m_1029 x 0.12037
+m_1029 m_1029 x -0.03431
+m_1029 m_1031 x -0.03181
+m_1029 m_1031 x 0.003197
+m_1029 m_1031 x -0.034498
+m_1029 m_1031 x -0.050882
+m_1029 m_1031 x -0.00274
+m_1030 m_1030 x 0.197724
+m_1030 m_1030 x 0.207926
+m_1030 m_1030 x 0.144697
+m_1030 m_1030 x 0.298164
+m_1030 m_1030 x 0.180303
+m_1030 m_1032 x -0.100375
+m_1030 m_1032 x -0.089028
+m_1030 m_1032 x -0.096304
+m_1030 m_1032 x -0.125789
+m_1030 m_1032 x -0.119192
+m_1031 m_1031 x 0.178925
+m_1031 m_1031 x 0.135697
+m_1031 m_1031 x 0.190606
+m_1031 m_1031 x 0.268289
+m_1031 m_1031 x 0.114208
+m_1031 m_1033 x -0.065958
+m_1031 m_1033 x -0.042427
+m_1031 m_1033 x -0.115761
+m_1031 m_1033 x -0.077916
+m_1031 m_1033 x -0.179634
+m_1032 m_1032 x 0.082708
+m_1032 m_1032 x 0.078839
+m_1032 m_1032 x 0.031509
+m_1032 m_1032 x 0.08322
+m_1032 m_1032 x 0.013146
+m_1032 m_1034 x -0.094497
+m_1032 m_1034 x -0.097829
+m_1032 m_1034 x -0.041958
+m_1032 m_1034 x -0.112755
+m_1032 m_1034 x -0.087314
+m_1033 m_1033 x 0.232628
+m_1033 m_1033 x 0.430066
+m_1033 m_1033 x 0.252453
+m_1033 m_1033 x 0.231405
+m_1033 m_1033 x 0.032603
+m_1033 m_1035 x -0.142229
+m_1033 m_1035 x -0.175921
+m_1033 m_1035 x -0.200045
+m_1033 m_1035 x -0.195439
+m_1033 m_1035 x -0.166693
+m_1034 m_1034 x 0.179047
+m_1034 m_1034 x 0.137423
+m_1034 m_1034 x 0.327826
+m_1034 m_1034 x 0.207818
+m_1034 m_1034 x 0.070218
+m_1034 m_1036 x -0.042577
+m_1034 m_1036 x -0.107757
+m_1034 m_1036 x -0.086648
+m_1034 m_1036 x -0.178798
+m_1034 m_1036 x -0.11879
+m_1035 m_1035 x 0.248223
+m_1035 m_1035 x 0.075324
+m_1035 m_1035 x 0.017175
+m_1035 m_1035 x 0.18272
+m_1035 m_1035 x 0.218537
+m_1035 m_1037 x -0.055362
+m_1035 m_1037 x 0.002305
+m_1035 m_1037 x -0.041379
+m_1035 m_1037 x -0.058087
+m_1035 m_1037 x -0.027096
+m_1036 m_1036 x 0.227317
+m_1036 m_1036 x 0.376308
+m_1036 m_1036 x 0.152254
+m_1036 m_1036 x 0.139492
+m_1036 m_1036 x 0.013966
+m_1036 m_1038 x -0.102269
+m_1036 m_1038 x -0.192218
+m_1036 m_1038 x -0.112356
+m_1036 m_1038 x -0.101645
+m_1036 m_1038 x -0.07972
+m_1037 m_1037 x 0.038043
+m_1037 m_1037 x 0.11105
+m_1037 m_1037 x 0.019263
+m_1037 m_1037 x 0.16381
+m_1037 m_1037 x 0.024562
+m_1037 m_1039 x -0.106496
+m_1037 m_1039 x -0.100107
+m_1037 m_1039 x -0.081944
+m_1037 m_1039 x -0.117425
+m_1037 m_1039 x -0.084941
+m_1038 m_1027 x -0.123203
+m_1038 m_1027 x -0.207728
+m_1038 m_1027 x -0.1382
+m_1038 m_1027 x -0.121587
+m_1038 m_1027 x -0.150723
+m_1038 m_1038 x 0.213872
+m_1038 m_1038 x 0.097973
+m_1038 m_1038 x 0.321722
+m_1038 m_1038 x 0.18745
+m_1038 m_1038 x 0.355983
+m_1039 m_1028 x -0.074966
+m_1039 m_1028 x -0.03744
+m_1039 m_1028 x -0.04915
+m_1039 m_1028 x -0.053868
+m_1039 m_1028 x -0.034545
+m_1039 m_1039 x 0.14851
+m_1039 m_1039 x 0.172884
+m_1039 m_1039 x 0.291446
+m_1039 m_1039 x 0.106946
+m_1039 m_1039 x 0.059841
+f_1001 f_1001 x 0.033419
+f_1001 f_1001 x 0.13594
+f_1001 f_1001 x 0.082771
+f_1001 f_1001 x 0.046389
+f_1001 f_1001 x 0.058532
+f_1001 f_1004 x -0.092433
+f_1001 f_1004 x -0.09177
+f_1001 f_1004 x -0.132993
+f_1001 f_1004 x -0.116056
+f_1001 f_1004 x -0.084283
+f_1002 f_1002 x 0.108519
+f_1002 f_1002 x 0.087181
+f_1002 f_1002 x 0.064553
+f_1002 f_1002 x 0.080549
+f_1002 f_1002 x 0.1712
+f_1002 f_1005 x -0.076835
+f_1002 f_1005 x 0.016473
+f_1002 f_1005 x -0.040655
+f_1002 f_1005 x -0.06199
+f_1002 f_1005 x -0.078235
+f_1003 f_1003 x 0.134625
+f_1003 f_1003 x 0.172739
+f_1003 f_1003 x 0.228282
+f_1003 f_1003 x 0.253931
+f_1003 f_1003 x 0.238589
+f_1003 f_1006 x -0.09667
+f_1003 f_1006 x -0.034176
+f_1003 f_1006 x -0.1011
+f_1003 f_1006 x -0.095959
+f_1003 f_1006 x -0.158999
+f_1004 f_1004 x 0.097513
+f_1004 f_1004 x 0.187646
+f_1004 f_1004 x 0.085344
+f_1004 f_1004 x 0.114839
+f_1004 f_1004 x 0.006801
+f_1004 f_1007 x -0.156948
+f_1004 f_1007 x -0.165101
+f_1004 f_1007 x -0.127331
+f_1004 f_1007 x -0.153506
+f_1004 f_1007 x -0.195711
+f_1005 f_1005 x 0.01518
+f_1005 f_1005 x -7.5e-05
+f_1005 f_1005 x 0.01684
+f_1005 f_1005 x -0.005073
+f_1005 f_1005 x 0.032382
+f_1005 f_1008 x -0.026999
+f_1005 f_1008 x -0.029375
+f_1005 f_1008 x -0.028278
+f_1005 f_1008 x -0.048425
+f_1005 f_1008 x -0.135783
+f_1006 f_1006 x 0.182481
+f_1006 f_1006 x 0.202499
+f_1006 f_1006 x 0.239218
+f_1006 f_1006 x 0.406041
+f_1006 f_1006 x 0.296635
+f_1006 f_1009 x -0.068945
+f_1006 f_1009 x -0.057447
+f_1006 f_1009 x -0.083765
+f_1006 f_1009 x -0.037169
+f_1006 f_1009 x -0.06683
+f_1007 f_1007 x 0.15405
+f_1007 f_1007 x 0.305664
+f_1007 f_1007 x 0.188087
+f_1007 f_1007 x 0.170585
+f_1007 f_1007 x 0.109559
+f_1007 f_1010 x 0.068076
+f_1007 f_1010 x 0.081827
+f_1007 f_1010 x 0.014147
+f_1007 f_1010 x 0.014425
+f_1007 f_1010 x 0.045884
+f_1008 f_1008 x 0.139573
+f_1008 f_1008 x 0.094594
+f_1008 f_1008 x 0.058536
+f_1008 f_1008 x 0.021469
+f_1008 f_1008 x -0.026828
+f_1008 f_1011 x -0.046452
+f_1008 f_1011 x -0.114524
+f_1008 f_1011 x -0.128179
+f_1008 f_1011 x -0.112471
+f_1008 f_1011 x -0.083361
+f_1009 f_1009 x 0.163705
+f_1009 f_1009 x 0.07234
+f_1009 f_1009 x 0.126191
+f_1009 f_1009 x 0.135067
+f_1009 f_1009 x 0.118532
+f_1009 f_1012 x -0.064793
+f_1009 f_1012 x -0.095379
+f_1009 f_1012 x -0.040691
+f_1009 f_1012 x -0.070911
+f_1009 f_1012 x -0.140827
+f_1010 f_1010 x 0.132978
+f_1010 f_1010 x 0.041378
+f_1010 f_1010 x 0.04313
+f_1010 f_1010 x 0.092458
+f_1010 f_1010 x 0.096904
+f_1010 f_1013 x -0.097114
+f_1010 f_1013 x -0.052594
+f_1010 f_1013 x -0.02576
+f_1010 f_1013 x -0.002308
+f_1010 f_1013 x -0.036247
+f_1011 f_1001 x -0.109128
+f_1011 f_1001 x -0.1285
+f_1011 f_1001 x -0.133866
+f_1011 f_1001 x -0.101178
+f_1011 f_1001 x -0.175889
+f_1011 f_1011 x 0.069141
+f_1011 f_1011 x 0.177819
+f_1011 f_1011 x 0.252736
+f_1011 f_1011 x 0.124971
+f_1011 f_1011 x -0.037371
+f_1012 f_1002 x -0.09968
+f_1012 f_1002 x -0.089508
+f_1012 f_1002 x -0.169929
+f_1012 f_1002 x -0.132806
+f_1012 f_1002 x -0.089144
+f_1012 f_1012 x 0.073806
+f_1012 f_1012 x 0.2798
+f_1012 f_1012 x 0.246575
+f_1012 f_1012 x 0.349386
+f_1012 f_1012 x 0.258482
+f_1013 f_1003 x -0.112431
+f_1013 f_1003 x -0.129464
+f_1013 f_1003 x -0.109285
+f_1013 f_1003 x -0.145877
+f_1013 f_1003 x -0.168941
+f_1013 f_1013 x 0.013857
+f_1013 f_1013 x 0.039728
+f_1013 f_1013 x 0.031497
+f_1013 f_1013 x 0.049286
+f_1013 f_1013 x 0.096255
+m_1027 m_1027 x 0.060615
+m_1027 m_1027 x 0.082342
+m_1027 m_1027 x 0.043655
+m_1027 m_1027 x -0.099656
+m_1027 m_1027 x 0.050683
+m_1027 m_1030 x -0.134642
+m_1027 m_1030 x -0.261239
+m_1027 m_1030 x -0.194439
+m_1027 m_1030 x -0.220323
+m_1027 m_1030 x -0.256019
+m_1028 m_1028 x 0.068556
+m_1028 m_1028 x 0.091921
+m_1028 m_1028 x 0.031302
+m_1028 m_1028 x 0.109156
+m_1028 m_1028 x 0.051723
+m_1028 m_1031 x -0.049995
+m_1028 m_1031 x -0.028761
+m_1028 m_1031 x -0.059723
+m_1028 m_1031 x -0.031208
+m_1028 m_1031 x -0.048432
+m_1029 m_1029 x 0.017661
+m_1029 m_1029 x 0.028584
+m_1029 m_1029 x 0.079403
+m_1029 m_1029 x 0.155884
+m_1029 m_1029 x 0.160435
+m_1029 m_1032 x -0.109034
+m_1029 m_1032 x -0.082531
+m_1029 m_1032 x -0.036228
+m_1029 m_1032 x -0.068302
+m_1029 m_1032 x -0.118334
+m_1030 m_1030 x 0.064921
+m_1030 m_1030 x 0.175909
+m_1030 m_1030 x 0.124186
+m_1030 m_1030 x 0.167682
+m_1030 m_1030 x 0.098036
+m_1030 m_1033 x -0.045998
+m_1030 m_1033 x -0.050858
+m_1030 m_1033 x -0.0977
+m_1030 m_1033 x -0.024854
+m_1030 m_1033 x 0.005692
+m_1031 m_1031 x 0.108419
+m_1031 m_1031 x 0.249197
+m_1031 m_1031 x 0.170237
+m_1031 m_1031 x 0.183539
+m_1031 m_1031 x 0.174438
+m_1031 m_1034 x -0.016035
+m_1031 m_1034 x -0.145965
+m_1031 m_1034 x -0.103444
+m_1031 m_1034 x -0.141519
+m_1031 m_1034 x -0.158891
+m_1032 m_1032 x 0.155962
+m_1032 m_1032 x 0.188311
+m_1032 m_1032 x 0.084141
+m_1032 m_1032 x 0.100994
+m_1032 m_1032 x 0.146386
+m_1032 m_1035 x -0.074712
+m_1032 m_1035 x -0.064903
+m_1032 m_1035 x -0.101804
+m_1032 m_1035 x -0.032691
+m_1032 m_1035 x -0.114303
+m_1033 m_1033 x 0.240143
+m_1033 m_1033 x 0.232077
+m_1033 m_1033 x 0.113915
+m_1033 m_1033 x 0.191992
+m_1033 m_1033 x 0.218409
+m_1033 m_1036 x -0.050754
+m_1033 m_1036 x -0.136127
+m_1033 m_1036 x -0.064983
+m_1033 m_1036 x -0.105041
+m_1033 m_1036 x -0.08994
+m_1034 m_1034 x 0.098361
+m_1034 m_1034 x 0.124989
+m_1034 m_1034 x 0.096239
+m_1034 m_1034 x 0.102784
+m_1034 m_1034 x 0.069988
+m_1034 m_1037 x -0.154057
+m_1034 m_1037 x -0.097786
+m_1034 m_1037 x -0.098328
+m_1034 m_1037 x -0.162156
+m_1034 m_1037 x -0.136505
+m_1035 m_1035 x 0.378851
+m_1035 m_1035 x 0.487314
+m_1035 m_1035 x 0.208127
+m_1035 m_1035 x 0.076721
+m_1035 m_1035 x 0.345281
+m_1035 m_1038 x -0.191282
+m_1035 m_1038 x -0.051842
+m_1035 m_1038 x -0.141957
+m_1035 m_1038 x -0.146796
+m_1035 m_1038 x -0.161529
+m_1036 m_1036 x -0.028397
+m_1036 m_1036 x 0.10841
+m_1036 m_1036 x 0.227747
+m_1036 m_1036 x 0.1182
+m_1036 m_1036 x 0.213726
+m_1036 m_1039 x -0.159576
+m_1036 m_1039 x -0.094982
+m_1036 m_1039 x -0.223145
+m_1036 m_1039 x -0.169588
+m_1036 m_1039 x -0.131725
+m_1037 m_1027 x -0.086815
+m_1037 m_1027 x -0.142433
+m_1037 m_1027 x -0.094744
+m_1037 m_1027 x -0.139911
+m_1037 m_1027 x -0.110981
+m_1037 m_1037 x 0.188964
+m_1037 m_1037 x 0.191109
+m_1037 m_1037 x 0.177809
+m_1037 m_1037 x 0.342173
+m_1037 m_1037 x 0.320537
+m_1038 m_1028 x -0.022658
+m_1038 m_1028 x -0.121851
+m_1038 m_1028 x -0.094836
+m_1038 m_1028 x -0.092378
+m_1038 m_1028 x -0.128918
+m_1038 m_1038 x 0.088761
+m_1038 m_1038 x 0.23967
+m_1038 m_1038 x 0.2144
+m_1038 m_1038 x 0.225245
+m_1038 m_1038 x 0.166043
+m_1039 m_1029 x -0.094188
+m_1039 m_1029 x -0.137532
+m_1039 m_1029 x -0.106247
+m_1039 m_1029 x -0.051079
+m_1039 m_1029 x -0.09995
+m_1039 m_1039 x 0.047286
+m_1039 m_1039 x 0.066872
+m_1039 m_1039 x 0.084683
+m_1039 m_1039 x 0.14965
+m_1039 m_1039 x 0.061803
+f_1001 f_1001 x 0.092146
+f_1001 f_1001 x 0.069535
+f_1001 f_1001 x 0.130482
+f_1001 f_1001 x 0.121077
+f_1001 f_1001 x 0.046827
+f_1001 f_1005 x -0.07389
+f_1001 f_1005 x -0.005571
+f_1001 f_1005 x -0.038638
+f_1001 f_1005 x -0.069725
+f_1001 f_1005 x -0.106528
+f_1002 f_1002 x 0.152725
+f_1002 f_1002 x 0.068492
+f_1002 f_1002 x 0.021185
+f_1002 f_1002 x 0.100351
+f_1002 f_1002 x 0.110254
+f_1002 f_1006 x -0.045543
+f_1002 f_1006 x -0.103691
+f_1002 f_1006 x -0.109144
+f_1002 f_1006 x -0.136591
+f_1002 f_1006 x -0.066464
+f_1003 f_1003 x 0.250429
+f_1003 f_1003 x 0.216766
+f_1003 f_1003 x 0.369219
+f_1003 f_1003 x 0.088713
+f_1003 f_1003 x 0.300226
+f_1003 f_1007 x -0.076819
+f_1003 f_1007 x -0.149137
+f_1003 f_1007 x -0.135019
+f_1003 f_1007 x -0.163912
+f_1003 f_1007 x -0.095181
+f_1004 f_1004 x 0.121271
+f_1004 f_1004 x 0.040588
+f_1004 f_1004 x -0.055486
+f_1004 f_1004 x 0.037581
+f_1004 f_1004 x -0.051495
+f_1004 f_1008 x -0.058328
+f_1004 f_1008 x -0.080856
+f_1004 f_1008 x -0.098234
+f_1004 f_1008 x -0.074142
+f_1004 f_1008 x -0.105869
+f_1005 f_1005 x 0.055989
+f_1005 f_1005 x 0.002048
+f_1005 f_1005 x 0.065929
+f_1005 f_1005 x 0.075466
+f_1005 f_1005 x 0.063656
+f_1005 f_1009 x -0.015425
+f_1005 f_1009 x -0.030571
+f_1005 f_1009 x -0.051191
+f_1005 f_1009 x -0.011377
+f_1005 f_1009 x -0.029323
+f_1006 f_1006 x 0.114515
+f_1006 f_1006 x 0.193478
+f_1006 f_1006 x 0.263637
+f_1006 f_1006 x 0.124408
+f_1006 f_1006 x 0.253012
+f_1006 f_1010 x -0.045272
+f_1006 f_1010 x -0.008281
+f_1006 f_1010 x -0.098975
+f_1006 f_1010 x -0.052164
+f_1006 f_1010 x -0.038489
+f_1007 f_1007 x 0.416937
+f_1007 f_1007 x 0.152148
+f_1007 f_1007 x 0.260329
+f_1007 f_1007 x 0.302488
+f_1007 f_1007 x 0.197565
+f_1007 f_1011 x -0.025394
+f_1007 f_1011 x -0.03248
+f_1007 f_1011 x -0.018316
+f_1007 f_1011 x 0.002981
+f_1007 f_1011 x -0.084619
+f_1008 f_1008 x 0.21788
+f_1008 f_1008 x 0.135293
+f_1008 f_1008 x 0.075077
+f_1008 f_1008 x 0.07734
+f_1008 f_1008 x 0.005587
+f_1008 f_1012 x -0.155008
+f_1008 f_1012 x -0.146633
+f_1008 f_1012 x -0.091813
+f_1008 f_1012 x -0.134748
+f_1008 f_1012 x -0.112009
+f_1009 f_1009 x 0.07703
+f_1009 f_1009 x 0.20282
+f_1009 f_1009 x 0.047498
+f_1009 f_1009 x 0.14907
+f_1009 f_1009 x 0.065152
+f_1009 f_1013 x -0.040804
+f_1009 f_1013 x -0.108543
+f_1009 f_1013 x -0.069024
+f_1009 f_1013 x -0.093558
+f_1009 f_1013 x -0.104821
+f_1010 f_1001 x 0.030117
+f_1010 f_1001 x -0.001707
+f_1010 f_1001 x 0.023293
+f_1010 f_1001 x 0.044433
+f_1010 f_1001 x 0.036691
+f_1010 f_1010 x 0.090399
+f_1010 f_1010 x 0.287217
+f_1010 f_1010 x 0.17436
+f_1010 f_1010 x 0.072507
+f_1010 f_1010 x 0.169799
+f_1011 f_1002 x -0.098069
+f_1011 f_1002 x -0.059601
+f_1011 f_1002 x -0.116737
+f_1011 f_1002 x -0.091612
+f_1011 f_1002 x -0.124484
+f_1011 f_1011 x 0.061337
+f_1011 f_1011 x 0.078452
+f_1011 f_1011 x 0.053488
+f_1011 f_1011 x 0.274413
+f_1011 f_1011 x 0.025676
+f_1012 f_1003 x -0.172277
+f_1012 f_1003 x -0.139654
+f_1012 f_1003 x -0.110438
+f_1012 f_1003 x -0.147711
+f_1012 f_1003 x -0.144899
+f_1012 f_1012 x -0.008046
+f_1012 f_1012 x 0.01118
+f_1012 f_1012 x 0.069386
+f_1012 f_1012 x 0.018678
+f_1012 f_1012 x 0.090871
+f_1013 f_1004 x -0.139999
+f_1013 f_1004 x -0.146055
+f_1013 f_1004 x -0.080982
+f_1013 f_1004 x -0.11122
+f_1013 f_1004 x -0.048738
+f_1013 f_1013 x 0.08644
+f_1013 f_1013 x 0.031428
+f_1013 f_1013 x 0.110492
+f_1013 f_1013 x 0.080487
+f_1013 f_1013 x 0.129129
+m_1027 m_1027 x -0.030796
+m_1027 m_1027 x 0.166674
+m_1027 m_1027 x -0.054503
+m_1027 m_1027 x 0.216297
+m_1027 m_1027 x 0.036048
+m_1027 m_1031 x -0.068606
+m_1027 m_1031 x -0.087531
+m_1027 m_1031 x -0.079769
+m_1027 m_1031 x -0.105363
+m_1027 m_1031 x -0.017589
+m_1028 m_1028 x 0.057595
+m_1028 m_1028 x 0.12494
+m_1028 m_1028 x 0.285578
+m_1028 m_1028 x 0.068244
+m_1028 m_1028 x 0.027044
+m_1028 m_1032 x -0.08819
+m_1028 m_1032 x -0.014659
+m_1028 m_1032 x -0.060915
+m_1028 m_1032 x -0.058342
+m_1028 m_1032 x 0.002364
+m_1029 m_1029 x 0.007404
+m_1029 m_1029 x -0.04252
+m_1029 m_1029 x -0.032869
+m_1029 m_1029 x 0.029775
+m_1029 m_1029 x -0.051259
+m_1029 m_1033 x -0.158181
+m_1029 m_1033 x -0.121331
+m_1029 m_1033 x -0.144152
+m_1029 m_1033 x -0.156712
+m_1029 m_1033 x -0.177725
+m_1030 m_1030 x 0.056945
+m_1030 m_1030 x 0.317025
+m_1030 m_1030 x 0.325579
+m_1030 m_1030 x 0.284201
+m_1030 m_1030 x 0.230508
+m_1030 m_1034 x -0.022487
+m_1030 m_1034 x -0.048232
+m_1030 m_1034 x -0.145175
+m_1030 m_1034 x -0.123378
+m_1030 m_1034 x -0.073831
+m_1031 m_1031 x 0.193519
+m_1031 m_1031 x 0.175608
+m_1031 m_1031 x 0.107447
+m_1031 m_1031 x 0.199848
+m_1031 m_1031 x 0.168314
+m_1031 m_1035 x -0.020661
+m_1031 m_1035 x -0.065903
+m_1031 m_1035 x -0.125195
+m_1031 m_1035 x -0.110455
+m_1031 m_1035 x -0.094515
+m_1032 m_1032 x 0.195781
+m_1032 m_1032 x 0.096999
+m_1032 m_1032 x -0.008268
+m_1032 m_1032 x 0.069079
+m_1032 m_1032 x 0.044985
+m_1032 m_1036 x -0.076835
+m_1032 m_1036 x -0.088222
+m_1032 m_1036 x -0.120676
+m_1032 m_1036 x -0.142852
+m_1032 m_1036 x -0.086772
+m_1033 m_1033 x -0.029097
+m_1033 m_1033 x 0.061971
+m_1033 m_1033 x 0.019417
+m_1033 m_1033 x 0.037331
+m_1033 m_1033 x 0.127991
+m_1033 m_1037 x -0.175094
+m_1033 m_1037 x -0.150287
+m_1033 m_1037 x -0.220412
+m_1033 m_1037 x -0.172678
+m_1033 m_1037 x -0.169294
+m_1034 m_1034 x 0.149889
+m_1034 m_1034 x 0.066521
+m_1034 m_1034 x 0.101737
+m_1034 m_1034 x 0.100917
+m_1034 m_1034 x 0.085561
+m_1034 m_1038 x -0.124248
+m_1034 m_1038 x -0.038474
+m_1034 m_1038 x -0.068404
+m_1034 m_1038 x -0.058341
+m_1034 m_1038 x -0.115717
+m_1035 m_1035 x 0.213568
+m_1035 m_1035 x 0.029325
+m_1035 m_1035 x 0.194311
+m_1035 m_1035 x 0.249343
+m_1035 m_1035 x 0.093952
+m_1035 m_1039 x -0.090435
+m_1035 m_1039 x -0.153427
+m_1035 m_1039 x -0.083921
+m_1035 m_1039 x -0.070264
+m_1035 m_1039 x -0.057297
+m_1036 m_1027 x -0.115691
+m_1036 m_1027 x -0.059323
+m_1036 m_1027 x -0.186053
+m_1036 m_1027 x -0.175012
+m_1036 m_1027 x -0.166257
+m_1036 m_1036 x 0.063842
+m_1036 m_1036 x 0.154448
+m_1036 m_1036 x 0.389991
+m_1036 m_1036 x 0.316025
+m_1036 m_1036 x 0.30907
+m_1037 m_1028 x -0.075955
+m_1037 m_1028 x -0.080148
+m_1037 m_1028 x -0.021735
+m_1037 m_1028 x -0.056239
+m_1037 m_1028 x -0.026486
+m_1037 m_1037 x 0.103612
+m_1037 m_1037 x 0.259835
+m_1037 m_1037 x 0.243031
+m_1037 m_1037 x 0.118142
+m_1037 m_1037 x 0.164509
+m_1038 m_1029 x -0.041864
+m_1038 m_1029 x -0.003681
+m_1038 m_1029 x -0.0213
+m_1038 m_1029 x -0.003561
+m_1038 m_1029 x -0.048595
+m_1038 m_1038 x 0.182035
+m_1038 m_1038 x 0.121601
+m_1038 m_1038 x 0.231335
+m_1038 m_1038 x 0.2318
+m_1038 m_1038 x 0.378738
+m_1039 m_1030 x -0.186483
+m_1039 m_1030 x -0.153817
+m_1039 m_1030 x -0.164871
+m_1039 m_1030 x -0.099591
+m_1039 m_1030 x -0.204401
+m_1039 m_1039 x 0.095322
+m_1039 m_1039 x 0.072113
+m_1039 m_1039 x 0.139665
+m_1039 m_1039 x 0.132828
+m_1039 m_1039 x 0.169885
+f_1001 f_1002 x -0.079848
+f_1001 f_1002 x -0.138407
+f_1001 f_1002 x -0.05771
+f_1001 f_1002 x -0.101174
+f_1001 f_1002 x -0.084897
+f_1002 f_1003 x -0.073879
+f_1002 f_1003 x 0.04615
+f_1002 f_1003 x 0.075474
+f_1002 f_1003 x -0.012754
+f_1002 f_1003 x -0.006101
+f_1003 f_1004 x -0.033191
+f_1003 f_1004 x -0.070245
+f_1003 f_1004 x -0.045936
+f_1003 f_1004 x -0.056841
+f_1003 f_1004 x -0.039423
+f_1004 f_1005 x -0.174601
+f_1004 f_1005 x -0.126434
+f_1004 f_1005 x -0.200955
+f_1004 f_1005 x -0.065868
+f_1004 f_1005 x -0.135015
+f_1005 f_1006 x -0.005004
+f_1005 f_1006 x -0.052989
+f_1005 f_1006 x -0.137597
+f_1005 f_1006 x -0.10143
+f_1005 f_1006 x -0.150544
+f_1006 f_1007 x 0.00194
+f_1006 f_1007 x -0.020898
+f_1006 f_1007 x -0.008821
+f_1006 f_1007 x -0.004604
+f_1006 f_1007 x -0.0516
+f_1007 f_1008 x -0.072577
+f_1007 f_1008 x -0.108647
+f_1007 f_1008 x -0.090148
+f_1007 f_1008 x -0.156442
+f_1007 f_1008 x -0.128324
+f_1008 f_1009 x -0.086092
+f_1008 f_1009 x 0.011503
+f_1008 f_1009 x -0.070738
+f_1008 f_1009 x -0.048589
+f_1008 f_1009 x -0.032849
+f_1009 f_1010 x -0.077762
+f_1009 f_1010 x -0.102182
+f_1009 f_1010 x -0.077388
+f_1009 f_1010 x -0.048259
+f_1009 f_1010 x -0.106654
+f_1010 f_1011 x -0.107925
+f_1010 f_1011 x -0.074153
+f_1010 f_1011 x -0.046166
+f_1010 f_1011 x -0.105082
+f_1010 f_1011 x -0.109697
+f_1011 f_1012 x -0.114147
+f_1011 f_1012 x -0.193337
+f_1011 f_1012 x -0.081829
+f_1011 f_1012 x -0.109909
+f_1011 f_1012 x -0.180126
+f_1012 f_1013 x -0.063825
+f_1012 f_1013 x -0.094552
+f_1012 f_1013 x -0.119662
+f_1012 f_1013 x -0.07877
+f_1012 f_1013 x -0.081715
+f_1013 f_1001 x -0.136329
+f_1013 f_1001 x -0.124971
+f_1013 f_1001 x -0.075831
+f_1013 f_1001 x -0.110905
+f_1013 f_1001 x -0.074551
+m_1027 m_1028 x -0.190285
+m_1027 m_1028 x -0.116158
+m_1027 m_1028 x -0.159631
+m_1027 m_1028 x -0.168323
+m_1027 m_1028 x -0.115116
+m_1028 m_1029 x -0.047101
+m_1028 m_1029 x -0.108092
+m_1028 m_1029 x -0.063646
+m_1028 m_1029 x -0.013492
+m_1028 m_1029 x -0.050001
+m_1029 m_1030 x -0.074749
+m_1029 m_1030 x -0.0461
+m_1029 m_1030 x -0.080191
+m_1029 m_1030 x -0.043393
+m_1029 m_1030 x -0.066529
+m_1030 m_1031 x -0.041418
+m_1030 m_1031 x -0.046616
+m_1030 m_1031 x -0.015607
+m_1030 m_1031 x -0.034914
+m_1030 m_1031 x -0.088874
+m_1031 m_1032 x -0.070922
+m_1031 m_1032 x -0.065517
+m_1031 m_1032 x -0.095383
+m_1031 m_1032 x -0.220017
+m_1031 m_1032 x -0.123048
+m_1032 m_1033 x -0.020985
+m_1032 m_1033 x -0.059387
+m_1032 m_1033 x -0.032041
+m_1032 m_1033 x -0.034125
+m_1032 m_1033 x -0.051097
+m_1033 m_1034 x -0.068623
+m_1033 m_1034 x -0.083128
+m_1033 m_1034 x -0.077355
+m_1033 m_1034 x -0.125626
+m_1033 m_1034 x -0.083417
+m_1034 m_1035 x -0.143532
+m_1034 m_1035 x -0.200868
+m_1034 m_1035 x -0.16596
+m_1034 m_1035 x -0.151486
+m_1034 m_1035 x -0.114951
+m_1035 m_1036 x -0.176893
+m_1035 m_1036 x -0.207564
+m_1035 m_1036 x -0.117525
+m_1035 m_1036 x -0.168342
+m_1035 m_1036 x -0.21075
+m_1036 m_1037 x -0.075311
+m_1036 m_1037 x -0.084175
+m_1036 m_1037 x -0.090178
+m_1036 m_1037 x -0.099832
+m_1036 m_1037 x -0.135049
+m_1037 m_1038 x -0.176783
+m_1037 m_1038 x -0.168007
+m_1037 m_1038 x -0.085472
+m_1037 m_1038 x -0.143515
+m_1037 m_1038 x -0.114927
+m_1038 m_1039 x -0.162465
+m_1038 m_1039 x -0.165675
+m_1038 m_1039 x -0.155784
+m_1038 m_1039 x -0.167747
+m_1038 m_1039 x -0.162331
+m_1039 m_1027 x -0.095913
+m_1039 m_1027 x -0.132247
+m_1039 m_1027 x -0.104928
+m_1039 m_1027 x -0.104656
+m_1039 m_1027 x -0.185046
diff --git a/bob/bio/base/test/data/dev-5col.tar.gz b/bob/bio/base/test/data/dev-5col.tar.gz
new file mode 100644
index 0000000000000000000000000000000000000000..65a1cefd846ffdf691101b842ee66c1d383df1c8
Binary files /dev/null and b/bob/bio/base/test/data/dev-5col.tar.gz differ
diff --git a/bob/bio/base/test/data/dev-5col.txt b/bob/bio/base/test/data/dev-5col.txt
new file mode 100644
index 0000000000000000000000000000000000000000..02cd05efea52fcfac85b9a3f856c0475f2412354
--- /dev/null
+++ b/bob/bio/base/test/data/dev-5col.txt
@@ -0,0 +1,910 @@
+f_1001 x f_1001 x 0.006299
+f_1001 x f_1001 x 0.111554
+f_1001 x f_1001 x -0.092548
+f_1001 x f_1001 x -0.030429
+f_1001 x f_1001 x -0.004657
+f_1001 x f_1003 x -0.070376
+f_1001 x f_1003 x -0.076431
+f_1001 x f_1003 x -0.09103
+f_1001 x f_1003 x -0.119019
+f_1001 x f_1003 x -0.119581
+f_1002 x f_1002 x -0.076412
+f_1002 x f_1002 x -0.007193
+f_1002 x f_1002 x -0.068236
+f_1002 x f_1002 x 0.001462
+f_1002 x f_1002 x -0.089528
+f_1002 x f_1004 x -0.177674
+f_1002 x f_1004 x -0.116451
+f_1002 x f_1004 x -0.105341
+f_1002 x f_1004 x -0.15466
+f_1002 x f_1004 x -0.18616
+f_1003 x f_1003 x 0.259138
+f_1003 x f_1003 x 0.332629
+f_1003 x f_1003 x 0.311423
+f_1003 x f_1003 x 0.162215
+f_1003 x f_1003 x 0.048613
+f_1003 x f_1005 x -0.074399
+f_1003 x f_1005 x -0.04628
+f_1003 x f_1005 x -0.014418
+f_1003 x f_1005 x 0.00478
+f_1003 x f_1005 x -0.016143
+f_1004 x f_1004 x 0.133522
+f_1004 x f_1004 x 0.233416
+f_1004 x f_1004 x 0.157029
+f_1004 x f_1004 x 0.163154
+f_1004 x f_1004 x 0.188569
+f_1004 x f_1006 x -0.111788
+f_1004 x f_1006 x -0.146505
+f_1004 x f_1006 x -0.085332
+f_1004 x f_1006 x -0.143158
+f_1004 x f_1006 x -0.126225
+f_1005 x f_1005 x 0.102271
+f_1005 x f_1005 x 0.045251
+f_1005 x f_1005 x 0.044341
+f_1005 x f_1005 x 0.03692
+f_1005 x f_1005 x -0.013536
+f_1005 x f_1007 x 0.019496
+f_1005 x f_1007 x -0.00295
+f_1005 x f_1007 x -0.027841
+f_1005 x f_1007 x -0.038533
+f_1005 x f_1007 x -0.130486
+f_1006 x f_1006 x 0.155776
+f_1006 x f_1006 x 0.030909
+f_1006 x f_1006 x 0.245848
+f_1006 x f_1006 x 0.450645
+f_1006 x f_1006 x 0.19262
+f_1006 x f_1008 x -0.09691
+f_1006 x f_1008 x -0.109712
+f_1006 x f_1008 x -0.070605
+f_1006 x f_1008 x -0.066152
+f_1006 x f_1008 x -0.037858
+f_1007 x f_1007 x 0.293177
+f_1007 x f_1007 x 0.271007
+f_1007 x f_1007 x 0.318237
+f_1007 x f_1007 x 0.186197
+f_1007 x f_1007 x 0.352784
+f_1007 x f_1009 x -0.050168
+f_1007 x f_1009 x 0.024759
+f_1007 x f_1009 x -0.066628
+f_1007 x f_1009 x -0.04056
+f_1007 x f_1009 x 0.010592
+f_1008 x f_1008 x 0.09707
+f_1008 x f_1008 x -0.022928
+f_1008 x f_1008 x 0.028861
+f_1008 x f_1008 x 0.04206
+f_1008 x f_1008 x 0.066096
+f_1008 x f_1010 x -0.063427
+f_1008 x f_1010 x 0.03159
+f_1008 x f_1010 x -0.049853
+f_1008 x f_1010 x -0.035822
+f_1008 x f_1010 x -0.075959
+f_1009 x f_1009 x 0.077973
+f_1009 x f_1009 x 0.138974
+f_1009 x f_1009 x 0.078081
+f_1009 x f_1009 x 0.098706
+f_1009 x f_1009 x -0.061095
+f_1009 x f_1011 x -0.145006
+f_1009 x f_1011 x -0.137257
+f_1009 x f_1011 x -0.142997
+f_1009 x f_1011 x -0.143305
+f_1009 x f_1011 x -0.131891
+f_1010 x f_1010 x 0.07374
+f_1010 x f_1010 x 0.12733
+f_1010 x f_1010 x 0.071941
+f_1010 x f_1010 x 0.093608
+f_1010 x f_1010 x 0.132198
+f_1010 x f_1012 x 0.102712
+f_1010 x f_1012 x -0.044807
+f_1010 x f_1012 x -0.00116
+f_1010 x f_1012 x 0.030686
+f_1010 x f_1012 x -0.036943
+f_1011 x f_1011 x 0.232048
+f_1011 x f_1011 x 0.22864
+f_1011 x f_1011 x 0.132145
+f_1011 x f_1011 x 0.165999
+f_1011 x f_1011 x 0.120414
+f_1011 x f_1013 x -0.12074
+f_1011 x f_1013 x -0.117955
+f_1011 x f_1013 x -0.076039
+f_1011 x f_1013 x -0.07393
+f_1011 x f_1013 x -0.103342
+f_1012 x f_1001 x -0.020321
+f_1012 x f_1001 x -0.05211
+f_1012 x f_1001 x -0.056951
+f_1012 x f_1001 x 0.013234
+f_1012 x f_1001 x -0.014755
+f_1012 x f_1012 x -0.020073
+f_1012 x f_1012 x 0.051658
+f_1012 x f_1012 x 0.032461
+f_1012 x f_1012 x 0.067917
+f_1012 x f_1012 x 0.052605
+f_1013 x f_1002 x -0.105477
+f_1013 x f_1002 x -0.110275
+f_1013 x f_1002 x -0.118202
+f_1013 x f_1002 x -0.041612
+f_1013 x f_1002 x -0.133065
+f_1013 x f_1013 x 0.003664
+f_1013 x f_1013 x 0.025006
+f_1013 x f_1013 x 0.008643
+f_1013 x f_1013 x 0.027281
+f_1013 x f_1013 x 0.028362
+m_1027 x m_1027 x 0.286687
+m_1027 x m_1027 x 0.183224
+m_1027 x m_1027 x 0.321388
+m_1027 x m_1027 x 0.42079
+m_1027 x m_1027 x 0.53976
+m_1027 x m_1029 x -0.08594
+m_1027 x m_1029 x -0.121272
+m_1027 x m_1029 x -0.113022
+m_1027 x m_1029 x -0.160544
+m_1027 x m_1029 x -0.090424
+m_1028 x m_1028 x 0.017651
+m_1028 x m_1028 x 0.150004
+m_1028 x m_1028 x 0.159424
+m_1028 x m_1028 x 0.052019
+m_1028 x m_1028 x 0.127836
+m_1028 x m_1030 x -0.141315
+m_1028 x m_1030 x -0.029844
+m_1028 x m_1030 x -0.022167
+m_1028 x m_1030 x -0.071379
+m_1028 x m_1030 x -0.099675
+m_1029 x m_1029 x -0.003534
+m_1029 x m_1029 x 0.024651
+m_1029 x m_1029 x 0.060505
+m_1029 x m_1029 x 0.12037
+m_1029 x m_1029 x -0.03431
+m_1029 x m_1031 x -0.03181
+m_1029 x m_1031 x 0.003197
+m_1029 x m_1031 x -0.034498
+m_1029 x m_1031 x -0.050882
+m_1029 x m_1031 x -0.00274
+m_1030 x m_1030 x 0.197724
+m_1030 x m_1030 x 0.207926
+m_1030 x m_1030 x 0.144697
+m_1030 x m_1030 x 0.298164
+m_1030 x m_1030 x 0.180303
+m_1030 x m_1032 x -0.100375
+m_1030 x m_1032 x -0.089028
+m_1030 x m_1032 x -0.096304
+m_1030 x m_1032 x -0.125789
+m_1030 x m_1032 x -0.119192
+m_1031 x m_1031 x 0.178925
+m_1031 x m_1031 x 0.135697
+m_1031 x m_1031 x 0.190606
+m_1031 x m_1031 x 0.268289
+m_1031 x m_1031 x 0.114208
+m_1031 x m_1033 x -0.065958
+m_1031 x m_1033 x -0.042427
+m_1031 x m_1033 x -0.115761
+m_1031 x m_1033 x -0.077916
+m_1031 x m_1033 x -0.179634
+m_1032 x m_1032 x 0.082708
+m_1032 x m_1032 x 0.078839
+m_1032 x m_1032 x 0.031509
+m_1032 x m_1032 x 0.08322
+m_1032 x m_1032 x 0.013146
+m_1032 x m_1034 x -0.094497
+m_1032 x m_1034 x -0.097829
+m_1032 x m_1034 x -0.041958
+m_1032 x m_1034 x -0.112755
+m_1032 x m_1034 x -0.087314
+m_1033 x m_1033 x 0.232628
+m_1033 x m_1033 x 0.430066
+m_1033 x m_1033 x 0.252453
+m_1033 x m_1033 x 0.231405
+m_1033 x m_1033 x 0.032603
+m_1033 x m_1035 x -0.142229
+m_1033 x m_1035 x -0.175921
+m_1033 x m_1035 x -0.200045
+m_1033 x m_1035 x -0.195439
+m_1033 x m_1035 x -0.166693
+m_1034 x m_1034 x 0.179047
+m_1034 x m_1034 x 0.137423
+m_1034 x m_1034 x 0.327826
+m_1034 x m_1034 x 0.207818
+m_1034 x m_1034 x 0.070218
+m_1034 x m_1036 x -0.042577
+m_1034 x m_1036 x -0.107757
+m_1034 x m_1036 x -0.086648
+m_1034 x m_1036 x -0.178798
+m_1034 x m_1036 x -0.11879
+m_1035 x m_1035 x 0.248223
+m_1035 x m_1035 x 0.075324
+m_1035 x m_1035 x 0.017175
+m_1035 x m_1035 x 0.18272
+m_1035 x m_1035 x 0.218537
+m_1035 x m_1037 x -0.055362
+m_1035 x m_1037 x 0.002305
+m_1035 x m_1037 x -0.041379
+m_1035 x m_1037 x -0.058087
+m_1035 x m_1037 x -0.027096
+m_1036 x m_1036 x 0.227317
+m_1036 x m_1036 x 0.376308
+m_1036 x m_1036 x 0.152254
+m_1036 x m_1036 x 0.139492
+m_1036 x m_1036 x 0.013966
+m_1036 x m_1038 x -0.102269
+m_1036 x m_1038 x -0.192218
+m_1036 x m_1038 x -0.112356
+m_1036 x m_1038 x -0.101645
+m_1036 x m_1038 x -0.07972
+m_1037 x m_1037 x 0.038043
+m_1037 x m_1037 x 0.11105
+m_1037 x m_1037 x 0.019263
+m_1037 x m_1037 x 0.16381
+m_1037 x m_1037 x 0.024562
+m_1037 x m_1039 x -0.106496
+m_1037 x m_1039 x -0.100107
+m_1037 x m_1039 x -0.081944
+m_1037 x m_1039 x -0.117425
+m_1037 x m_1039 x -0.084941
+m_1038 x m_1027 x -0.123203
+m_1038 x m_1027 x -0.207728
+m_1038 x m_1027 x -0.1382
+m_1038 x m_1027 x -0.121587
+m_1038 x m_1027 x -0.150723
+m_1038 x m_1038 x 0.213872
+m_1038 x m_1038 x 0.097973
+m_1038 x m_1038 x 0.321722
+m_1038 x m_1038 x 0.18745
+m_1038 x m_1038 x 0.355983
+m_1039 x m_1028 x -0.074966
+m_1039 x m_1028 x -0.03744
+m_1039 x m_1028 x -0.04915
+m_1039 x m_1028 x -0.053868
+m_1039 x m_1028 x -0.034545
+m_1039 x m_1039 x 0.14851
+m_1039 x m_1039 x 0.172884
+m_1039 x m_1039 x 0.291446
+m_1039 x m_1039 x 0.106946
+m_1039 x m_1039 x 0.059841
+f_1001 x f_1001 x 0.033419
+f_1001 x f_1001 x 0.13594
+f_1001 x f_1001 x 0.082771
+f_1001 x f_1001 x 0.046389
+f_1001 x f_1001 x 0.058532
+f_1001 x f_1004 x -0.092433
+f_1001 x f_1004 x -0.09177
+f_1001 x f_1004 x -0.132993
+f_1001 x f_1004 x -0.116056
+f_1001 x f_1004 x -0.084283
+f_1002 x f_1002 x 0.108519
+f_1002 x f_1002 x 0.087181
+f_1002 x f_1002 x 0.064553
+f_1002 x f_1002 x 0.080549
+f_1002 x f_1002 x 0.1712
+f_1002 x f_1005 x -0.076835
+f_1002 x f_1005 x 0.016473
+f_1002 x f_1005 x -0.040655
+f_1002 x f_1005 x -0.06199
+f_1002 x f_1005 x -0.078235
+f_1003 x f_1003 x 0.134625
+f_1003 x f_1003 x 0.172739
+f_1003 x f_1003 x 0.228282
+f_1003 x f_1003 x 0.253931
+f_1003 x f_1003 x 0.238589
+f_1003 x f_1006 x -0.09667
+f_1003 x f_1006 x -0.034176
+f_1003 x f_1006 x -0.1011
+f_1003 x f_1006 x -0.095959
+f_1003 x f_1006 x -0.158999
+f_1004 x f_1004 x 0.097513
+f_1004 x f_1004 x 0.187646
+f_1004 x f_1004 x 0.085344
+f_1004 x f_1004 x 0.114839
+f_1004 x f_1004 x 0.006801
+f_1004 x f_1007 x -0.156948
+f_1004 x f_1007 x -0.165101
+f_1004 x f_1007 x -0.127331
+f_1004 x f_1007 x -0.153506
+f_1004 x f_1007 x -0.195711
+f_1005 x f_1005 x 0.01518
+f_1005 x f_1005 x -7.5e-05
+f_1005 x f_1005 x 0.01684
+f_1005 x f_1005 x -0.005073
+f_1005 x f_1005 x 0.032382
+f_1005 x f_1008 x -0.026999
+f_1005 x f_1008 x -0.029375
+f_1005 x f_1008 x -0.028278
+f_1005 x f_1008 x -0.048425
+f_1005 x f_1008 x -0.135783
+f_1006 x f_1006 x 0.182481
+f_1006 x f_1006 x 0.202499
+f_1006 x f_1006 x 0.239218
+f_1006 x f_1006 x 0.406041
+f_1006 x f_1006 x 0.296635
+f_1006 x f_1009 x -0.068945
+f_1006 x f_1009 x -0.057447
+f_1006 x f_1009 x -0.083765
+f_1006 x f_1009 x -0.037169
+f_1006 x f_1009 x -0.06683
+f_1007 x f_1007 x 0.15405
+f_1007 x f_1007 x 0.305664
+f_1007 x f_1007 x 0.188087
+f_1007 x f_1007 x 0.170585
+f_1007 x f_1007 x 0.109559
+f_1007 x f_1010 x 0.068076
+f_1007 x f_1010 x 0.081827
+f_1007 x f_1010 x 0.014147
+f_1007 x f_1010 x 0.014425
+f_1007 x f_1010 x 0.045884
+f_1008 x f_1008 x 0.139573
+f_1008 x f_1008 x 0.094594
+f_1008 x f_1008 x 0.058536
+f_1008 x f_1008 x 0.021469
+f_1008 x f_1008 x -0.026828
+f_1008 x f_1011 x -0.046452
+f_1008 x f_1011 x -0.114524
+f_1008 x f_1011 x -0.128179
+f_1008 x f_1011 x -0.112471
+f_1008 x f_1011 x -0.083361
+f_1009 x f_1009 x 0.163705
+f_1009 x f_1009 x 0.07234
+f_1009 x f_1009 x 0.126191
+f_1009 x f_1009 x 0.135067
+f_1009 x f_1009 x 0.118532
+f_1009 x f_1012 x -0.064793
+f_1009 x f_1012 x -0.095379
+f_1009 x f_1012 x -0.040691
+f_1009 x f_1012 x -0.070911
+f_1009 x f_1012 x -0.140827
+f_1010 x f_1010 x 0.132978
+f_1010 x f_1010 x 0.041378
+f_1010 x f_1010 x 0.04313
+f_1010 x f_1010 x 0.092458
+f_1010 x f_1010 x 0.096904
+f_1010 x f_1013 x -0.097114
+f_1010 x f_1013 x -0.052594
+f_1010 x f_1013 x -0.02576
+f_1010 x f_1013 x -0.002308
+f_1010 x f_1013 x -0.036247
+f_1011 x f_1001 x -0.109128
+f_1011 x f_1001 x -0.1285
+f_1011 x f_1001 x -0.133866
+f_1011 x f_1001 x -0.101178
+f_1011 x f_1001 x -0.175889
+f_1011 x f_1011 x 0.069141
+f_1011 x f_1011 x 0.177819
+f_1011 x f_1011 x 0.252736
+f_1011 x f_1011 x 0.124971
+f_1011 x f_1011 x -0.037371
+f_1012 x f_1002 x -0.09968
+f_1012 x f_1002 x -0.089508
+f_1012 x f_1002 x -0.169929
+f_1012 x f_1002 x -0.132806
+f_1012 x f_1002 x -0.089144
+f_1012 x f_1012 x 0.073806
+f_1012 x f_1012 x 0.2798
+f_1012 x f_1012 x 0.246575
+f_1012 x f_1012 x 0.349386
+f_1012 x f_1012 x 0.258482
+f_1013 x f_1003 x -0.112431
+f_1013 x f_1003 x -0.129464
+f_1013 x f_1003 x -0.109285
+f_1013 x f_1003 x -0.145877
+f_1013 x f_1003 x -0.168941
+f_1013 x f_1013 x 0.013857
+f_1013 x f_1013 x 0.039728
+f_1013 x f_1013 x 0.031497
+f_1013 x f_1013 x 0.049286
+f_1013 x f_1013 x 0.096255
+m_1027 x m_1027 x 0.060615
+m_1027 x m_1027 x 0.082342
+m_1027 x m_1027 x 0.043655
+m_1027 x m_1027 x -0.099656
+m_1027 x m_1027 x 0.050683
+m_1027 x m_1030 x -0.134642
+m_1027 x m_1030 x -0.261239
+m_1027 x m_1030 x -0.194439
+m_1027 x m_1030 x -0.220323
+m_1027 x m_1030 x -0.256019
+m_1028 x m_1028 x 0.068556
+m_1028 x m_1028 x 0.091921
+m_1028 x m_1028 x 0.031302
+m_1028 x m_1028 x 0.109156
+m_1028 x m_1028 x 0.051723
+m_1028 x m_1031 x -0.049995
+m_1028 x m_1031 x -0.028761
+m_1028 x m_1031 x -0.059723
+m_1028 x m_1031 x -0.031208
+m_1028 x m_1031 x -0.048432
+m_1029 x m_1029 x 0.017661
+m_1029 x m_1029 x 0.028584
+m_1029 x m_1029 x 0.079403
+m_1029 x m_1029 x 0.155884
+m_1029 x m_1029 x 0.160435
+m_1029 x m_1032 x -0.109034
+m_1029 x m_1032 x -0.082531
+m_1029 x m_1032 x -0.036228
+m_1029 x m_1032 x -0.068302
+m_1029 x m_1032 x -0.118334
+m_1030 x m_1030 x 0.064921
+m_1030 x m_1030 x 0.175909
+m_1030 x m_1030 x 0.124186
+m_1030 x m_1030 x 0.167682
+m_1030 x m_1030 x 0.098036
+m_1030 x m_1033 x -0.045998
+m_1030 x m_1033 x -0.050858
+m_1030 x m_1033 x -0.0977
+m_1030 x m_1033 x -0.024854
+m_1030 x m_1033 x 0.005692
+m_1031 x m_1031 x 0.108419
+m_1031 x m_1031 x 0.249197
+m_1031 x m_1031 x 0.170237
+m_1031 x m_1031 x 0.183539
+m_1031 x m_1031 x 0.174438
+m_1031 x m_1034 x -0.016035
+m_1031 x m_1034 x -0.145965
+m_1031 x m_1034 x -0.103444
+m_1031 x m_1034 x -0.141519
+m_1031 x m_1034 x -0.158891
+m_1032 x m_1032 x 0.155962
+m_1032 x m_1032 x 0.188311
+m_1032 x m_1032 x 0.084141
+m_1032 x m_1032 x 0.100994
+m_1032 x m_1032 x 0.146386
+m_1032 x m_1035 x -0.074712
+m_1032 x m_1035 x -0.064903
+m_1032 x m_1035 x -0.101804
+m_1032 x m_1035 x -0.032691
+m_1032 x m_1035 x -0.114303
+m_1033 x m_1033 x 0.240143
+m_1033 x m_1033 x 0.232077
+m_1033 x m_1033 x 0.113915
+m_1033 x m_1033 x 0.191992
+m_1033 x m_1033 x 0.218409
+m_1033 x m_1036 x -0.050754
+m_1033 x m_1036 x -0.136127
+m_1033 x m_1036 x -0.064983
+m_1033 x m_1036 x -0.105041
+m_1033 x m_1036 x -0.08994
+m_1034 x m_1034 x 0.098361
+m_1034 x m_1034 x 0.124989
+m_1034 x m_1034 x 0.096239
+m_1034 x m_1034 x 0.102784
+m_1034 x m_1034 x 0.069988
+m_1034 x m_1037 x -0.154057
+m_1034 x m_1037 x -0.097786
+m_1034 x m_1037 x -0.098328
+m_1034 x m_1037 x -0.162156
+m_1034 x m_1037 x -0.136505
+m_1035 x m_1035 x 0.378851
+m_1035 x m_1035 x 0.487314
+m_1035 x m_1035 x 0.208127
+m_1035 x m_1035 x 0.076721
+m_1035 x m_1035 x 0.345281
+m_1035 x m_1038 x -0.191282
+m_1035 x m_1038 x -0.051842
+m_1035 x m_1038 x -0.141957
+m_1035 x m_1038 x -0.146796
+m_1035 x m_1038 x -0.161529
+m_1036 x m_1036 x -0.028397
+m_1036 x m_1036 x 0.10841
+m_1036 x m_1036 x 0.227747
+m_1036 x m_1036 x 0.1182
+m_1036 x m_1036 x 0.213726
+m_1036 x m_1039 x -0.159576
+m_1036 x m_1039 x -0.094982
+m_1036 x m_1039 x -0.223145
+m_1036 x m_1039 x -0.169588
+m_1036 x m_1039 x -0.131725
+m_1037 x m_1027 x -0.086815
+m_1037 x m_1027 x -0.142433
+m_1037 x m_1027 x -0.094744
+m_1037 x m_1027 x -0.139911
+m_1037 x m_1027 x -0.110981
+m_1037 x m_1037 x 0.188964
+m_1037 x m_1037 x 0.191109
+m_1037 x m_1037 x 0.177809
+m_1037 x m_1037 x 0.342173
+m_1037 x m_1037 x 0.320537
+m_1038 x m_1028 x -0.022658
+m_1038 x m_1028 x -0.121851
+m_1038 x m_1028 x -0.094836
+m_1038 x m_1028 x -0.092378
+m_1038 x m_1028 x -0.128918
+m_1038 x m_1038 x 0.088761
+m_1038 x m_1038 x 0.23967
+m_1038 x m_1038 x 0.2144
+m_1038 x m_1038 x 0.225245
+m_1038 x m_1038 x 0.166043
+m_1039 x m_1029 x -0.094188
+m_1039 x m_1029 x -0.137532
+m_1039 x m_1029 x -0.106247
+m_1039 x m_1029 x -0.051079
+m_1039 x m_1029 x -0.09995
+m_1039 x m_1039 x 0.047286
+m_1039 x m_1039 x 0.066872
+m_1039 x m_1039 x 0.084683
+m_1039 x m_1039 x 0.14965
+m_1039 x m_1039 x 0.061803
+f_1001 x f_1001 x 0.092146
+f_1001 x f_1001 x 0.069535
+f_1001 x f_1001 x 0.130482
+f_1001 x f_1001 x 0.121077
+f_1001 x f_1001 x 0.046827
+f_1001 x f_1005 x -0.07389
+f_1001 x f_1005 x -0.005571
+f_1001 x f_1005 x -0.038638
+f_1001 x f_1005 x -0.069725
+f_1001 x f_1005 x -0.106528
+f_1002 x f_1002 x 0.152725
+f_1002 x f_1002 x 0.068492
+f_1002 x f_1002 x 0.021185
+f_1002 x f_1002 x 0.100351
+f_1002 x f_1002 x 0.110254
+f_1002 x f_1006 x -0.045543
+f_1002 x f_1006 x -0.103691
+f_1002 x f_1006 x -0.109144
+f_1002 x f_1006 x -0.136591
+f_1002 x f_1006 x -0.066464
+f_1003 x f_1003 x 0.250429
+f_1003 x f_1003 x 0.216766
+f_1003 x f_1003 x 0.369219
+f_1003 x f_1003 x 0.088713
+f_1003 x f_1003 x 0.300226
+f_1003 x f_1007 x -0.076819
+f_1003 x f_1007 x -0.149137
+f_1003 x f_1007 x -0.135019
+f_1003 x f_1007 x -0.163912
+f_1003 x f_1007 x -0.095181
+f_1004 x f_1004 x 0.121271
+f_1004 x f_1004 x 0.040588
+f_1004 x f_1004 x -0.055486
+f_1004 x f_1004 x 0.037581
+f_1004 x f_1004 x -0.051495
+f_1004 x f_1008 x -0.058328
+f_1004 x f_1008 x -0.080856
+f_1004 x f_1008 x -0.098234
+f_1004 x f_1008 x -0.074142
+f_1004 x f_1008 x -0.105869
+f_1005 x f_1005 x 0.055989
+f_1005 x f_1005 x 0.002048
+f_1005 x f_1005 x 0.065929
+f_1005 x f_1005 x 0.075466
+f_1005 x f_1005 x 0.063656
+f_1005 x f_1009 x -0.015425
+f_1005 x f_1009 x -0.030571
+f_1005 x f_1009 x -0.051191
+f_1005 x f_1009 x -0.011377
+f_1005 x f_1009 x -0.029323
+f_1006 x f_1006 x 0.114515
+f_1006 x f_1006 x 0.193478
+f_1006 x f_1006 x 0.263637
+f_1006 x f_1006 x 0.124408
+f_1006 x f_1006 x 0.253012
+f_1006 x f_1010 x -0.045272
+f_1006 x f_1010 x -0.008281
+f_1006 x f_1010 x -0.098975
+f_1006 x f_1010 x -0.052164
+f_1006 x f_1010 x -0.038489
+f_1007 x f_1007 x 0.416937
+f_1007 x f_1007 x 0.152148
+f_1007 x f_1007 x 0.260329
+f_1007 x f_1007 x 0.302488
+f_1007 x f_1007 x 0.197565
+f_1007 x f_1011 x -0.025394
+f_1007 x f_1011 x -0.03248
+f_1007 x f_1011 x -0.018316
+f_1007 x f_1011 x 0.002981
+f_1007 x f_1011 x -0.084619
+f_1008 x f_1008 x 0.21788
+f_1008 x f_1008 x 0.135293
+f_1008 x f_1008 x 0.075077
+f_1008 x f_1008 x 0.07734
+f_1008 x f_1008 x 0.005587
+f_1008 x f_1012 x -0.155008
+f_1008 x f_1012 x -0.146633
+f_1008 x f_1012 x -0.091813
+f_1008 x f_1012 x -0.134748
+f_1008 x f_1012 x -0.112009
+f_1009 x f_1009 x 0.07703
+f_1009 x f_1009 x 0.20282
+f_1009 x f_1009 x 0.047498
+f_1009 x f_1009 x 0.14907
+f_1009 x f_1009 x 0.065152
+f_1009 x f_1013 x -0.040804
+f_1009 x f_1013 x -0.108543
+f_1009 x f_1013 x -0.069024
+f_1009 x f_1013 x -0.093558
+f_1009 x f_1013 x -0.104821
+f_1010 x f_1001 x 0.030117
+f_1010 x f_1001 x -0.001707
+f_1010 x f_1001 x 0.023293
+f_1010 x f_1001 x 0.044433
+f_1010 x f_1001 x 0.036691
+f_1010 x f_1010 x 0.090399
+f_1010 x f_1010 x 0.287217
+f_1010 x f_1010 x 0.17436
+f_1010 x f_1010 x 0.072507
+f_1010 x f_1010 x 0.169799
+f_1011 x f_1002 x -0.098069
+f_1011 x f_1002 x -0.059601
+f_1011 x f_1002 x -0.116737
+f_1011 x f_1002 x -0.091612
+f_1011 x f_1002 x -0.124484
+f_1011 x f_1011 x 0.061337
+f_1011 x f_1011 x 0.078452
+f_1011 x f_1011 x 0.053488
+f_1011 x f_1011 x 0.274413
+f_1011 x f_1011 x 0.025676
+f_1012 x f_1003 x -0.172277
+f_1012 x f_1003 x -0.139654
+f_1012 x f_1003 x -0.110438
+f_1012 x f_1003 x -0.147711
+f_1012 x f_1003 x -0.144899
+f_1012 x f_1012 x -0.008046
+f_1012 x f_1012 x 0.01118
+f_1012 x f_1012 x 0.069386
+f_1012 x f_1012 x 0.018678
+f_1012 x f_1012 x 0.090871
+f_1013 x f_1004 x -0.139999
+f_1013 x f_1004 x -0.146055
+f_1013 x f_1004 x -0.080982
+f_1013 x f_1004 x -0.11122
+f_1013 x f_1004 x -0.048738
+f_1013 x f_1013 x 0.08644
+f_1013 x f_1013 x 0.031428
+f_1013 x f_1013 x 0.110492
+f_1013 x f_1013 x 0.080487
+f_1013 x f_1013 x 0.129129
+m_1027 x m_1027 x -0.030796
+m_1027 x m_1027 x 0.166674
+m_1027 x m_1027 x -0.054503
+m_1027 x m_1027 x 0.216297
+m_1027 x m_1027 x 0.036048
+m_1027 x m_1031 x -0.068606
+m_1027 x m_1031 x -0.087531
+m_1027 x m_1031 x -0.079769
+m_1027 x m_1031 x -0.105363
+m_1027 x m_1031 x -0.017589
+m_1028 x m_1028 x 0.057595
+m_1028 x m_1028 x 0.12494
+m_1028 x m_1028 x 0.285578
+m_1028 x m_1028 x 0.068244
+m_1028 x m_1028 x 0.027044
+m_1028 x m_1032 x -0.08819
+m_1028 x m_1032 x -0.014659
+m_1028 x m_1032 x -0.060915
+m_1028 x m_1032 x -0.058342
+m_1028 x m_1032 x 0.002364
+m_1029 x m_1029 x 0.007404
+m_1029 x m_1029 x -0.04252
+m_1029 x m_1029 x -0.032869
+m_1029 x m_1029 x 0.029775
+m_1029 x m_1029 x -0.051259
+m_1029 x m_1033 x -0.158181
+m_1029 x m_1033 x -0.121331
+m_1029 x m_1033 x -0.144152
+m_1029 x m_1033 x -0.156712
+m_1029 x m_1033 x -0.177725
+m_1030 x m_1030 x 0.056945
+m_1030 x m_1030 x 0.317025
+m_1030 x m_1030 x 0.325579
+m_1030 x m_1030 x 0.284201
+m_1030 x m_1030 x 0.230508
+m_1030 x m_1034 x -0.022487
+m_1030 x m_1034 x -0.048232
+m_1030 x m_1034 x -0.145175
+m_1030 x m_1034 x -0.123378
+m_1030 x m_1034 x -0.073831
+m_1031 x m_1031 x 0.193519
+m_1031 x m_1031 x 0.175608
+m_1031 x m_1031 x 0.107447
+m_1031 x m_1031 x 0.199848
+m_1031 x m_1031 x 0.168314
+m_1031 x m_1035 x -0.020661
+m_1031 x m_1035 x -0.065903
+m_1031 x m_1035 x -0.125195
+m_1031 x m_1035 x -0.110455
+m_1031 x m_1035 x -0.094515
+m_1032 x m_1032 x 0.195781
+m_1032 x m_1032 x 0.096999
+m_1032 x m_1032 x -0.008268
+m_1032 x m_1032 x 0.069079
+m_1032 x m_1032 x 0.044985
+m_1032 x m_1036 x -0.076835
+m_1032 x m_1036 x -0.088222
+m_1032 x m_1036 x -0.120676
+m_1032 x m_1036 x -0.142852
+m_1032 x m_1036 x -0.086772
+m_1033 x m_1033 x -0.029097
+m_1033 x m_1033 x 0.061971
+m_1033 x m_1033 x 0.019417
+m_1033 x m_1033 x 0.037331
+m_1033 x m_1033 x 0.127991
+m_1033 x m_1037 x -0.175094
+m_1033 x m_1037 x -0.150287
+m_1033 x m_1037 x -0.220412
+m_1033 x m_1037 x -0.172678
+m_1033 x m_1037 x -0.169294
+m_1034 x m_1034 x 0.149889
+m_1034 x m_1034 x 0.066521
+m_1034 x m_1034 x 0.101737
+m_1034 x m_1034 x 0.100917
+m_1034 x m_1034 x 0.085561
+m_1034 x m_1038 x -0.124248
+m_1034 x m_1038 x -0.038474
+m_1034 x m_1038 x -0.068404
+m_1034 x m_1038 x -0.058341
+m_1034 x m_1038 x -0.115717
+m_1035 x m_1035 x 0.213568
+m_1035 x m_1035 x 0.029325
+m_1035 x m_1035 x 0.194311
+m_1035 x m_1035 x 0.249343
+m_1035 x m_1035 x 0.093952
+m_1035 x m_1039 x -0.090435
+m_1035 x m_1039 x -0.153427
+m_1035 x m_1039 x -0.083921
+m_1035 x m_1039 x -0.070264
+m_1035 x m_1039 x -0.057297
+m_1036 x m_1027 x -0.115691
+m_1036 x m_1027 x -0.059323
+m_1036 x m_1027 x -0.186053
+m_1036 x m_1027 x -0.175012
+m_1036 x m_1027 x -0.166257
+m_1036 x m_1036 x 0.063842
+m_1036 x m_1036 x 0.154448
+m_1036 x m_1036 x 0.389991
+m_1036 x m_1036 x 0.316025
+m_1036 x m_1036 x 0.30907
+m_1037 x m_1028 x -0.075955
+m_1037 x m_1028 x -0.080148
+m_1037 x m_1028 x -0.021735
+m_1037 x m_1028 x -0.056239
+m_1037 x m_1028 x -0.026486
+m_1037 x m_1037 x 0.103612
+m_1037 x m_1037 x 0.259835
+m_1037 x m_1037 x 0.243031
+m_1037 x m_1037 x 0.118142
+m_1037 x m_1037 x 0.164509
+m_1038 x m_1029 x -0.041864
+m_1038 x m_1029 x -0.003681
+m_1038 x m_1029 x -0.0213
+m_1038 x m_1029 x -0.003561
+m_1038 x m_1029 x -0.048595
+m_1038 x m_1038 x 0.182035
+m_1038 x m_1038 x 0.121601
+m_1038 x m_1038 x 0.231335
+m_1038 x m_1038 x 0.2318
+m_1038 x m_1038 x 0.378738
+m_1039 x m_1030 x -0.186483
+m_1039 x m_1030 x -0.153817
+m_1039 x m_1030 x -0.164871
+m_1039 x m_1030 x -0.099591
+m_1039 x m_1030 x -0.204401
+m_1039 x m_1039 x 0.095322
+m_1039 x m_1039 x 0.072113
+m_1039 x m_1039 x 0.139665
+m_1039 x m_1039 x 0.132828
+m_1039 x m_1039 x 0.169885
+f_1001 x f_1002 x -0.079848
+f_1001 x f_1002 x -0.138407
+f_1001 x f_1002 x -0.05771
+f_1001 x f_1002 x -0.101174
+f_1001 x f_1002 x -0.084897
+f_1002 x f_1003 x -0.073879
+f_1002 x f_1003 x 0.04615
+f_1002 x f_1003 x 0.075474
+f_1002 x f_1003 x -0.012754
+f_1002 x f_1003 x -0.006101
+f_1003 x f_1004 x -0.033191
+f_1003 x f_1004 x -0.070245
+f_1003 x f_1004 x -0.045936
+f_1003 x f_1004 x -0.056841
+f_1003 x f_1004 x -0.039423
+f_1004 x f_1005 x -0.174601
+f_1004 x f_1005 x -0.126434
+f_1004 x f_1005 x -0.200955
+f_1004 x f_1005 x -0.065868
+f_1004 x f_1005 x -0.135015
+f_1005 x f_1006 x -0.005004
+f_1005 x f_1006 x -0.052989
+f_1005 x f_1006 x -0.137597
+f_1005 x f_1006 x -0.10143
+f_1005 x f_1006 x -0.150544
+f_1006 x f_1007 x 0.00194
+f_1006 x f_1007 x -0.020898
+f_1006 x f_1007 x -0.008821
+f_1006 x f_1007 x -0.004604
+f_1006 x f_1007 x -0.0516
+f_1007 x f_1008 x -0.072577
+f_1007 x f_1008 x -0.108647
+f_1007 x f_1008 x -0.090148
+f_1007 x f_1008 x -0.156442
+f_1007 x f_1008 x -0.128324
+f_1008 x f_1009 x -0.086092
+f_1008 x f_1009 x 0.011503
+f_1008 x f_1009 x -0.070738
+f_1008 x f_1009 x -0.048589
+f_1008 x f_1009 x -0.032849
+f_1009 x f_1010 x -0.077762
+f_1009 x f_1010 x -0.102182
+f_1009 x f_1010 x -0.077388
+f_1009 x f_1010 x -0.048259
+f_1009 x f_1010 x -0.106654
+f_1010 x f_1011 x -0.107925
+f_1010 x f_1011 x -0.074153
+f_1010 x f_1011 x -0.046166
+f_1010 x f_1011 x -0.105082
+f_1010 x f_1011 x -0.109697
+f_1011 x f_1012 x -0.114147
+f_1011 x f_1012 x -0.193337
+f_1011 x f_1012 x -0.081829
+f_1011 x f_1012 x -0.109909
+f_1011 x f_1012 x -0.180126
+f_1012 x f_1013 x -0.063825
+f_1012 x f_1013 x -0.094552
+f_1012 x f_1013 x -0.119662
+f_1012 x f_1013 x -0.07877
+f_1012 x f_1013 x -0.081715
+f_1013 x f_1001 x -0.136329
+f_1013 x f_1001 x -0.124971
+f_1013 x f_1001 x -0.075831
+f_1013 x f_1001 x -0.110905
+f_1013 x f_1001 x -0.074551
+m_1027 x m_1028 x -0.190285
+m_1027 x m_1028 x -0.116158
+m_1027 x m_1028 x -0.159631
+m_1027 x m_1028 x -0.168323
+m_1027 x m_1028 x -0.115116
+m_1028 x m_1029 x -0.047101
+m_1028 x m_1029 x -0.108092
+m_1028 x m_1029 x -0.063646
+m_1028 x m_1029 x -0.013492
+m_1028 x m_1029 x -0.050001
+m_1029 x m_1030 x -0.074749
+m_1029 x m_1030 x -0.0461
+m_1029 x m_1030 x -0.080191
+m_1029 x m_1030 x -0.043393
+m_1029 x m_1030 x -0.066529
+m_1030 x m_1031 x -0.041418
+m_1030 x m_1031 x -0.046616
+m_1030 x m_1031 x -0.015607
+m_1030 x m_1031 x -0.034914
+m_1030 x m_1031 x -0.088874
+m_1031 x m_1032 x -0.070922
+m_1031 x m_1032 x -0.065517
+m_1031 x m_1032 x -0.095383
+m_1031 x m_1032 x -0.220017
+m_1031 x m_1032 x -0.123048
+m_1032 x m_1033 x -0.020985
+m_1032 x m_1033 x -0.059387
+m_1032 x m_1033 x -0.032041
+m_1032 x m_1033 x -0.034125
+m_1032 x m_1033 x -0.051097
+m_1033 x m_1034 x -0.068623
+m_1033 x m_1034 x -0.083128
+m_1033 x m_1034 x -0.077355
+m_1033 x m_1034 x -0.125626
+m_1033 x m_1034 x -0.083417
+m_1034 x m_1035 x -0.143532
+m_1034 x m_1035 x -0.200868
+m_1034 x m_1035 x -0.16596
+m_1034 x m_1035 x -0.151486
+m_1034 x m_1035 x -0.114951
+m_1035 x m_1036 x -0.176893
+m_1035 x m_1036 x -0.207564
+m_1035 x m_1036 x -0.117525
+m_1035 x m_1036 x -0.168342
+m_1035 x m_1036 x -0.21075
+m_1036 x m_1037 x -0.075311
+m_1036 x m_1037 x -0.084175
+m_1036 x m_1037 x -0.090178
+m_1036 x m_1037 x -0.099832
+m_1036 x m_1037 x -0.135049
+m_1037 x m_1038 x -0.176783
+m_1037 x m_1038 x -0.168007
+m_1037 x m_1038 x -0.085472
+m_1037 x m_1038 x -0.143515
+m_1037 x m_1038 x -0.114927
+m_1038 x m_1039 x -0.162465
+m_1038 x m_1039 x -0.165675
+m_1038 x m_1039 x -0.155784
+m_1038 x m_1039 x -0.167747
+m_1038 x m_1039 x -0.162331
+m_1039 x m_1027 x -0.095913
+m_1039 x m_1027 x -0.132247
+m_1039 x m_1027 x -0.104928
+m_1039 x m_1027 x -0.104656
+m_1039 x m_1027 x -0.185046
diff --git a/bob/bio/base/test/data/scores-cmc-4col-open-set-one-error.txt b/bob/bio/base/test/data/scores-cmc-4col-open-set-one-error.txt
new file mode 100644
index 0000000000000000000000000000000000000000..ab3f4a187d8592df4460f29ed09e0a655972732b
--- /dev/null
+++ b/bob/bio/base/test/data/scores-cmc-4col-open-set-one-error.txt
@@ -0,0 +1,27 @@
+1 1 probe_1 1
+1 1 probe_2 1
+1 2 probe_3 0
+1 2 probe_4 0
+1 2 probe_5 0
+1 3 probe_6 0
+1 3 probe_7 0
+1 4 probe_8 0
+1 5 probe_9 0
+2 1 probe_1 0
+2 1 probe_2 0
+2 2 probe_3 1
+2 2 probe_4 1
+2 2 probe_5 1
+2 3 probe_6 0
+2 3 probe_7 0
+2 4 probe_8 0
+2 5 probe_9 0
+3 1 probe_1 0
+3 1 probe_2 0
+3 2 probe_3 0
+3 2 probe_4 0
+3 2 probe_5 0
+3 3 probe_6 1
+3 3 probe_7 -0.1
+3 4 probe_8 0
+3 5 probe_9 0
diff --git a/bob/bio/base/test/data/scores-cmc-4col-open-set-two-errors.txt b/bob/bio/base/test/data/scores-cmc-4col-open-set-two-errors.txt
new file mode 100644
index 0000000000000000000000000000000000000000..f8f7ba24c5de55cb904a70f64501615c404416f1
--- /dev/null
+++ b/bob/bio/base/test/data/scores-cmc-4col-open-set-two-errors.txt
@@ -0,0 +1,27 @@
+1 1 probe_1 1
+1 1 probe_2 1
+1 2 probe_3 0
+1 2 probe_4 0
+1 2 probe_5 0
+1 3 probe_6 0
+1 3 probe_7 0
+1 4 probe_8 0
+1 5 probe_9 0
+2 1 probe_1 0
+2 1 probe_2 0
+2 2 probe_3 1
+2 2 probe_4 1
+2 2 probe_5 1
+2 3 probe_6 0
+2 3 probe_7 0
+2 4 probe_8 0
+2 5 probe_9 0
+3 1 probe_1 0
+3 1 probe_2 0
+3 2 probe_3 0
+3 2 probe_4 0
+3 2 probe_5 0
+3 3 probe_6 1
+3 3 probe_7 -0.1
+3 4 probe_8 0
+3 5 probe_9 10
diff --git a/bob/bio/base/test/data/scores-cmc-4col-open-set.txt b/bob/bio/base/test/data/scores-cmc-4col-open-set.txt
new file mode 100644
index 0000000000000000000000000000000000000000..75ed810189de655dce5d9d3314568ea1c09c8bb5
--- /dev/null
+++ b/bob/bio/base/test/data/scores-cmc-4col-open-set.txt
@@ -0,0 +1,27 @@
+1 1 probe_1 1
+1 1 probe_2 1
+1 2 probe_3 0
+1 2 probe_4 0
+1 2 probe_5 0
+1 3 probe_6 0
+1 3 probe_7 0
+1 4 probe_8 0
+1 5 probe_9 0
+2 1 probe_1 0
+2 1 probe_2 0
+2 2 probe_3 1
+2 2 probe_4 1
+2 2 probe_5 1
+2 3 probe_6 0
+2 3 probe_7 0
+2 4 probe_8 0
+2 5 probe_9 0
+3 1 probe_1 0
+3 1 probe_2 0
+3 2 probe_3 0
+3 2 probe_4 0
+3 2 probe_5 0
+3 3 probe_6 1
+3 3 probe_7 1
+3 4 probe_8 0
+3 5 probe_9 0
diff --git a/bob/bio/base/test/data/scores-cmc-4col.txt b/bob/bio/base/test/data/scores-cmc-4col.txt
new file mode 100644
index 0000000000000000000000000000000000000000..33a76cab1bd5b61b29ff0975b3cdca9eb4bebf6d
--- /dev/null
+++ b/bob/bio/base/test/data/scores-cmc-4col.txt
@@ -0,0 +1,2000 @@
+3 3 s3/1 -1379.79268746
+3 3 s3/3 -1634.53276051
+3 3 s3/6 -1727.90866176
+3 3 s3/8 -1330.68401315
+3 3 s3/10 -1912.77343391
+3 4 s4/1 -1746.88596714
+3 4 s4/3 -1613.06319303
+3 4 s4/6 -2313.24329277
+3 4 s4/8 -1591.98392217
+3 4 s4/10 -2730.9754808
+3 7 s7/1 -3460.44008764
+3 7 s7/3 -3433.49050371
+3 7 s7/6 -3089.89562483
+3 7 s7/8 -3432.42457034
+3 7 s7/10 -3079.0440811
+3 8 s8/1 -3620.2592394
+3 8 s8/3 -3269.98024589
+3 8 s8/6 -3358.21797555
+3 8 s8/8 -3387.03907938
+3 8 s8/10 -3171.50666852
+3 9 s9/1 -2811.95946617
+3 9 s9/3 -2664.59585669
+3 9 s9/6 -2656.05911704
+3 9 s9/8 -2443.67278587
+3 9 s9/10 -2850.31782429
+3 13 s13/1 -2946.82573528
+3 13 s13/3 -3583.79672567
+3 13 s13/6 -2963.54066016
+3 13 s13/8 -2868.46385067
+3 13 s13/10 -2538.48690592
+3 15 s15/1 -3173.69053082
+3 15 s15/3 -3178.53876882
+3 15 s15/6 -3111.42098722
+3 15 s15/8 -3329.41061343
+3 15 s15/10 -2596.58956879
+3 18 s18/1 -3182.79708708
+3 18 s18/3 -2614.69595605
+3 18 s18/6 -2706.60809944
+3 18 s18/8 -2840.19223113
+3 18 s18/10 -2862.66900744
+3 19 s19/1 -3536.77408534
+3 19 s19/3 -4027.07052594
+3 19 s19/6 -3672.1595268
+3 19 s19/8 -3986.46152677
+3 19 s19/10 -3253.32219871
+3 22 s22/1 -4010.21487048
+3 22 s22/3 -3830.02378375
+3 22 s22/6 -4432.88810546
+3 22 s22/8 -4157.95710081
+3 22 s22/10 -4366.73686546
+3 23 s23/1 -3053.33185632
+3 23 s23/3 -3919.97013765
+3 23 s23/6 -3288.54921504
+3 23 s23/8 -3445.7429271
+3 23 s23/10 -2728.4009081
+3 25 s25/1 -2077.78964037
+3 25 s25/3 -1996.27706821
+3 25 s25/6 -2158.13414247
+3 25 s25/8 -2365.446406
+3 25 s25/10 -2113.26873798
+3 28 s28/1 -3442.83435448
+3 28 s28/3 -3163.25423353
+3 28 s28/6 -3227.02394654
+3 28 s28/8 -3383.5929893
+3 28 s28/10 -3270.67275578
+3 30 s30/1 -3399.50034429
+3 30 s30/3 -3755.26703911
+3 30 s30/6 -3390.40001552
+3 30 s30/8 -4088.11071666
+3 30 s30/10 -3448.70029605
+3 31 s31/1 -3317.91933517
+3 31 s31/3 -4129.53432195
+3 31 s31/6 -2703.85344626
+3 31 s31/8 -3028.36256979
+3 31 s31/10 -4117.12107523
+3 32 s32/1 -3451.07982123
+3 32 s32/3 -3659.08758621
+3 32 s32/6 -2912.5121953
+3 32 s32/8 -3239.29507593
+3 32 s32/10 -2816.61664649
+3 35 s35/1 -3532.22591289
+3 35 s35/3 -2825.64434863
+3 35 s35/6 -2226.87247619
+3 35 s35/8 -2273.17374368
+3 35 s35/10 -2807.78371377
+3 37 s37/1 -3090.7830507
+3 37 s37/3 -3356.19444943
+3 37 s37/6 -3819.78140964
+3 37 s37/8 -3280.30431209
+3 37 s37/10 -3019.52908155
+3 38 s38/1 -3047.63407732
+3 38 s38/3 -2972.12269097
+3 38 s38/6 -3484.48437412
+3 38 s38/8 -3216.05224462
+3 38 s38/10 -3207.45635903
+3 40 s40/1 -2506.31589548
+3 40 s40/3 -2738.67714294
+3 40 s40/6 -2826.35311781
+3 40 s40/8 -2477.55650197
+3 40 s40/10 -2856.55209634
+4 3 s3/1 -2097.51280034
+4 3 s3/3 -2023.3387048
+4 3 s3/6 -2217.05890884
+4 3 s3/8 -2328.42194559
+4 3 s3/10 -1579.12873829
+4 4 s4/1 -2109.51091365
+4 4 s4/3 -2397.45985327
+4 4 s4/6 -2674.80222663
+4 4 s4/8 -2048.16132875
+4 4 s4/10 -1597.37572542
+4 7 s7/1 -3368.69187597
+4 7 s7/3 -3371.00271615
+4 7 s7/6 -3232.68335763
+4 7 s7/8 -3607.3979377
+4 7 s7/10 -2884.55057149
+4 8 s8/1 -4303.76466702
+4 8 s8/3 -3202.42396848
+4 8 s8/6 -3372.60526358
+4 8 s8/8 -3351.99028682
+4 8 s8/10 -2875.5348275
+4 9 s9/1 -2860.08677303
+4 9 s9/3 -2688.67567353
+4 9 s9/6 -3232.40160873
+4 9 s9/8 -2632.11421778
+4 9 s9/10 -2286.6605215
+4 13 s13/1 -4233.37474823
+4 13 s13/3 -4777.76108956
+4 13 s13/6 -3509.80014011
+4 13 s13/8 -4071.49161933
+4 13 s13/10 -3663.00400217
+4 15 s15/1 -3090.32050098
+4 15 s15/3 -3109.87978493
+4 15 s15/6 -3244.80395029
+4 15 s15/8 -3159.54011618
+4 15 s15/10 -3212.33935998
+4 18 s18/1 -3029.88191105
+4 18 s18/3 -3693.98946937
+4 18 s18/6 -3365.9813891
+4 18 s18/8 -3671.60318908
+4 18 s18/10 -3439.17926362
+4 19 s19/1 -4126.33284024
+4 19 s19/3 -4687.64632666
+4 19 s19/6 -4503.65118444
+4 19 s19/8 -4597.81186541
+4 19 s19/10 -4061.93959722
+4 22 s22/1 -4420.20420385
+4 22 s22/3 -4122.6265905
+4 22 s22/6 -4991.81040461
+4 22 s22/8 -4531.38441564
+4 22 s22/10 -4980.44450294
+4 23 s23/1 -3401.81702162
+4 23 s23/3 -4028.1336055
+4 23 s23/6 -3978.45100619
+4 23 s23/8 -3211.22978325
+4 23 s23/10 -3198.10535623
+4 25 s25/1 -2062.04530856
+4 25 s25/3 -1864.81104842
+4 25 s25/6 -2407.68073618
+4 25 s25/8 -3439.82293636
+4 25 s25/10 -1794.81628586
+4 28 s28/1 -4540.54004502
+4 28 s28/3 -4383.64097847
+4 28 s28/6 -4281.67440812
+4 28 s28/8 -3946.61365052
+4 28 s28/10 -4569.28625396
+4 30 s30/1 -3051.1905347
+4 30 s30/3 -3573.25826858
+4 30 s30/6 -3172.93119916
+4 30 s30/8 -4035.35954145
+4 30 s30/10 -3361.40514185
+4 31 s31/1 -3252.21215713
+4 31 s31/3 -4491.10730478
+4 31 s31/6 -2883.97999623
+4 31 s31/8 -2974.33442689
+4 31 s31/10 -4419.81756879
+4 32 s32/1 -3701.92675808
+4 32 s32/3 -4230.76047786
+4 32 s32/6 -3251.25421788
+4 32 s32/8 -3866.64264384
+4 32 s32/10 -3237.44016449
+4 35 s35/1 -4204.25090013
+4 35 s35/3 -3758.36177331
+4 35 s35/6 -2154.19941863
+4 35 s35/8 -2145.22688345
+4 35 s35/10 -3437.97238277
+4 37 s37/1 -4096.71829358
+4 37 s37/3 -4415.32539877
+4 37 s37/6 -4645.02754118
+4 37 s37/8 -4196.70618568
+4 37 s37/10 -4103.73478556
+4 38 s38/1 -3692.77721021
+4 38 s38/3 -3596.5152585
+4 38 s38/6 -4024.46292833
+4 38 s38/8 -3013.42746448
+4 38 s38/10 -3585.91031401
+4 40 s40/1 -3217.76780761
+4 40 s40/3 -2798.59798876
+4 40 s40/6 -3653.68846351
+4 40 s40/8 -3265.06174969
+4 40 s40/10 -4288.3030138
+7 3 s3/1 -3120.00216408
+7 3 s3/3 -2988.66583317
+7 3 s3/6 -2928.16408153
+7 3 s3/8 -3234.07830596
+7 3 s3/10 -2929.70625522
+7 4 s4/1 -3459.39856577
+7 4 s4/3 -3822.00572827
+7 4 s4/6 -3925.86211815
+7 4 s4/8 -3681.6492638
+7 4 s4/10 -3313.51262759
+7 7 s7/1 -617.825862238
+7 7 s7/3 -867.409063056
+7 7 s7/6 -1353.44151952
+7 7 s7/8 -1609.78693924
+7 7 s7/10 -1305.90153291
+7 8 s8/1 -4327.87306526
+7 8 s8/3 -3735.28132801
+7 8 s8/6 -3899.4043867
+7 8 s8/8 -4159.10909214
+7 8 s8/10 -3690.00289726
+7 9 s9/1 -3461.41683118
+7 9 s9/3 -3474.96610279
+7 9 s9/6 -3796.28874482
+7 9 s9/8 -3248.35661343
+7 9 s9/10 -3331.48914238
+7 13 s13/1 -4921.81558057
+7 13 s13/3 -5177.0115092
+7 13 s13/6 -4377.79358814
+7 13 s13/8 -4549.47680222
+7 13 s13/10 -4268.93263282
+7 15 s15/1 -3076.7368174
+7 15 s15/3 -3047.13247253
+7 15 s15/6 -3249.84902365
+7 15 s15/8 -3150.50121815
+7 15 s15/10 -3452.85315844
+7 18 s18/1 -3945.39914918
+7 18 s18/3 -4458.14092777
+7 18 s18/6 -4013.01623566
+7 18 s18/8 -4338.24226246
+7 18 s18/10 -3961.85437891
+7 19 s19/1 -4809.91164653
+7 19 s19/3 -5232.22205615
+7 19 s19/6 -5157.79783698
+7 19 s19/8 -4651.29311084
+7 19 s19/10 -4874.47981006
+7 22 s22/1 -4459.6222356
+7 22 s22/3 -4377.94066581
+7 22 s22/6 -4686.89847305
+7 22 s22/8 -4587.77483596
+7 22 s22/10 -4960.77430892
+7 23 s23/1 -2844.66296646
+7 23 s23/3 -3577.80820325
+7 23 s23/6 -3760.03833299
+7 23 s23/8 -2592.30467393
+7 23 s23/10 -2782.98926037
+7 25 s25/1 -3709.91905593
+7 25 s25/3 -3673.52485981
+7 25 s25/6 -4135.41309534
+7 25 s25/8 -4498.09934416
+7 25 s25/10 -3867.02458523
+7 28 s28/1 -4903.59623882
+7 28 s28/3 -4959.06234558
+7 28 s28/6 -4757.67310498
+7 28 s28/8 -4397.00986327
+7 28 s28/10 -5163.55107447
+7 30 s30/1 -3564.22134558
+7 30 s30/3 -3884.05161515
+7 30 s30/6 -3278.45824218
+7 30 s30/8 -4203.96866458
+7 30 s30/10 -3703.03644002
+7 31 s31/1 -3610.5222855
+7 31 s31/3 -4647.7502073
+7 31 s31/6 -3826.85642829
+7 31 s31/8 -3697.79390825
+7 31 s31/10 -4711.21976699
+7 32 s32/1 -4224.76328171
+7 32 s32/3 -4880.3701751
+7 32 s32/6 -3467.34232266
+7 32 s32/8 -4205.0790813
+7 32 s32/10 -3366.64775879
+7 35 s35/1 -4139.19915643
+7 35 s35/3 -4165.24385506
+7 35 s35/6 -3757.11460823
+7 35 s35/8 -3488.0609092
+7 35 s35/10 -3316.41532002
+7 37 s37/1 -4439.26346467
+7 37 s37/3 -4628.42859719
+7 37 s37/6 -4800.49047203
+7 37 s37/8 -4425.21313548
+7 37 s37/10 -4472.06844594
+7 38 s38/1 -3637.57257635
+7 38 s38/3 -3831.59619911
+7 38 s38/6 -3844.91237951
+7 38 s38/8 -3161.92143097
+7 38 s38/10 -3168.10019452
+7 40 s40/1 -3577.73736278
+7 40 s40/3 -3146.39774768
+7 40 s40/6 -3882.04884366
+7 40 s40/8 -3735.30412249
+7 40 s40/10 -4467.95343226
+8 3 s3/1 -3816.49167388
+8 3 s3/3 -4243.79743359
+8 3 s3/6 -3082.51718778
+8 3 s3/8 -3020.22874228
+8 3 s3/10 -4113.09549687
+8 4 s4/1 -3039.48610771
+8 4 s4/3 -3040.63946246
+8 4 s4/6 -3395.10221087
+8 4 s4/8 -3116.55675349
+8 4 s4/10 -4497.62739774
+8 7 s7/1 -4211.6114398
+8 7 s7/3 -3931.41737091
+8 7 s7/6 -3580.80042267
+8 7 s7/8 -3709.35948031
+8 7 s7/10 -4510.99928392
+8 8 s8/1 -1135.46945823
+8 8 s8/3 -1664.95236718
+8 8 s8/6 -1745.06667956
+8 8 s8/8 -1874.43093948
+8 8 s8/10 -2061.08463491
+8 9 s9/1 -4297.44821021
+8 9 s9/3 -4353.85917889
+8 9 s9/6 -3575.52734928
+8 9 s9/8 -3475.1781057
+8 9 s9/10 -4719.13057395
+8 13 s13/1 -4636.95144656
+8 13 s13/3 -4732.44942349
+8 13 s13/6 -4704.23970245
+8 13 s13/8 -4514.0326596
+8 13 s13/10 -4266.08581029
+8 15 s15/1 -3669.79436722
+8 15 s15/3 -3580.75949187
+8 15 s15/6 -3609.71332974
+8 15 s15/8 -3755.57239855
+8 15 s15/10 -3543.09126099
+8 18 s18/1 -4961.2173049
+8 18 s18/3 -4109.75653182
+8 18 s18/6 -3995.44195704
+8 18 s18/8 -4177.49528886
+8 18 s18/10 -3950.04207524
+8 19 s19/1 -4297.15335629
+8 19 s19/3 -4870.31852193
+8 19 s19/6 -4496.97200871
+8 19 s19/8 -4094.66435512
+8 19 s19/10 -3822.2449824
+8 22 s22/1 -4780.99227159
+8 22 s22/3 -4689.028013
+8 22 s22/6 -4984.82882451
+8 22 s22/8 -4879.72886553
+8 22 s22/10 -5098.05356772
+8 23 s23/1 -3405.79008991
+8 23 s23/3 -4776.51868726
+8 23 s23/6 -4161.72307492
+8 23 s23/8 -4788.46294731
+8 23 s23/10 -3315.41957354
+8 25 s25/1 -3824.59345334
+8 25 s25/3 -3845.76304451
+8 25 s25/6 -3763.12504434
+8 25 s25/8 -3761.5899582
+8 25 s25/10 -3905.03364425
+8 28 s28/1 -4877.23858214
+8 28 s28/3 -4705.39011288
+8 28 s28/6 -4772.27918626
+8 28 s28/8 -5550.62266467
+8 28 s28/10 -4717.01599088
+8 30 s30/1 -4084.52503825
+8 30 s30/3 -4221.1789981
+8 30 s30/6 -4061.9396941
+8 30 s30/8 -4709.78243598
+8 30 s30/10 -3900.24932223
+8 31 s31/1 -4796.206716
+8 31 s31/3 -5007.39195856
+8 31 s31/6 -4423.3107164
+8 31 s31/8 -4652.91164347
+8 31 s31/10 -4980.18129086
+8 32 s32/1 -3938.07008877
+8 32 s32/3 -4224.23005286
+8 32 s32/6 -2928.42135463
+8 32 s32/8 -3585.26122854
+8 32 s32/10 -3020.08375318
+8 35 s35/1 -4733.303325
+8 35 s35/3 -4275.11431188
+8 35 s35/6 -3467.16231594
+8 35 s35/8 -3506.0442336
+8 35 s35/10 -4471.58251982
+8 37 s37/1 -5197.10341632
+8 37 s37/3 -5296.46506571
+8 37 s37/6 -5060.04946633
+8 37 s37/8 -4485.87436358
+8 37 s37/10 -4939.53354307
+8 38 s38/1 -3295.6245965
+8 38 s38/3 -3303.72233957
+8 38 s38/6 -3557.30039322
+8 38 s38/8 -3781.97830608
+8 38 s38/10 -3744.9474251
+8 40 s40/1 -4572.35498313
+8 40 s40/3 -4854.67113335
+8 40 s40/6 -4103.05579492
+8 40 s40/8 -4230.86819166
+8 40 s40/10 -3904.31330825
+9 3 s3/1 -2547.5104482
+9 3 s3/3 -2725.45115096
+9 3 s3/6 -2211.99297617
+9 3 s3/8 -2416.50020167
+9 3 s3/10 -2808.00169181
+9 4 s4/1 -2252.65199646
+9 4 s4/3 -2590.48954693
+9 4 s4/6 -3289.80948945
+9 4 s4/8 -2569.14238439
+9 4 s4/10 -2649.76082109
+9 7 s7/1 -3300.80205386
+9 7 s7/3 -3384.85442682
+9 7 s7/6 -3308.89117021
+9 7 s7/8 -3280.71373687
+9 7 s7/10 -3315.55371503
+9 8 s8/1 -4185.21171568
+9 8 s8/3 -3634.51475298
+9 8 s8/6 -4019.79386655
+9 8 s8/8 -3900.67066506
+9 8 s8/10 -3532.26591473
+9 9 s9/1 -1232.98008048
+9 9 s9/3 -1256.06667593
+9 9 s9/6 -1764.52243494
+9 9 s9/8 -1447.87853552
+9 9 s9/10 -1789.71184484
+9 13 s13/1 -4619.25396528
+9 13 s13/3 -5175.65502321
+9 13 s13/6 -4272.85697332
+9 13 s13/8 -4553.62609701
+9 13 s13/10 -4244.44673611
+9 15 s15/1 -3454.43840637
+9 15 s15/3 -3439.87009412
+9 15 s15/6 -3578.29135252
+9 15 s15/8 -3440.83204868
+9 15 s15/10 -2665.60947707
+9 18 s18/1 -4148.87008937
+9 18 s18/3 -4109.69400345
+9 18 s18/6 -4091.07132553
+9 18 s18/8 -4208.3489515
+9 18 s18/10 -3757.36612039
+9 19 s19/1 -4807.20953164
+9 19 s19/3 -5347.47059831
+9 19 s19/6 -5037.02683897
+9 19 s19/8 -5158.78820124
+9 19 s19/10 -4623.00188
+9 22 s22/1 -4154.24807601
+9 22 s22/3 -3844.22286129
+9 22 s22/6 -4415.27940247
+9 22 s22/8 -4209.98015364
+9 22 s22/10 -4700.9501879
+9 23 s23/1 -2403.64952559
+9 23 s23/3 -2965.62721504
+9 23 s23/6 -2970.82455651
+9 23 s23/8 -2439.9060999
+9 23 s23/10 -2362.75062609
+9 25 s25/1 -2186.76811782
+9 25 s25/3 -2250.01746741
+9 25 s25/6 -2913.21012077
+9 25 s25/8 -3486.83051857
+9 25 s25/10 -2463.4559735
+9 28 s28/1 -4918.87479674
+9 28 s28/3 -4681.85746463
+9 28 s28/6 -4617.28665292
+9 28 s28/8 -4548.91590351
+9 28 s28/10 -4964.8811564
+9 30 s30/1 -2468.85347323
+9 30 s30/3 -2684.22105025
+9 30 s30/6 -2352.19611749
+9 30 s30/8 -3203.79571838
+9 30 s30/10 -2589.19072649
+9 31 s31/1 -1990.71715309
+9 31 s31/3 -4574.3250072
+9 31 s31/6 -2638.76143027
+9 31 s31/8 -2136.9668398
+9 31 s31/10 -4586.19479594
+9 32 s32/1 -4540.36181713
+9 32 s32/3 -4868.08338276
+9 32 s32/6 -4037.78030625
+9 32 s32/8 -4490.67607519
+9 32 s32/10 -3923.63980576
+9 35 s35/1 -3121.69389479
+9 35 s35/3 -3916.72829133
+9 35 s35/6 -3123.62025962
+9 35 s35/8 -2480.64668786
+9 35 s35/10 -3432.45445572
+9 37 s37/1 -4479.69370996
+9 37 s37/3 -4742.56540091
+9 37 s37/6 -4993.89089683
+9 37 s37/8 -4566.20131271
+9 37 s37/10 -4537.43975603
+9 38 s38/1 -2505.17244521
+9 38 s38/3 -2707.94431745
+9 38 s38/6 -2761.29272417
+9 38 s38/8 -2263.62593044
+9 38 s38/10 -2398.09045021
+9 40 s40/1 -2928.99104151
+9 40 s40/3 -3022.18661213
+9 40 s40/6 -2909.42717431
+9 40 s40/8 -2900.50106801
+9 40 s40/10 -3514.24554484
+13 3 s3/1 -3202.38137554
+13 3 s3/3 -3308.2248404
+13 3 s3/6 -3501.44047001
+13 3 s3/8 -3262.35823784
+13 3 s3/10 -3444.20525571
+13 4 s4/1 -3649.59387841
+13 4 s4/3 -3390.63212187
+13 4 s4/6 -3246.33460094
+13 4 s4/8 -3342.89496156
+13 4 s4/10 -4299.54590767
+13 7 s7/1 -4715.98664504
+13 7 s7/3 -4609.27291027
+13 7 s7/6 -4422.0260616
+13 7 s7/8 -4722.80244759
+13 7 s7/10 -4029.53815479
+13 8 s8/1 -4670.41935822
+13 8 s8/3 -4525.99460014
+13 8 s8/6 -4406.83573849
+13 8 s8/8 -4474.32175203
+13 8 s8/10 -4572.86719878
+13 9 s9/1 -4637.22294275
+13 9 s9/3 -4500.651687
+13 9 s9/6 -4463.61015407
+13 9 s9/8 -4243.16691824
+13 9 s9/10 -4572.15435639
+13 13 s13/1 -1025.77704523
+13 13 s13/3 -1783.98005114
+13 13 s13/6 -1558.11784716
+13 13 s13/8 -1039.99583084
+13 13 s13/10 -703.448590077
+13 15 s15/1 -4038.32937849
+13 15 s15/3 -4158.46410153
+13 15 s15/6 -3796.56417856
+13 15 s15/8 -4429.3755221
+13 15 s15/10 -3585.52994631
+13 18 s18/1 -2812.99173883
+13 18 s18/3 -1891.55964525
+13 18 s18/6 -2035.67549695
+13 18 s18/8 -1978.19724817
+13 18 s18/10 -2499.42504522
+13 19 s19/1 -3567.82071157
+13 19 s19/3 -3234.31779564
+13 19 s19/6 -3159.33639979
+13 19 s19/8 -3323.52201903
+13 19 s19/10 -3551.06114754
+13 22 s22/1 -5414.57148439
+13 22 s22/3 -5371.51231446
+13 22 s22/6 -5895.08586155
+13 22 s22/8 -5541.10555282
+13 22 s22/10 -5289.97985403
+13 23 s23/1 -4783.79443316
+13 23 s23/3 -5184.20935404
+13 23 s23/6 -4767.83616152
+13 23 s23/8 -5121.71712236
+13 23 s23/10 -4559.26698216
+13 25 s25/1 -3377.53134774
+13 25 s25/3 -3115.54927275
+13 25 s25/6 -2950.2693355
+13 25 s25/8 -2610.67305436
+13 25 s25/10 -3284.9945593
+13 28 s28/1 -2818.43584739
+13 28 s28/3 -2939.87837017
+13 28 s28/6 -2959.54612292
+13 28 s28/8 -3249.15642063
+13 28 s28/10 -2605.52287392
+13 30 s30/1 -5339.28315308
+13 30 s30/3 -5611.91473319
+13 30 s30/6 -5330.75403669
+13 30 s30/8 -5777.47373497
+13 30 s30/10 -5300.57333828
+13 31 s31/1 -5210.82295907
+13 31 s31/3 -4412.76465696
+13 31 s31/6 -4441.92121769
+13 31 s31/8 -4896.76699795
+13 31 s31/10 -4488.13181919
+13 32 s32/1 -3150.51061775
+13 32 s32/3 -3159.71478883
+13 32 s32/6 -3334.54053001
+13 32 s32/8 -3056.73154297
+13 32 s32/10 -3413.7973795
+13 35 s35/1 -3886.54628516
+13 35 s35/3 -3043.08940014
+13 35 s35/6 -2749.45139543
+13 35 s35/8 -3165.90623178
+13 35 s35/10 -3046.81538122
+13 37 s37/1 -2678.74294941
+13 37 s37/3 -2658.9158326
+13 37 s37/6 -3609.67071608
+13 37 s37/8 -3538.43631387
+13 37 s37/10 -2501.21295259
+13 38 s38/1 -4953.92150692
+13 38 s38/3 -4742.48319921
+13 38 s38/6 -5178.55887189
+13 38 s38/8 -5038.90368513
+13 38 s38/10 -4841.33560269
+13 40 s40/1 -2809.70264194
+13 40 s40/3 -3157.01332876
+13 40 s40/6 -2927.3338441
+13 40 s40/8 -2688.96600375
+13 40 s40/10 -3069.88991179
+15 3 s3/1 -2580.30354292
+15 3 s3/3 -2834.29603042
+15 3 s3/6 -2759.19839368
+15 3 s3/8 -2783.20695581
+15 3 s3/10 -3143.83963287
+15 4 s4/1 -2202.64057116
+15 4 s4/3 -2301.81039791
+15 4 s4/6 -3097.5947528
+15 4 s4/8 -2350.44748544
+15 4 s4/10 -3349.64729233
+15 7 s7/1 -3311.13835445
+15 7 s7/3 -3267.20955526
+15 7 s7/6 -2929.4992405
+15 7 s7/8 -3137.60235246
+15 7 s7/10 -3259.5085004
+15 8 s8/1 -3351.22118121
+15 8 s8/3 -3589.75913922
+15 8 s8/6 -3772.85395682
+15 8 s8/8 -3625.2943284
+15 8 s8/10 -3654.16304296
+15 9 s9/1 -2915.57607571
+15 9 s9/3 -2894.11208415
+15 9 s9/6 -2772.64507605
+15 9 s9/8 -2588.56558412
+15 9 s9/10 -3200.31211964
+15 13 s13/1 -3586.37478927
+15 13 s13/3 -3774.84487141
+15 13 s13/6 -3542.40649551
+15 13 s13/8 -3742.37638037
+15 13 s13/10 -3370.21784657
+15 15 s15/1 -2402.53690896
+15 15 s15/3 -2367.48473176
+15 15 s15/6 -2374.53446452
+15 15 s15/8 -2022.0055133
+15 15 s15/10 -969.500884681
+15 18 s18/1 -3871.88457482
+15 18 s18/3 -3148.77140084
+15 18 s18/6 -3291.11248654
+15 18 s18/8 -3218.72499924
+15 18 s18/10 -3401.64969692
+15 19 s19/1 -3757.87263186
+15 19 s19/3 -4112.05649595
+15 19 s19/6 -3812.79868872
+15 19 s19/8 -4000.182565
+15 19 s19/10 -3583.69493135
+15 22 s22/1 -3195.0359962
+15 22 s22/3 -3028.62720878
+15 22 s22/6 -3498.44994816
+15 22 s22/8 -3283.34848436
+15 22 s22/10 -3446.01197175
+15 23 s23/1 -3070.25974401
+15 23 s23/3 -3390.20344442
+15 23 s23/6 -2932.20788748
+15 23 s23/8 -3571.3765668
+15 23 s23/10 -2954.78677002
+15 25 s25/1 -2611.29833149
+15 25 s25/3 -2829.31199376
+15 25 s25/6 -2714.51118348
+15 25 s25/8 -2870.18228171
+15 25 s25/10 -2864.16113222
+15 28 s28/1 -3753.4390575
+15 28 s28/3 -3623.60109655
+15 28 s28/6 -3554.51786063
+15 28 s28/8 -4121.24848957
+15 28 s28/10 -3803.49807022
+15 30 s30/1 -2649.16787496
+15 30 s30/3 -2898.3050272
+15 30 s30/6 -2667.58480765
+15 30 s30/8 -3007.14301998
+15 30 s30/10 -2629.9532381
+15 31 s31/1 -2816.97617563
+15 31 s31/3 -3076.41676091
+15 31 s31/6 -2482.64472589
+15 31 s31/8 -2679.15146696
+15 31 s31/10 -3032.7179238
+15 32 s32/1 -3455.24452617
+15 32 s32/3 -3442.20655852
+15 32 s32/6 -2990.03785573
+15 32 s32/8 -3263.88075526
+15 32 s32/10 -2841.40823188
+15 35 s35/1 -2748.56316738
+15 35 s35/3 -2025.04895307
+15 35 s35/6 -2608.84048224
+15 35 s35/8 -2225.51881792
+15 35 s35/10 -2699.40465375
+15 37 s37/1 -3776.23292984
+15 37 s37/3 -3875.69905416
+15 37 s37/6 -3703.36249652
+15 37 s37/8 -3265.46678469
+15 37 s37/10 -3826.94635927
+15 38 s38/1 -3084.26750791
+15 38 s38/3 -2851.27680759
+15 38 s38/6 -3295.81461978
+15 38 s38/8 -3172.81880218
+15 38 s38/10 -2947.70788332
+15 40 s40/1 -2943.88908446
+15 40 s40/3 -3270.57500985
+15 40 s40/6 -3019.89230379
+15 40 s40/8 -2933.41439825
+15 40 s40/10 -2891.00228583
+18 3 s3/1 -2956.0754384
+18 3 s3/3 -2753.84726042
+18 3 s3/6 -3202.07741089
+18 3 s3/8 -3223.11593887
+18 3 s3/10 -2672.34954412
+18 4 s4/1 -3433.27996686
+18 4 s4/3 -3560.49800004
+18 4 s4/6 -3365.12571015
+18 4 s4/8 -3343.40806464
+18 4 s4/10 -3335.1372178
+18 7 s7/1 -4104.2010016
+18 7 s7/3 -3962.80832438
+18 7 s7/6 -3984.14020527
+18 7 s7/8 -4326.38507592
+18 7 s7/10 -3257.72684289
+18 8 s8/1 -4836.19576879
+18 8 s8/3 -4152.65556388
+18 8 s8/6 -4134.79509243
+18 8 s8/8 -4138.08421509
+18 8 s8/10 -4040.64411074
+18 9 s9/1 -4398.74565735
+18 9 s9/3 -4257.16821011
+18 9 s9/6 -4452.68844392
+18 9 s9/8 -3882.39685689
+18 9 s9/10 -3796.72563078
+18 13 s13/1 -2740.04630919
+18 13 s13/3 -3060.0403958
+18 13 s13/6 -1630.54131366
+18 13 s13/8 -2421.86464267
+18 13 s13/10 -1997.96008334
+18 15 s15/1 -3876.18244178
+18 15 s15/3 -4022.47338995
+18 15 s15/6 -3795.16118689
+18 15 s15/8 -4223.76072291
+18 15 s15/10 -3537.02525272
+18 18 s18/1 -1368.23821308
+18 18 s18/3 -2066.23727685
+18 18 s18/6 -1587.61885353
+18 18 s18/8 -1839.87833423
+18 18 s18/10 -1990.61368518
+18 19 s19/1 -4252.46720452
+18 19 s19/3 -4139.21533354
+18 19 s19/6 -4281.91841669
+18 19 s19/8 -4104.2220241
+18 19 s19/10 -4395.90138652
+18 22 s22/1 -5777.64079119
+18 22 s22/3 -5629.23262098
+18 22 s22/6 -6322.34503807
+18 22 s22/8 -5891.32768241
+18 22 s22/10 -5932.51211239
+18 23 s23/1 -4440.91979543
+18 23 s23/3 -4879.48453038
+18 23 s23/6 -4783.21865357
+18 23 s23/8 -4380.11974451
+18 23 s23/10 -4314.32765436
+18 25 s25/1 -2878.87604183
+18 25 s25/3 -2601.15384147
+18 25 s25/6 -2763.80042895
+18 25 s25/8 -3275.1127543
+18 25 s25/10 -2710.48883585
+18 28 s28/1 -3883.4795926
+18 28 s28/3 -4014.70519937
+18 28 s28/6 -3864.86883847
+18 28 s28/8 -3617.13881658
+18 28 s28/10 -3927.90765349
+18 30 s30/1 -4917.40113865
+18 30 s30/3 -5253.20232186
+18 30 s30/6 -4902.57477108
+18 30 s30/8 -5610.87560505
+18 30 s30/10 -5071.17081244
+18 31 s31/1 -4970.03856356
+18 31 s31/3 -4780.61996987
+18 31 s31/6 -4481.51880791
+18 31 s31/8 -4749.72667526
+18 31 s31/10 -4752.82800544
+18 32 s32/1 -2884.34375405
+18 32 s32/3 -3357.01185028
+18 32 s32/6 -3294.4650071
+18 32 s32/8 -3358.04252319
+18 32 s32/10 -3465.1118564
+18 35 s35/1 -4054.0884318
+18 35 s35/3 -3541.25317234
+18 35 s35/6 -2447.59004413
+18 35 s35/8 -2683.93015099
+18 35 s35/10 -2927.94916434
+18 37 s37/1 -3388.73624303
+18 37 s37/3 -3528.1627107
+18 37 s37/6 -4547.2080635
+18 37 s37/8 -4411.99514613
+18 37 s37/10 -3340.94174374
+18 38 s38/1 -4926.36256402
+18 38 s38/3 -4839.07834759
+18 38 s38/6 -5135.8908713
+18 38 s38/8 -4499.47476968
+18 38 s38/10 -4760.28286303
+18 40 s40/1 -2584.2597622
+18 40 s40/3 -2220.28936413
+18 40 s40/6 -3041.32775422
+18 40 s40/8 -2592.87675242
+18 40 s40/10 -3699.5280574
+19 3 s3/1 -4005.79246239
+19 3 s3/3 -4118.92914119
+19 3 s3/6 -3833.14889994
+19 3 s3/8 -3715.575243
+19 3 s3/10 -3939.12020766
+19 4 s4/1 -3860.16054019
+19 4 s4/3 -3381.42907685
+19 4 s4/6 -2945.51696829
+19 4 s4/8 -3243.10737747
+19 4 s4/10 -4452.30579568
+19 7 s7/1 -4507.31651077
+19 7 s7/3 -4382.64231377
+19 7 s7/6 -4072.18663786
+19 7 s7/8 -4514.54034327
+19 7 s7/10 -4232.66998104
+19 8 s8/1 -3990.13253476
+19 8 s8/3 -3726.14317857
+19 8 s8/6 -3455.3955025
+19 8 s8/8 -3531.65964868
+19 8 s8/10 -3811.69795385
+19 9 s9/1 -4804.84536787
+19 9 s9/3 -4630.67492625
+19 9 s9/6 -4542.81319946
+19 9 s9/8 -4591.6733388
+19 9 s9/10 -4912.24892349
+19 13 s13/1 -3408.93242688
+19 13 s13/3 -3636.10644374
+19 13 s13/6 -3575.5230924
+19 13 s13/8 -3289.4655635
+19 13 s13/10 -3252.51422672
+19 15 s15/1 -2502.05494556
+19 15 s15/3 -2560.5900693
+19 15 s15/6 -2174.31152183
+19 15 s15/8 -3363.01313433
+19 15 s15/10 -4132.71151481
+19 18 s18/1 -4098.47532505
+19 18 s18/3 -3791.90925274
+19 18 s18/6 -3671.29856609
+19 18 s18/8 -3836.71681672
+19 18 s18/10 -4058.53157732
+19 19 s19/1 -1655.10609509
+19 19 s19/3 -1856.32442417
+19 19 s19/6 -1981.77662831
+19 19 s19/8 -1523.05351521
+19 19 s19/10 -1793.32063537
+19 22 s22/1 -4542.93709979
+19 22 s22/3 -4635.20062189
+19 22 s22/6 -5138.72256328
+19 22 s22/8 -4765.76162168
+19 22 s22/10 -4569.45199841
+19 23 s23/1 -5065.46201531
+19 23 s23/3 -5420.00135699
+19 23 s23/6 -5058.84946146
+19 23 s23/8 -5477.31680922
+19 23 s23/10 -4714.11885335
+19 25 s25/1 -4100.03600349
+19 25 s25/3 -3788.16763441
+19 25 s25/6 -3668.54705235
+19 25 s25/8 -3174.69288854
+19 25 s25/10 -3891.93512538
+19 28 s28/1 -3672.44822887
+19 28 s28/3 -3812.86840783
+19 28 s28/6 -3780.88145851
+19 28 s28/8 -4165.96288079
+19 28 s28/10 -3337.29227785
+19 30 s30/1 -5068.60509747
+19 30 s30/3 -5434.14163217
+19 30 s30/6 -5091.08219443
+19 30 s30/8 -5324.80076583
+19 30 s30/10 -4972.50450074
+19 31 s31/1 -5305.66141746
+19 31 s31/3 -3515.22861155
+19 31 s31/6 -4189.50566417
+19 31 s31/8 -4843.40808253
+19 31 s31/10 -3660.63476966
+19 32 s32/1 -2757.87174686
+19 32 s32/3 -2711.40948091
+19 32 s32/6 -2238.58130064
+19 32 s32/8 -2184.17893198
+19 32 s32/10 -2245.49686462
+19 35 s35/1 -4935.13588897
+19 35 s35/3 -3622.32708653
+19 35 s35/6 -3149.32892904
+19 35 s35/8 -3679.30587397
+19 35 s35/10 -3981.87228096
+19 37 s37/1 -4190.64319758
+19 37 s37/3 -4273.59867669
+19 37 s37/6 -3188.35987423
+19 37 s37/8 -2939.93025623
+19 37 s37/10 -3739.14927102
+19 38 s38/1 -5132.75426835
+19 38 s38/3 -4887.07661704
+19 38 s38/6 -5341.51844801
+19 38 s38/8 -5280.0711527
+19 38 s38/10 -5097.22377921
+19 40 s40/1 -4408.92556724
+19 40 s40/3 -4593.0477807
+19 40 s40/6 -4322.70610622
+19 40 s40/8 -4277.09971507
+19 40 s40/10 -4340.68119243
+22 3 s3/1 -4013.83712581
+22 3 s3/3 -4245.36091725
+22 3 s3/6 -4722.0005028
+22 3 s3/8 -4557.14551599
+22 3 s3/10 -4681.20048979
+22 4 s4/1 -3972.68768043
+22 4 s4/3 -3803.29638751
+22 4 s4/6 -4846.51452184
+22 4 s4/8 -3932.32391055
+22 4 s4/10 -4979.62265907
+22 7 s7/1 -4500.57252797
+22 7 s7/3 -4711.79647694
+22 7 s7/6 -4246.06155028
+22 7 s7/8 -4473.03310168
+22 7 s7/10 -4771.9361284
+22 8 s8/1 -4808.75178772
+22 8 s8/3 -5343.98374147
+22 8 s8/6 -5345.90674104
+22 8 s8/8 -5506.97670535
+22 8 s8/10 -5362.94961502
+22 9 s9/1 -3961.80579929
+22 9 s9/3 -3938.10362431
+22 9 s9/6 -4430.72639074
+22 9 s9/8 -4573.51790429
+22 9 s9/10 -4746.78613148
+22 13 s13/1 -5118.0573909
+22 13 s13/3 -5607.88818019
+22 13 s13/6 -5450.28639594
+22 13 s13/8 -5618.92461221
+22 13 s13/10 -5269.30155745
+22 15 s15/1 -3288.79672215
+22 15 s15/3 -3155.55321591
+22 15 s15/6 -3290.84168107
+22 15 s15/8 -3060.21058005
+22 15 s15/10 -3611.64723744
+22 18 s18/1 -6041.21843213
+22 18 s18/3 -5627.85835651
+22 18 s18/6 -5861.88863557
+22 18 s18/8 -5749.26554893
+22 18 s18/10 -6014.4979931
+22 19 s19/1 -4535.04894157
+22 19 s19/3 -5014.09830014
+22 19 s19/6 -4377.88594459
+22 19 s19/8 -4849.96254847
+22 19 s19/10 -4155.11215747
+22 22 s22/1 -515.267348009
+22 22 s22/3 -948.789791163
+22 22 s22/6 -1236.73608805
+22 22 s22/8 -703.084336005
+22 22 s22/10 -974.100293608
+22 23 s23/1 -4848.46219366
+22 23 s23/3 -4427.04439093
+22 23 s23/6 -4246.68145015
+22 23 s23/8 -4982.13108183
+22 23 s23/10 -4667.97047257
+22 25 s25/1 -4786.34227314
+22 25 s25/3 -4911.21676656
+22 25 s25/6 -4626.34028371
+22 25 s25/8 -4656.62335836
+22 25 s25/10 -4872.79827361
+22 28 s28/1 -4443.72189883
+22 28 s28/3 -4186.33599304
+22 28 s28/6 -4236.66798511
+22 28 s28/8 -4657.9993282
+22 28 s28/10 -4475.19769706
+22 30 s30/1 -3498.14355065
+22 30 s30/3 -3666.29410946
+22 30 s30/6 -3665.83521491
+22 30 s30/8 -3217.52750188
+22 30 s30/10 -3434.77055482
+22 31 s31/1 -3556.91714853
+22 31 s31/3 -3458.06518471
+22 31 s31/6 -3016.7938301
+22 31 s31/8 -3298.13128919
+22 31 s31/10 -3434.44289401
+22 32 s32/1 -5419.57225464
+22 32 s32/3 -5171.4314143
+22 32 s32/6 -4530.98788336
+22 32 s32/8 -4837.08556526
+22 32 s32/10 -4175.5812598
+22 35 s35/1 -4552.24712413
+22 35 s35/3 -3474.81249522
+22 35 s35/6 -4649.99115585
+22 35 s35/8 -4618.95104803
+22 35 s35/10 -4853.86653993
+22 37 s37/1 -4657.89159791
+22 37 s37/3 -4753.32433721
+22 37 s37/6 -3407.21749321
+22 37 s37/8 -2896.36740895
+22 37 s37/10 -4695.07449402
+22 38 s38/1 -4441.09611284
+22 38 s38/3 -3904.35113202
+22 38 s38/6 -4643.11936678
+22 38 s38/8 -4656.44212352
+22 38 s38/10 -4053.67652122
+22 40 s40/1 -4775.90517716
+22 40 s40/3 -5412.87280174
+22 40 s40/6 -4934.41367373
+22 40 s40/8 -4823.481109
+22 40 s40/10 -4752.20632024
+23 3 s3/1 -3065.793728
+23 3 s3/3 -3304.1012835
+23 3 s3/6 -2697.94897454
+23 3 s3/8 -2973.96709773
+23 3 s3/10 -3566.87643249
+23 4 s4/1 -3094.90242262
+23 4 s4/3 -3411.1778258
+23 4 s4/6 -3857.43636003
+23 4 s4/8 -3478.50057655
+23 4 s4/10 -3162.81838569
+23 7 s7/1 -2970.79992083
+23 7 s7/3 -3061.24569793
+23 7 s7/6 -3027.32222561
+23 7 s7/8 -2632.47938729
+23 7 s7/10 -3661.11323529
+23 8 s8/1 -4030.10186955
+23 8 s8/3 -4046.05381812
+23 8 s8/6 -4444.70155607
+23 8 s8/8 -4195.29697767
+23 8 s8/10 -3971.18744652
+23 9 s9/1 -2465.22492143
+23 9 s9/3 -2631.16651264
+23 9 s9/6 -2331.92162879
+23 9 s9/8 -2595.47426281
+23 9 s9/10 -3109.15007245
+23 13 s13/1 -4925.13286069
+23 13 s13/3 -5261.47692111
+23 13 s13/6 -4728.2214681
+23 13 s13/8 -4804.98067266
+23 13 s13/10 -4585.90879842
+23 15 s15/1 -3513.75609217
+23 15 s15/3 -3547.3463239
+23 15 s15/6 -3652.02243904
+23 15 s15/8 -3701.23646049
+23 15 s15/10 -2773.22918254
+23 18 s18/1 -4497.83217492
+23 18 s18/3 -4301.17531852
+23 18 s18/6 -4468.58853409
+23 18 s18/8 -4424.05826795
+23 18 s18/10 -4098.27151373
+23 19 s19/1 -5223.28531335
+23 19 s19/3 -5610.25680194
+23 19 s19/6 -5351.32214373
+23 19 s19/8 -5291.98946574
+23 19 s19/10 -5051.51557636
+23 22 s22/1 -4207.6908045
+23 22 s22/3 -4053.78539765
+23 22 s22/6 -4258.27826468
+23 22 s22/8 -4411.93016966
+23 22 s22/10 -4706.94088805
+23 23 s23/1 -1879.51262825
+23 23 s23/3 -1794.12311521
+23 23 s23/6 -1253.49476703
+23 23 s23/8 -1932.52036884
+23 23 s23/10 -1955.91394431
+23 25 s25/1 -3123.01825674
+23 25 s25/3 -3316.35999994
+23 25 s25/6 -3614.98555187
+23 25 s25/8 -3803.60236161
+23 25 s25/10 -3402.73744394
+23 28 s28/1 -5279.40944257
+23 28 s28/3 -5064.11538426
+23 28 s28/6 -5055.93827636
+23 28 s28/8 -5065.31467415
+23 28 s28/10 -5178.60269835
+23 30 s30/1 -2554.16599194
+23 30 s30/3 -2376.32433571
+23 30 s30/6 -2383.73666842
+23 30 s30/8 -3071.95287764
+23 30 s30/10 -2516.99715024
+23 31 s31/1 -2762.73930966
+23 31 s31/3 -4528.00262345
+23 31 s31/6 -3396.31487831
+23 31 s31/8 -3130.10792911
+23 31 s31/10 -4470.28306039
+23 32 s32/1 -4537.19613397
+23 32 s32/3 -4949.68831805
+23 32 s32/6 -4004.08246528
+23 32 s32/8 -4583.91867321
+23 32 s32/10 -3911.71276254
+23 35 s35/1 -3178.23727789
+23 35 s35/3 -4169.62277632
+23 35 s35/6 -3801.6848293
+23 35 s35/8 -3398.16793702
+23 35 s35/10 -3728.28743801
+23 37 s37/1 -5014.94351534
+23 37 s37/3 -5172.0063639
+23 37 s37/6 -5156.52421938
+23 37 s37/8 -4788.3829074
+23 37 s37/10 -5104.5348761
+23 38 s38/1 -1880.96858467
+23 38 s38/3 -2573.59823519
+23 38 s38/6 -1714.16722371
+23 38 s38/8 -2167.66742222
+23 38 s38/10 -1955.26863906
+23 40 s40/1 -3445.08418791
+23 40 s40/3 -3641.3180666
+23 40 s40/6 -3453.03156199
+23 40 s40/8 -3560.2184106
+23 40 s40/10 -3218.5535354
+25 3 s3/1 -2329.44030111
+25 3 s3/3 -2840.82679839
+25 3 s3/6 -2617.51310471
+25 3 s3/8 -2589.40533444
+25 3 s3/10 -3131.96090955
+25 4 s4/1 -2341.42599985
+25 4 s4/3 -2138.24343048
+25 4 s4/6 -2588.53367105
+25 4 s4/8 -2112.51058765
+25 4 s4/10 -3405.71001087
+25 7 s7/1 -4405.81440483
+25 7 s7/3 -4315.60479214
+25 7 s7/6 -4059.91436578
+25 7 s7/8 -4347.02735436
+25 7 s7/10 -4085.14799994
+25 8 s8/1 -3964.4355233
+25 8 s8/3 -3848.83262637
+25 8 s8/6 -3972.95654206
+25 8 s8/8 -3711.48917503
+25 8 s8/10 -3858.17849827
+25 9 s9/1 -3333.50104347
+25 9 s9/3 -3143.60390272
+25 9 s9/6 -3055.56925526
+25 9 s9/8 -2993.60713502
+25 9 s9/10 -3472.42961378
+25 13 s13/1 -2481.39989591
+25 13 s13/3 -3310.77716289
+25 13 s13/6 -2880.99606547
+25 13 s13/8 -2766.27796515
+25 13 s13/10 -2532.27222606
+25 15 s15/1 -3279.68222934
+25 15 s15/3 -3377.99742875
+25 15 s15/6 -3150.34334081
+25 15 s15/8 -3544.02251423
+25 15 s15/10 -2544.41193594
+25 18 s18/1 -3428.56105084
+25 18 s18/3 -2314.42745202
+25 18 s18/6 -2886.36192677
+25 18 s18/8 -2545.05739956
+25 18 s18/10 -2908.12292822
+25 19 s19/1 -3343.86910217
+25 19 s19/3 -3543.28909774
+25 19 s19/6 -3365.40096021
+25 19 s19/8 -3876.75857854
+25 19 s19/10 -3189.69426311
+25 22 s22/1 -4304.68450911
+25 22 s22/3 -4163.02903211
+25 22 s22/6 -4817.65197756
+25 22 s22/8 -4451.18722857
+25 22 s22/10 -4471.29497265
+25 23 s23/1 -3794.61832674
+25 23 s23/3 -4168.8206655
+25 23 s23/6 -3523.84366372
+25 23 s23/8 -4313.06370365
+25 23 s23/10 -3608.02088704
+25 25 s25/1 -1838.60862847
+25 25 s25/3 -1782.56863456
+25 25 s25/6 -1216.40330853
+25 25 s25/8 -1750.899971
+25 25 s25/10 -1838.89845752
+25 28 s28/1 -3634.10212113
+25 28 s28/3 -3424.76087525
+25 28 s28/6 -3470.36152622
+25 28 s28/8 -3840.14976053
+25 28 s28/10 -3294.02273488
+25 30 s30/1 -3732.82801593
+25 30 s30/3 -4034.50397355
+25 30 s30/6 -3895.80456991
+25 30 s30/8 -4159.03526867
+25 30 s30/10 -3659.54249067
+25 31 s31/1 -3770.18624237
+25 31 s31/3 -3487.74961013
+25 31 s31/6 -2903.11810446
+25 31 s31/8 -3406.07700979
+25 31 s31/10 -3491.37591069
+25 32 s32/1 -3090.8704628
+25 32 s32/3 -2982.2893244
+25 32 s32/6 -2928.50863376
+25 32 s32/8 -2970.6854678
+25 32 s32/10 -2948.27100708
+25 35 s35/1 -3170.61334149
+25 35 s35/3 -2696.64961689
+25 35 s35/6 -1972.04360821
+25 35 s35/8 -2161.00210149
+25 35 s35/10 -3099.22511213
+25 37 s37/1 -3605.089065
+25 37 s37/3 -3797.33965343
+25 37 s37/6 -3754.47967655
+25 37 s37/8 -3353.7051036
+25 37 s37/10 -3503.75382349
+25 38 s38/1 -3641.71938148
+25 38 s38/3 -3350.24606883
+25 38 s38/6 -3906.65418999
+25 38 s38/8 -3910.46997475
+25 38 s38/10 -3809.94789038
+25 40 s40/1 -2884.1708444
+25 40 s40/3 -3383.93941208
+25 40 s40/6 -2857.00240553
+25 40 s40/8 -2697.34629589
+25 40 s40/10 -2657.30514148
+28 3 s3/1 -3343.13203827
+28 3 s3/3 -3479.74879865
+28 3 s3/6 -3647.43620707
+28 3 s3/8 -3523.3625319
+28 3 s3/10 -3513.08010005
+28 4 s4/1 -3536.27254189
+28 4 s4/3 -3179.88974284
+28 4 s4/6 -3287.28292174
+28 4 s4/8 -3081.13132712
+28 4 s4/10 -4084.05996736
+28 7 s7/1 -4099.21523338
+28 7 s7/3 -4161.40756193
+28 7 s7/6 -3784.13515954
+28 7 s7/8 -4253.64258383
+28 7 s7/10 -3818.67816343
+28 8 s8/1 -4332.70279236
+28 8 s8/3 -4307.15653445
+28 8 s8/6 -4173.91805596
+28 8 s8/8 -4294.37274636
+28 8 s8/10 -4255.55759304
+28 9 s9/1 -4363.99319121
+28 9 s9/3 -4119.6475689
+28 9 s9/6 -4347.27499476
+28 9 s9/8 -4355.09835002
+28 9 s9/10 -4454.41667374
+28 13 s13/1 -3427.68004988
+28 13 s13/3 -3894.83224322
+28 13 s13/6 -3518.23779878
+28 13 s13/8 -3597.2422859
+28 13 s13/10 -3331.20191065
+28 15 s15/1 -2323.51302233
+28 15 s15/3 -2362.00431219
+28 15 s15/6 -2125.98012646
+28 15 s15/8 -3053.4200304
+28 15 s15/10 -3712.17094447
+28 18 s18/1 -4130.08684075
+28 18 s18/3 -3912.59060716
+28 18 s18/6 -3915.74148171
+28 18 s18/8 -3952.48281946
+28 18 s18/10 -4313.03277019
+28 19 s19/1 -2330.25832055
+28 19 s19/3 -2587.91598855
+28 19 s19/6 -2453.72496914
+28 19 s19/8 -2614.40674008
+28 19 s19/10 -2369.94510467
+28 22 s22/1 -3586.97324551
+28 22 s22/3 -3704.40336174
+28 22 s22/6 -4209.35570582
+28 22 s22/8 -3860.98889304
+28 22 s22/10 -3711.03609186
+28 23 s23/1 -4726.31138129
+28 23 s23/3 -4879.52411067
+28 23 s23/6 -4595.7550428
+28 23 s23/8 -4931.96090397
+28 23 s23/10 -4391.21594075
+28 25 s25/1 -3802.92084037
+28 25 s25/3 -3634.05810549
+28 25 s25/6 -3465.07743388
+28 25 s25/8 -3264.71440694
+28 25 s25/10 -3666.63727597
+28 28 s28/1 -2986.81952345
+28 28 s28/3 -3081.51548619
+28 28 s28/6 -2984.96527253
+28 28 s28/8 -3279.0341711
+28 28 s28/10 -2852.94390455
+28 30 s30/1 -4583.97997175
+28 30 s30/3 -4963.26130459
+28 30 s30/6 -4652.29130916
+28 30 s30/8 -4858.98844591
+28 30 s30/10 -4539.14989958
+28 31 s31/1 -4601.00652661
+28 31 s31/3 -3130.82374316
+28 31 s31/6 -3477.47758598
+28 31 s31/8 -4159.77114721
+28 31 s31/10 -3147.93322094
+28 32 s32/1 -3170.92803926
+28 32 s32/3 -3075.19829312
+28 32 s32/6 -2584.91437959
+28 32 s32/8 -2642.44907404
+28 32 s32/10 -2362.34409511
+28 35 s35/1 -4535.74623183
+28 35 s35/3 -3186.07643383
+28 35 s35/6 -3156.70592316
+28 35 s35/8 -3493.69792028
+28 35 s35/10 -3704.77841057
+28 37 s37/1 -3406.47248485
+28 37 s37/3 -3507.23804154
+28 37 s37/6 -2084.05575339
+28 37 s37/8 -1769.18045321
+28 37 s37/10 -3134.97429258
+28 38 s38/1 -4887.38217448
+28 38 s38/3 -4504.3661083
+28 38 s38/6 -5127.43366899
+28 38 s38/8 -4986.48662022
+28 38 s38/10 -4667.74987614
+28 40 s40/1 -3958.09669873
+28 40 s40/3 -4200.01409183
+28 40 s40/6 -4210.01283002
+28 40 s40/8 -3954.86517811
+28 40 s40/10 -4202.50025715
+30 3 s3/1 -3913.00733265
+30 3 s3/3 -4345.05141324
+30 3 s3/6 -4031.3020103
+30 3 s3/8 -4218.16474898
+30 3 s3/10 -4701.93820993
+30 4 s4/1 -3481.8768697
+30 4 s4/3 -3739.48900015
+30 4 s4/6 -4692.20061636
+30 4 s4/8 -3835.0624544
+30 4 s4/10 -4319.02602269
+30 7 s7/1 -4063.53450929
+30 7 s7/3 -4139.64880935
+30 7 s7/6 -4012.38820175
+30 7 s7/8 -3830.81385156
+30 7 s7/10 -4624.7437418
+30 8 s8/1 -4619.44653813
+30 8 s8/3 -4833.26913827
+30 8 s8/6 -5224.74104042
+30 8 s8/8 -4904.41346544
+30 8 s8/10 -4847.99263946
+30 9 s9/1 -2975.73424387
+30 9 s9/3 -3139.78450061
+30 9 s9/6 -3170.31878614
+30 9 s9/8 -3313.98776978
+30 9 s9/10 -3925.41954159
+30 13 s13/1 -5798.30896077
+30 13 s13/3 -6244.65250104
+30 13 s13/6 -5926.20292869
+30 13 s13/8 -6036.52752935
+30 13 s13/10 -5783.59604252
+30 15 s15/1 -3763.88171871
+30 15 s15/3 -3689.04823233
+30 15 s15/6 -3919.43102002
+30 15 s15/8 -3318.33723667
+30 15 s15/10 -3002.84890822
+30 18 s18/1 -5962.32886757
+30 18 s18/3 -5524.26290721
+30 18 s18/6 -5772.92084517
+30 18 s18/8 -5592.16865828
+30 18 s18/10 -5499.46776906
+30 19 s19/1 -5471.7855931
+30 19 s19/3 -6047.05163418
+30 19 s19/6 -5699.94451026
+30 19 s19/8 -5979.04374791
+30 19 s19/10 -5254.62480286
+30 22 s22/1 -3146.86740793
+30 22 s22/3 -2879.21295297
+30 22 s22/6 -3061.91597599
+30 22 s22/8 -3258.40420461
+30 22 s22/10 -3761.46166507
+30 23 s23/1 -3375.6338731
+30 23 s23/3 -2978.92747129
+30 23 s23/6 -2705.31036504
+30 23 s23/8 -3598.22134369
+30 23 s23/10 -3394.24856588
+30 25 s25/1 -4041.15819454
+30 25 s25/3 -4297.37052267
+30 25 s25/6 -4308.49765575
+30 25 s25/8 -4652.21834027
+30 25 s25/10 -4336.26693869
+30 28 s28/1 -6076.53361463
+30 28 s28/3 -5816.51880993
+30 28 s28/6 -5833.38920666
+30 28 s28/8 -6053.47393294
+30 28 s28/10 -5992.22370309
+30 30 s30/1 -1695.33118524
+30 30 s30/3 -1608.11413011
+30 30 s30/6 -1499.75038695
+30 30 s30/8 -825.90900339
+30 30 s30/10 -1437.95656679
+30 31 s31/1 -2356.43835638
+30 31 s31/3 -4055.42384883
+30 31 s31/6 -2919.51134664
+30 31 s31/8 -2633.93536299
+30 31 s31/10 -4006.795115
+30 32 s32/1 -5481.03063405
+30 32 s32/3 -5526.14236159
+30 32 s32/6 -4775.53057542
+30 32 s32/8 -5291.11139842
+30 32 s32/10 -4528.57215715
+30 35 s35/1 -3640.3288671
+30 35 s35/3 -4208.79565148
+30 35 s35/6 -4518.29965451
+30 35 s35/8 -4062.94446209
+30 35 s35/10 -4649.9587983
+30 37 s37/1 -5984.78222918
+30 37 s37/3 -6136.4322262
+30 37 s37/6 -5474.86705904
+30 37 s37/8 -4947.21766845
+30 37 s37/10 -6085.5670564
+30 38 s38/1 -3028.99255218
+30 38 s38/3 -2918.55614479
+30 38 s38/6 -3039.57294451
+30 38 s38/8 -3207.95262708
+30 38 s38/10 -2745.00190154
+30 40 s40/1 -4634.95426544
+30 40 s40/3 -5014.31076122
+30 40 s40/6 -4476.16998797
+30 40 s40/8 -4603.99325218
+30 40 s40/10 -4357.37992428
+31 3 s3/1 -3294.69415772
+31 3 s3/3 -3557.88055283
+31 3 s3/6 -3617.60373216
+31 3 s3/8 -3736.1793475
+31 3 s3/10 -4055.32742762
+31 4 s4/1 -3043.46778458
+31 4 s4/3 -3023.23998174
+31 4 s4/6 -3728.16930154
+31 4 s4/8 -2978.33707274
+31 4 s4/10 -3803.69514613
+31 7 s7/1 -3908.23309344
+31 7 s7/3 -3946.16493716
+31 7 s7/6 -3857.43168016
+31 7 s7/8 -4039.50737097
+31 7 s7/10 -3910.4052828
+31 8 s8/1 -4523.85343244
+31 8 s8/3 -4652.36177247
+31 8 s8/6 -4903.43793328
+31 8 s8/8 -4586.26265549
+31 8 s8/10 -4635.5875901
+31 9 s9/1 -3171.57454251
+31 9 s9/3 -3068.93748052
+31 9 s9/6 -3304.14498655
+31 9 s9/8 -3462.79992375
+31 9 s9/10 -3660.99143487
+31 13 s13/1 -4425.26237254
+31 13 s13/3 -4887.90456047
+31 13 s13/6 -4543.10357587
+31 13 s13/8 -4634.50875902
+31 13 s13/10 -4423.75586687
+31 15 s15/1 -2653.96880799
+31 15 s15/3 -2674.72545803
+31 15 s15/6 -2745.06735481
+31 15 s15/8 -2346.42288294
+31 15 s15/10 -2495.08709261
+31 18 s18/1 -4789.84400569
+31 18 s18/3 -4304.64348271
+31 18 s18/6 -4618.95118142
+31 18 s18/8 -4359.95159701
+31 18 s18/10 -4574.80266252
+31 19 s19/1 -3802.18582905
+31 19 s19/3 -4279.32466407
+31 19 s19/6 -4223.2929879
+31 19 s19/8 -4694.10862641
+31 19 s19/10 -3880.49209192
+31 22 s22/1 -2743.51602101
+31 22 s22/3 -2593.27686403
+31 22 s22/6 -3133.32442951
+31 22 s22/8 -2997.20411043
+31 22 s22/10 -3149.36484519
+31 23 s23/1 -3905.79070148
+31 23 s23/3 -3679.30549599
+31 23 s23/6 -3307.17298559
+31 23 s23/8 -4001.95959155
+31 23 s23/10 -3759.27839067
+31 25 s25/1 -3366.66588954
+31 25 s25/3 -3515.54391224
+31 25 s25/6 -3318.17438283
+31 25 s25/8 -3615.32411462
+31 25 s25/10 -3476.17240873
+31 28 s28/1 -4713.20512491
+31 28 s28/3 -4579.26031206
+31 28 s28/6 -4544.75232505
+31 28 s28/8 -4801.17980935
+31 28 s28/10 -4593.27737246
+31 30 s30/1 -2674.14867654
+31 30 s30/3 -3005.96043866
+31 30 s30/6 -2829.01846893
+31 30 s30/8 -2483.52177124
+31 30 s30/10 -2549.22458936
+31 31 s31/1 -2724.2754152
+31 31 s31/3 -1857.41403824
+31 31 s31/6 -1973.44433813
+31 31 s31/8 -2513.49716235
+31 31 s31/10 -1820.97103732
+31 32 s32/1 -3973.23686415
+31 32 s32/3 -3943.5738161
+31 32 s32/6 -3606.32094631
+31 32 s32/8 -3785.05453983
+31 32 s32/10 -3356.11317668
+31 35 s35/1 -3137.66816407
+31 35 s35/3 -2852.55321543
+31 35 s35/6 -3241.79608545
+31 35 s35/8 -3022.29091214
+31 35 s35/10 -3552.58870649
+31 37 s37/1 -4703.79279182
+31 37 s37/3 -4833.07734018
+31 37 s37/6 -3907.52926699
+31 37 s37/8 -3487.72961561
+31 37 s37/10 -4719.02596974
+31 38 s38/1 -3804.69487163
+31 38 s38/3 -3545.79490704
+31 38 s38/6 -3960.3768924
+31 38 s38/8 -3950.49614872
+31 38 s38/10 -3699.42709121
+31 40 s40/1 -3886.98211706
+31 40 s40/3 -4191.18238079
+31 40 s40/6 -4066.15707928
+31 40 s40/8 -3980.62440027
+31 40 s40/10 -3984.41323747
+32 3 s3/1 -3481.44865816
+32 3 s3/3 -3595.59422267
+32 3 s3/6 -3340.32436965
+32 3 s3/8 -3530.55916379
+32 3 s3/10 -3733.86113116
+32 4 s4/1 -3415.99834875
+32 4 s4/3 -3352.85775891
+32 4 s4/6 -3257.52441401
+32 4 s4/8 -3216.48660203
+32 4 s4/10 -3879.77419768
+32 7 s7/1 -3996.80171914
+32 7 s7/3 -3800.22323738
+32 7 s7/6 -3599.63763993
+32 7 s7/8 -4023.09287769
+32 7 s7/10 -3723.8961306
+32 8 s8/1 -3927.44454704
+32 8 s8/3 -3676.39887399
+32 8 s8/6 -3720.73898374
+32 8 s8/8 -3447.80882094
+32 8 s8/10 -3643.68488641
+32 9 s9/1 -4359.49267419
+32 9 s9/3 -4222.77898444
+32 9 s9/6 -4216.79980363
+32 9 s9/8 -4140.4437327
+32 9 s9/10 -4450.82974639
+32 13 s13/1 -3308.04268181
+32 13 s13/3 -3580.13299752
+32 13 s13/6 -3159.09017895
+32 13 s13/8 -3283.76704583
+32 13 s13/10 -3080.31334708
+32 15 s15/1 -2398.62231509
+32 15 s15/3 -2503.02526136
+32 15 s15/6 -2209.21900396
+32 15 s15/8 -3036.37839137
+32 15 s15/10 -3490.34409742
+32 18 s18/1 -3303.33083543
+32 18 s18/3 -2913.41746349
+32 18 s18/6 -3008.40792755
+32 18 s18/8 -2873.03663611
+32 18 s18/10 -3197.93494951
+32 19 s19/1 -2619.90662239
+32 19 s19/3 -2734.07164667
+32 19 s19/6 -3126.62695763
+32 19 s19/8 -2986.49752003
+32 19 s19/10 -2953.1627146
+32 22 s22/1 -4760.38387621
+32 22 s22/3 -4753.34213918
+32 22 s22/6 -5278.21922142
+32 22 s22/8 -5031.68731869
+32 22 s22/10 -5008.58954608
+32 23 s23/1 -4424.88536858
+32 23 s23/3 -4720.8973672
+32 23 s23/6 -4350.28166904
+32 23 s23/8 -4771.40699913
+32 23 s23/10 -4202.95712702
+32 25 s25/1 -3402.83132332
+32 25 s25/3 -3225.41484415
+32 25 s25/6 -3027.31174396
+32 25 s25/8 -3207.78734977
+32 25 s25/10 -3260.90211767
+32 28 s28/1 -4262.18547504
+32 28 s28/3 -4313.88973205
+32 28 s28/6 -4300.78708628
+32 28 s28/8 -4384.79956853
+32 28 s28/10 -3808.79171646
+32 30 s30/1 -4586.57713103
+32 30 s30/3 -4857.61993231
+32 30 s30/6 -4608.97429863
+32 30 s30/8 -4894.14196906
+32 30 s30/10 -4530.84126705
+32 31 s31/1 -4965.28305801
+32 31 s31/3 -3232.97665263
+32 31 s31/6 -4109.43022166
+32 31 s31/8 -4700.69670199
+32 31 s31/10 -3158.6222623
+32 32 s32/1 -1400.04142319
+32 32 s32/3 -1471.63862249
+32 32 s32/6 -1516.39381803
+32 32 s32/8 -1179.08179137
+32 32 s32/10 -1606.25051683
+32 35 s35/1 -3998.48265398
+32 35 s35/3 -3357.37138441
+32 35 s35/6 -2802.69294465
+32 35 s35/8 -3137.78371976
+32 35 s35/10 -3394.4396583
+32 37 s37/1 -4383.78071256
+32 37 s37/3 -4454.22960435
+32 37 s37/6 -3651.92757765
+32 37 s37/8 -3432.14617407
+32 37 s37/10 -4075.51765463
+32 38 s38/1 -4684.65223915
+32 38 s38/3 -4481.2456882
+32 38 s38/6 -4819.61377814
+32 38 s38/8 -4752.66048128
+32 38 s38/10 -4679.25783168
+32 40 s40/1 -3713.20737165
+32 40 s40/3 -3993.88791391
+32 40 s40/6 -3706.94187692
+32 40 s40/8 -3660.09483497
+32 40 s40/10 -3638.98252641
+35 3 s3/1 -2629.99743718
+35 3 s3/3 -2728.48998423
+35 3 s3/6 -2929.77990244
+35 3 s3/8 -2737.72206345
+35 3 s3/10 -2949.71829906
+35 4 s4/1 -2601.23631638
+35 4 s4/3 -2396.55979124
+35 4 s4/6 -2546.29151109
+35 4 s4/8 -2339.13926292
+35 4 s4/10 -3324.81878496
+35 7 s7/1 -3913.13111744
+35 7 s7/3 -3876.07567135
+35 7 s7/6 -3672.47456635
+35 7 s7/8 -3980.36207192
+35 7 s7/10 -3347.45454423
+35 8 s8/1 -4038.67376066
+35 8 s8/3 -3806.1353599
+35 8 s8/6 -3898.74319573
+35 8 s8/8 -3816.06122627
+35 8 s8/10 -3849.60319515
+35 9 s9/1 -3502.24046593
+35 9 s9/3 -3385.56018459
+35 9 s9/6 -3406.93863815
+35 9 s9/8 -3107.60749355
+35 9 s9/10 -3389.4402753
+35 13 s13/1 -2624.28110155
+35 13 s13/3 -2765.94302571
+35 13 s13/6 -2543.86600788
+35 13 s13/8 -2650.98496007
+35 13 s13/10 -2343.05172093
+35 15 s15/1 -2993.10453694
+35 15 s15/3 -3076.91109514
+35 15 s15/6 -2861.95651434
+35 15 s15/8 -3031.66118545
+35 15 s15/10 -2109.33741856
+35 18 s18/1 -3035.49730933
+35 18 s18/3 -2313.33089252
+35 18 s18/6 -2511.11161463
+35 18 s18/8 -2454.69728093
+35 18 s18/10 -2654.99253428
+35 19 s19/1 -3399.99579481
+35 19 s19/3 -3545.84878311
+35 19 s19/6 -3342.75380654
+35 19 s19/8 -3644.82417017
+35 19 s19/10 -3342.46548391
+35 22 s22/1 -4144.58588782
+35 22 s22/3 -4013.39977843
+35 22 s22/6 -4569.5954763
+35 22 s22/8 -4253.70722731
+35 22 s22/10 -4172.92650511
+35 23 s23/1 -3879.24107414
+35 23 s23/3 -4182.86068514
+35 23 s23/6 -3826.88461692
+35 23 s23/8 -4164.38029282
+35 23 s23/10 -3700.40739818
+35 25 s25/1 -2353.51220217
+35 25 s25/3 -2351.75940108
+35 25 s25/6 -2215.93558444
+35 25 s25/8 -2281.75100329
+35 25 s25/10 -2396.53146639
+35 28 s28/1 -3242.62293578
+35 28 s28/3 -3145.54405433
+35 28 s28/6 -3161.69901133
+35 28 s28/8 -3460.48280145
+35 28 s28/10 -3130.20867157
+35 30 s30/1 -3719.69872843
+35 30 s30/3 -4033.57701225
+35 30 s30/6 -3835.96540364
+35 30 s30/8 -4213.43393094
+35 30 s30/10 -3737.83513544
+35 31 s31/1 -3637.87436761
+35 31 s31/3 -3257.6985864
+35 31 s31/6 -2823.29980411
+35 31 s31/8 -3301.15243938
+35 31 s31/10 -3281.1310619
+35 32 s32/1 -2982.21528736
+35 32 s32/3 -3153.57772893
+35 32 s32/6 -2910.44123827
+35 32 s32/8 -2934.4008954
+35 32 s32/10 -2908.80485422
+35 35 s35/1 -3027.39385142
+35 35 s35/3 -1977.74812817
+35 35 s35/6 -1777.94978034
+35 35 s35/8 -1726.81146917
+35 35 s35/10 -2337.52098854
+35 37 s37/1 -3083.80116802
+35 37 s37/3 -3175.91404615
+35 37 s37/6 -3564.29392185
+35 37 s37/8 -3242.77652296
+35 37 s37/10 -3104.98121563
+35 38 s38/1 -3949.35061046
+35 38 s38/3 -3787.29739957
+35 38 s38/6 -4217.60402972
+35 38 s38/8 -3878.23065452
+35 38 s38/10 -3938.91071819
+35 40 s40/1 -2492.86221414
+35 40 s40/3 -2685.54559886
+35 40 s40/6 -2855.14417866
+35 40 s40/8 -2565.77623868
+35 40 s40/10 -3047.82986247
+37 3 s3/1 -3347.73193542
+37 3 s3/3 -3386.29089298
+37 3 s3/6 -4145.74220476
+37 3 s3/8 -3841.49225099
+37 3 s3/10 -3708.19810549
+37 4 s4/1 -3992.94431208
+37 4 s4/3 -3674.34102399
+37 4 s4/6 -4056.12617671
+37 4 s4/8 -3687.67324754
+37 4 s4/10 -4723.12608509
+37 7 s7/1 -4671.00523462
+37 7 s7/3 -4852.12652774
+37 7 s7/6 -4358.69169597
+37 7 s7/8 -4761.07266948
+37 7 s7/10 -4244.93718081
+37 8 s8/1 -4888.13275433
+37 8 s8/3 -5222.4471334
+37 8 s8/6 -4989.53297198
+37 8 s8/8 -5380.61437698
+37 8 s8/10 -5245.10245345
+37 9 s9/1 -4461.97197329
+37 9 s9/3 -4317.86362434
+37 9 s9/6 -4763.27936789
+37 9 s9/8 -4706.75225409
+37 9 s9/10 -4762.90492801
+37 13 s13/1 -2705.98850595
+37 13 s13/3 -3492.47406384
+37 13 s13/6 -3208.28121704
+37 13 s13/8 -3204.92184035
+37 13 s13/10 -2846.81650282
+37 15 s15/1 -3475.5819192
+37 15 s15/3 -3500.44254169
+37 15 s15/6 -3253.21773129
+37 15 s15/8 -3869.45696446
+37 15 s15/10 -3735.74466224
+37 18 s18/1 -4248.18462448
+37 18 s18/3 -3835.2689915
+37 18 s18/6 -3988.82120835
+37 18 s18/8 -4000.35744946
+37 18 s18/10 -4415.8952017
+37 19 s19/1 -3428.65549423
+37 19 s19/3 -3334.64597979
+37 19 s19/6 -2745.93723939
+37 19 s19/8 -3126.11526158
+37 19 s19/10 -3246.85900974
+37 22 s22/1 -3802.08835708
+37 22 s22/3 -3898.95474126
+37 22 s22/6 -4369.19801658
+37 22 s22/8 -3907.1245176
+37 22 s22/10 -3607.64737813
+37 23 s23/1 -5205.00445868
+37 23 s23/3 -5168.54275138
+37 23 s23/6 -4980.94796855
+37 23 s23/8 -5350.01537911
+37 23 s23/10 -4959.9234081
+37 25 s25/1 -4059.25815544
+37 25 s25/3 -3953.32278429
+37 25 s25/6 -3640.25144807
+37 25 s25/8 -3478.25513417
+37 25 s25/10 -3985.58588488
+37 28 s28/1 -1770.3525039
+37 28 s28/3 -1862.35119548
+37 28 s28/6 -1796.32858027
+37 28 s28/8 -2230.13715335
+37 28 s28/10 -1843.95641805
+37 30 s30/1 -5135.49776734
+37 30 s30/3 -5424.60823062
+37 30 s30/6 -5200.91129295
+37 30 s30/8 -5356.54450147
+37 30 s30/10 -5130.36181483
+37 31 s31/1 -4813.52373089
+37 31 s31/3 -3874.07295501
+37 31 s31/6 -3843.42289871
+37 31 s31/8 -4411.64509181
+37 31 s31/10 -3863.04735893
+37 32 s32/1 -3947.16038218
+37 32 s32/3 -3669.46229069
+37 32 s32/6 -3563.89629466
+37 32 s32/8 -3431.84465293
+37 32 s32/10 -3416.12471004
+37 35 s35/1 -4310.62579244
+37 35 s35/3 -2845.25367679
+37 35 s35/6 -3678.21231785
+37 35 s35/8 -3958.77686193
+37 35 s35/10 -3708.69894331
+37 37 s37/1 -2026.73809469
+37 37 s37/3 -2076.5065985
+37 37 s37/6 -1322.12745022
+37 37 s37/8 -1420.40271347
+37 37 s37/10 -1799.09150143
+37 38 s38/1 -5194.52366806
+37 38 s38/3 -4756.94476628
+37 38 s38/6 -5457.50111132
+37 38 s38/8 -5315.70013416
+37 38 s38/10 -4868.01182272
+37 40 s40/1 -3517.01393705
+37 40 s40/3 -4115.52328612
+37 40 s40/6 -3826.76525207
+37 40 s40/8 -3550.5571365
+37 40 s40/10 -3838.17065346
+38 3 s3/1 -2500.66524809
+38 3 s3/3 -3113.76487532
+38 3 s3/6 -2268.34645822
+38 3 s3/8 -2518.65944776
+38 3 s3/10 -3312.4448462
+38 4 s4/1 -2358.3472841
+38 4 s4/3 -2820.58463101
+38 4 s4/6 -3767.53975525
+38 4 s4/8 -2905.51038405
+38 4 s4/10 -3364.95835537
+38 7 s7/1 -3079.51500683
+38 7 s7/3 -2995.94686187
+38 7 s7/6 -2728.64006669
+38 7 s7/8 -2632.18971995
+38 7 s7/10 -3580.2942623
+38 8 s8/1 -3401.48475841
+38 8 s8/3 -3170.84565396
+38 8 s8/6 -3565.07308101
+38 8 s8/8 -3542.05330799
+38 8 s8/10 -3205.57917872
+38 9 s9/1 -2443.45811206
+38 9 s9/3 -2624.20317848
+38 9 s9/6 -2452.88289599
+38 9 s9/8 -2045.23427053
+38 9 s9/10 -3276.71105312
+38 13 s13/1 -4721.97426652
+38 13 s13/3 -5226.71057651
+38 13 s13/6 -4680.83782604
+38 13 s13/8 -4765.99705531
+38 13 s13/10 -4423.14289953
+38 15 s15/1 -3688.28384289
+38 15 s15/3 -3598.51972277
+38 15 s15/6 -3768.57386495
+38 15 s15/8 -3455.04650083
+38 15 s15/10 -2655.02750604
+38 18 s18/1 -4745.50875736
+38 18 s18/3 -4292.87295517
+38 18 s18/6 -4286.22959369
+38 18 s18/8 -4323.9459001
+38 18 s18/10 -4070.24822599
+38 19 s19/1 -5065.02813215
+38 19 s19/3 -5596.88172312
+38 19 s19/6 -5112.50499266
+38 19 s19/8 -5196.17038292
+38 19 s19/10 -4680.31338835
+38 22 s22/1 -4021.19787287
+38 22 s22/3 -3786.51071329
+38 22 s22/6 -4126.76659422
+38 22 s22/8 -4065.28029675
+38 22 s22/10 -4500.77994993
+38 23 s23/1 -1661.15610539
+38 23 s23/3 -3004.62043703
+38 23 s23/6 -2592.15772151
+38 23 s23/8 -2839.53533334
+38 23 s23/10 -1886.64429816
+38 25 s25/1 -2759.63230835
+38 25 s25/3 -3053.91603984
+38 25 s25/6 -3286.6060079
+38 25 s25/8 -3919.08978822
+38 25 s25/10 -3123.42430915
+38 28 s28/1 -4986.3941653
+38 28 s28/3 -4693.8398904
+38 28 s28/6 -4733.98872901
+38 28 s28/8 -5112.93431814
+38 28 s28/10 -4951.60499646
+38 30 s30/1 -2171.70657427
+38 30 s30/3 -2248.55987093
+38 30 s30/6 -2181.24702757
+38 30 s30/8 -3093.05158571
+38 30 s30/10 -2149.11586703
+38 31 s31/1 -2676.45733009
+38 31 s31/3 -4915.56732116
+38 31 s31/6 -3152.65508137
+38 31 s31/8 -2864.95806167
+38 31 s31/10 -4942.57718181
+38 32 s32/1 -4855.40392521
+38 32 s32/3 -5162.90276935
+38 32 s32/6 -3858.1984399
+38 32 s32/8 -4687.73273849
+38 32 s32/10 -3771.2787541
+38 35 s35/1 -3397.84237105
+38 35 s35/3 -4119.31301927
+38 35 s35/6 -3394.96054168
+38 35 s35/8 -3015.43872493
+38 35 s35/10 -4064.95202992
+38 37 s37/1 -4882.73064872
+38 37 s37/3 -5081.54156869
+38 37 s37/6 -5186.66678655
+38 37 s37/8 -4640.2911261
+38 37 s37/10 -4932.9113395
+38 38 s38/1 -1436.2690717
+38 38 s38/3 -1193.10987941
+38 38 s38/6 -1871.70903439
+38 38 s38/8 -1502.77950363
+38 38 s38/10 -1295.39466213
+38 40 s40/1 -3610.15958833
+38 40 s40/3 -3930.3899188
+38 40 s40/6 -3367.88066228
+38 40 s40/8 -3469.37561895
+38 40 s40/10 -3436.14514204
+40 3 s3/1 -2651.09965589
+40 3 s3/3 -2683.04351464
+40 3 s3/6 -2445.93813943
+40 3 s3/8 -2073.66669064
+40 3 s3/10 -2813.14996979
+40 4 s4/1 -2568.59239584
+40 4 s4/3 -2532.61350347
+40 4 s4/6 -2594.61908498
+40 4 s4/8 -2621.96322247
+40 4 s4/10 -3338.43480092
+40 7 s7/1 -3678.20163099
+40 7 s7/3 -3596.8945058
+40 7 s7/6 -3396.75831689
+40 7 s7/8 -3567.20188339
+40 7 s7/10 -3221.24213788
+40 8 s8/1 -3715.39341458
+40 8 s8/3 -3571.88906273
+40 8 s8/6 -3730.13258897
+40 8 s8/8 -3603.12267398
+40 8 s8/10 -3590.12354748
+40 9 s9/1 -3548.4965001
+40 9 s9/3 -3472.79256194
+40 9 s9/6 -2863.6915347
+40 9 s9/8 -2720.70479404
+40 9 s9/10 -3294.53578043
+40 13 s13/1 -2815.20644872
+40 13 s13/3 -2764.01526588
+40 13 s13/6 -2694.45585779
+40 13 s13/8 -2500.66028557
+40 13 s13/10 -2249.42220386
+40 15 s15/1 -3607.07793083
+40 15 s15/3 -3681.10792076
+40 15 s15/6 -3516.22845085
+40 15 s15/8 -3790.99726558
+40 15 s15/10 -2371.56146064
+40 18 s18/1 -2885.25365973
+40 18 s18/3 -1730.26525228
+40 18 s18/6 -1920.5352865
+40 18 s18/8 -2041.83010019
+40 18 s18/10 -1902.29679874
+40 19 s19/1 -4146.34040048
+40 19 s19/3 -4291.00986689
+40 19 s19/6 -4104.42545501
+40 19 s19/8 -4078.28359243
+40 19 s19/10 -3964.82241087
+40 22 s22/1 -4923.93362995
+40 22 s22/3 -4790.15479765
+40 22 s22/6 -5163.44878234
+40 22 s22/8 -5045.57023204
+40 22 s22/10 -5077.34842893
+40 23 s23/1 -3195.09963137
+40 23 s23/3 -4083.00238199
+40 23 s23/6 -3343.03813699
+40 23 s23/8 -3692.5758183
+40 23 s23/10 -2921.14528812
+40 25 s25/1 -2474.2456049
+40 25 s25/3 -2495.90369101
+40 25 s25/6 -2700.66256782
+40 25 s25/8 -2093.23218401
+40 25 s25/10 -2753.63733789
+40 28 s28/1 -3607.32239622
+40 28 s28/3 -3523.64440717
+40 28 s28/6 -3508.00347721
+40 28 s28/8 -3794.96537331
+40 28 s28/10 -3545.02350553
+40 30 s30/1 -4117.68401116
+40 30 s30/3 -4318.14358145
+40 30 s30/6 -3970.30405567
+40 30 s30/8 -4663.03394225
+40 30 s30/10 -4114.2734629
+40 31 s31/1 -3883.11730819
+40 31 s31/3 -4347.05405545
+40 31 s31/6 -3585.00166747
+40 31 s31/8 -3752.95802879
+40 31 s31/10 -4361.37878865
+40 32 s32/1 -3198.90321628
+40 32 s32/3 -3536.7907758
+40 32 s32/6 -3207.0830193
+40 32 s32/8 -3269.19701762
+40 32 s32/10 -3209.67847964
+40 35 s35/1 -3144.80178138
+40 35 s35/3 -2695.41443799
+40 35 s35/6 -2639.71050693
+40 35 s35/8 -2324.91676937
+40 35 s35/10 -2033.60969477
+40 37 s37/1 -3242.39681112
+40 37 s37/3 -3311.51818371
+40 37 s37/6 -4308.81184137
+40 37 s37/8 -3954.90331952
+40 37 s37/10 -3302.59396222
+40 38 s38/1 -3399.74494682
+40 38 s38/3 -3670.11719236
+40 38 s38/6 -3704.4046877
+40 38 s38/8 -3711.69159941
+40 38 s38/10 -3659.77792774
+40 40 s40/1 -2186.09198446
+40 40 s40/3 -2228.13430956
+40 40 s40/6 -2470.78602967
+40 40 s40/8 -2214.25145046
+40 40 s40/10 -2276.02148295
diff --git a/bob/bio/base/test/data/scores-cmc-5col.txt b/bob/bio/base/test/data/scores-cmc-5col.txt
new file mode 100644
index 0000000000000000000000000000000000000000..f69a0a26dffc648dc131d2093dddbd2588289186
--- /dev/null
+++ b/bob/bio/base/test/data/scores-cmc-5col.txt
@@ -0,0 +1,2000 @@
+3 s3 3 s3/1 -1379.79268746
+3 s3 3 s3/3 -1634.53276051
+3 s3 3 s3/6 -1727.90866176
+3 s3 3 s3/8 -1330.68401315
+3 s3 3 s3/10 -1912.77343391
+3 s3 4 s4/1 -1746.88596714
+3 s3 4 s4/3 -1613.06319303
+3 s3 4 s4/6 -2313.24329277
+3 s3 4 s4/8 -1591.98392217
+3 s3 4 s4/10 -2730.9754808
+3 s3 7 s7/1 -3460.44008764
+3 s3 7 s7/3 -3433.49050371
+3 s3 7 s7/6 -3089.89562483
+3 s3 7 s7/8 -3432.42457034
+3 s3 7 s7/10 -3079.0440811
+3 s3 8 s8/1 -3620.2592394
+3 s3 8 s8/3 -3269.98024589
+3 s3 8 s8/6 -3358.21797555
+3 s3 8 s8/8 -3387.03907938
+3 s3 8 s8/10 -3171.50666852
+3 s3 9 s9/1 -2811.95946617
+3 s3 9 s9/3 -2664.59585669
+3 s3 9 s9/6 -2656.05911704
+3 s3 9 s9/8 -2443.67278587
+3 s3 9 s9/10 -2850.31782429
+3 s3 13 s13/1 -2946.82573528
+3 s3 13 s13/3 -3583.79672567
+3 s3 13 s13/6 -2963.54066016
+3 s3 13 s13/8 -2868.46385067
+3 s3 13 s13/10 -2538.48690592
+3 s3 15 s15/1 -3173.69053082
+3 s3 15 s15/3 -3178.53876882
+3 s3 15 s15/6 -3111.42098722
+3 s3 15 s15/8 -3329.41061343
+3 s3 15 s15/10 -2596.58956879
+3 s3 18 s18/1 -3182.79708708
+3 s3 18 s18/3 -2614.69595605
+3 s3 18 s18/6 -2706.60809944
+3 s3 18 s18/8 -2840.19223113
+3 s3 18 s18/10 -2862.66900744
+3 s3 19 s19/1 -3536.77408534
+3 s3 19 s19/3 -4027.07052594
+3 s3 19 s19/6 -3672.1595268
+3 s3 19 s19/8 -3986.46152677
+3 s3 19 s19/10 -3253.32219871
+3 s3 22 s22/1 -4010.21487048
+3 s3 22 s22/3 -3830.02378375
+3 s3 22 s22/6 -4432.88810546
+3 s3 22 s22/8 -4157.95710081
+3 s3 22 s22/10 -4366.73686546
+3 s3 23 s23/1 -3053.33185632
+3 s3 23 s23/3 -3919.97013765
+3 s3 23 s23/6 -3288.54921504
+3 s3 23 s23/8 -3445.7429271
+3 s3 23 s23/10 -2728.4009081
+3 s3 25 s25/1 -2077.78964037
+3 s3 25 s25/3 -1996.27706821
+3 s3 25 s25/6 -2158.13414247
+3 s3 25 s25/8 -2365.446406
+3 s3 25 s25/10 -2113.26873798
+3 s3 28 s28/1 -3442.83435448
+3 s3 28 s28/3 -3163.25423353
+3 s3 28 s28/6 -3227.02394654
+3 s3 28 s28/8 -3383.5929893
+3 s3 28 s28/10 -3270.67275578
+3 s3 30 s30/1 -3399.50034429
+3 s3 30 s30/3 -3755.26703911
+3 s3 30 s30/6 -3390.40001552
+3 s3 30 s30/8 -4088.11071666
+3 s3 30 s30/10 -3448.70029605
+3 s3 31 s31/1 -3317.91933517
+3 s3 31 s31/3 -4129.53432195
+3 s3 31 s31/6 -2703.85344626
+3 s3 31 s31/8 -3028.36256979
+3 s3 31 s31/10 -4117.12107523
+3 s3 32 s32/1 -3451.07982123
+3 s3 32 s32/3 -3659.08758621
+3 s3 32 s32/6 -2912.5121953
+3 s3 32 s32/8 -3239.29507593
+3 s3 32 s32/10 -2816.61664649
+3 s3 35 s35/1 -3532.22591289
+3 s3 35 s35/3 -2825.64434863
+3 s3 35 s35/6 -2226.87247619
+3 s3 35 s35/8 -2273.17374368
+3 s3 35 s35/10 -2807.78371377
+3 s3 37 s37/1 -3090.7830507
+3 s3 37 s37/3 -3356.19444943
+3 s3 37 s37/6 -3819.78140964
+3 s3 37 s37/8 -3280.30431209
+3 s3 37 s37/10 -3019.52908155
+3 s3 38 s38/1 -3047.63407732
+3 s3 38 s38/3 -2972.12269097
+3 s3 38 s38/6 -3484.48437412
+3 s3 38 s38/8 -3216.05224462
+3 s3 38 s38/10 -3207.45635903
+3 s3 40 s40/1 -2506.31589548
+3 s3 40 s40/3 -2738.67714294
+3 s3 40 s40/6 -2826.35311781
+3 s3 40 s40/8 -2477.55650197
+3 s3 40 s40/10 -2856.55209634
+4 s4 3 s3/1 -2097.51280034
+4 s4 3 s3/3 -2023.3387048
+4 s4 3 s3/6 -2217.05890884
+4 s4 3 s3/8 -2328.42194559
+4 s4 3 s3/10 -1579.12873829
+4 s4 4 s4/1 -2109.51091365
+4 s4 4 s4/3 -2397.45985327
+4 s4 4 s4/6 -2674.80222663
+4 s4 4 s4/8 -2048.16132875
+4 s4 4 s4/10 -1597.37572542
+4 s4 7 s7/1 -3368.69187597
+4 s4 7 s7/3 -3371.00271615
+4 s4 7 s7/6 -3232.68335763
+4 s4 7 s7/8 -3607.3979377
+4 s4 7 s7/10 -2884.55057149
+4 s4 8 s8/1 -4303.76466702
+4 s4 8 s8/3 -3202.42396848
+4 s4 8 s8/6 -3372.60526358
+4 s4 8 s8/8 -3351.99028682
+4 s4 8 s8/10 -2875.5348275
+4 s4 9 s9/1 -2860.08677303
+4 s4 9 s9/3 -2688.67567353
+4 s4 9 s9/6 -3232.40160873
+4 s4 9 s9/8 -2632.11421778
+4 s4 9 s9/10 -2286.6605215
+4 s4 13 s13/1 -4233.37474823
+4 s4 13 s13/3 -4777.76108956
+4 s4 13 s13/6 -3509.80014011
+4 s4 13 s13/8 -4071.49161933
+4 s4 13 s13/10 -3663.00400217
+4 s4 15 s15/1 -3090.32050098
+4 s4 15 s15/3 -3109.87978493
+4 s4 15 s15/6 -3244.80395029
+4 s4 15 s15/8 -3159.54011618
+4 s4 15 s15/10 -3212.33935998
+4 s4 18 s18/1 -3029.88191105
+4 s4 18 s18/3 -3693.98946937
+4 s4 18 s18/6 -3365.9813891
+4 s4 18 s18/8 -3671.60318908
+4 s4 18 s18/10 -3439.17926362
+4 s4 19 s19/1 -4126.33284024
+4 s4 19 s19/3 -4687.64632666
+4 s4 19 s19/6 -4503.65118444
+4 s4 19 s19/8 -4597.81186541
+4 s4 19 s19/10 -4061.93959722
+4 s4 22 s22/1 -4420.20420385
+4 s4 22 s22/3 -4122.6265905
+4 s4 22 s22/6 -4991.81040461
+4 s4 22 s22/8 -4531.38441564
+4 s4 22 s22/10 -4980.44450294
+4 s4 23 s23/1 -3401.81702162
+4 s4 23 s23/3 -4028.1336055
+4 s4 23 s23/6 -3978.45100619
+4 s4 23 s23/8 -3211.22978325
+4 s4 23 s23/10 -3198.10535623
+4 s4 25 s25/1 -2062.04530856
+4 s4 25 s25/3 -1864.81104842
+4 s4 25 s25/6 -2407.68073618
+4 s4 25 s25/8 -3439.82293636
+4 s4 25 s25/10 -1794.81628586
+4 s4 28 s28/1 -4540.54004502
+4 s4 28 s28/3 -4383.64097847
+4 s4 28 s28/6 -4281.67440812
+4 s4 28 s28/8 -3946.61365052
+4 s4 28 s28/10 -4569.28625396
+4 s4 30 s30/1 -3051.1905347
+4 s4 30 s30/3 -3573.25826858
+4 s4 30 s30/6 -3172.93119916
+4 s4 30 s30/8 -4035.35954145
+4 s4 30 s30/10 -3361.40514185
+4 s4 31 s31/1 -3252.21215713
+4 s4 31 s31/3 -4491.10730478
+4 s4 31 s31/6 -2883.97999623
+4 s4 31 s31/8 -2974.33442689
+4 s4 31 s31/10 -4419.81756879
+4 s4 32 s32/1 -3701.92675808
+4 s4 32 s32/3 -4230.76047786
+4 s4 32 s32/6 -3251.25421788
+4 s4 32 s32/8 -3866.64264384
+4 s4 32 s32/10 -3237.44016449
+4 s4 35 s35/1 -4204.25090013
+4 s4 35 s35/3 -3758.36177331
+4 s4 35 s35/6 -2154.19941863
+4 s4 35 s35/8 -2145.22688345
+4 s4 35 s35/10 -3437.97238277
+4 s4 37 s37/1 -4096.71829358
+4 s4 37 s37/3 -4415.32539877
+4 s4 37 s37/6 -4645.02754118
+4 s4 37 s37/8 -4196.70618568
+4 s4 37 s37/10 -4103.73478556
+4 s4 38 s38/1 -3692.77721021
+4 s4 38 s38/3 -3596.5152585
+4 s4 38 s38/6 -4024.46292833
+4 s4 38 s38/8 -3013.42746448
+4 s4 38 s38/10 -3585.91031401
+4 s4 40 s40/1 -3217.76780761
+4 s4 40 s40/3 -2798.59798876
+4 s4 40 s40/6 -3653.68846351
+4 s4 40 s40/8 -3265.06174969
+4 s4 40 s40/10 -4288.3030138
+7 s7 3 s3/1 -3120.00216408
+7 s7 3 s3/3 -2988.66583317
+7 s7 3 s3/6 -2928.16408153
+7 s7 3 s3/8 -3234.07830596
+7 s7 3 s3/10 -2929.70625522
+7 s7 4 s4/1 -3459.39856577
+7 s7 4 s4/3 -3822.00572827
+7 s7 4 s4/6 -3925.86211815
+7 s7 4 s4/8 -3681.6492638
+7 s7 4 s4/10 -3313.51262759
+7 s7 7 s7/1 -617.825862238
+7 s7 7 s7/3 -867.409063056
+7 s7 7 s7/6 -1353.44151952
+7 s7 7 s7/8 -1609.78693924
+7 s7 7 s7/10 -1305.90153291
+7 s7 8 s8/1 -4327.87306526
+7 s7 8 s8/3 -3735.28132801
+7 s7 8 s8/6 -3899.4043867
+7 s7 8 s8/8 -4159.10909214
+7 s7 8 s8/10 -3690.00289726
+7 s7 9 s9/1 -3461.41683118
+7 s7 9 s9/3 -3474.96610279
+7 s7 9 s9/6 -3796.28874482
+7 s7 9 s9/8 -3248.35661343
+7 s7 9 s9/10 -3331.48914238
+7 s7 13 s13/1 -4921.81558057
+7 s7 13 s13/3 -5177.0115092
+7 s7 13 s13/6 -4377.79358814
+7 s7 13 s13/8 -4549.47680222
+7 s7 13 s13/10 -4268.93263282
+7 s7 15 s15/1 -3076.7368174
+7 s7 15 s15/3 -3047.13247253
+7 s7 15 s15/6 -3249.84902365
+7 s7 15 s15/8 -3150.50121815
+7 s7 15 s15/10 -3452.85315844
+7 s7 18 s18/1 -3945.39914918
+7 s7 18 s18/3 -4458.14092777
+7 s7 18 s18/6 -4013.01623566
+7 s7 18 s18/8 -4338.24226246
+7 s7 18 s18/10 -3961.85437891
+7 s7 19 s19/1 -4809.91164653
+7 s7 19 s19/3 -5232.22205615
+7 s7 19 s19/6 -5157.79783698
+7 s7 19 s19/8 -4651.29311084
+7 s7 19 s19/10 -4874.47981006
+7 s7 22 s22/1 -4459.6222356
+7 s7 22 s22/3 -4377.94066581
+7 s7 22 s22/6 -4686.89847305
+7 s7 22 s22/8 -4587.77483596
+7 s7 22 s22/10 -4960.77430892
+7 s7 23 s23/1 -2844.66296646
+7 s7 23 s23/3 -3577.80820325
+7 s7 23 s23/6 -3760.03833299
+7 s7 23 s23/8 -2592.30467393
+7 s7 23 s23/10 -2782.98926037
+7 s7 25 s25/1 -3709.91905593
+7 s7 25 s25/3 -3673.52485981
+7 s7 25 s25/6 -4135.41309534
+7 s7 25 s25/8 -4498.09934416
+7 s7 25 s25/10 -3867.02458523
+7 s7 28 s28/1 -4903.59623882
+7 s7 28 s28/3 -4959.06234558
+7 s7 28 s28/6 -4757.67310498
+7 s7 28 s28/8 -4397.00986327
+7 s7 28 s28/10 -5163.55107447
+7 s7 30 s30/1 -3564.22134558
+7 s7 30 s30/3 -3884.05161515
+7 s7 30 s30/6 -3278.45824218
+7 s7 30 s30/8 -4203.96866458
+7 s7 30 s30/10 -3703.03644002
+7 s7 31 s31/1 -3610.5222855
+7 s7 31 s31/3 -4647.7502073
+7 s7 31 s31/6 -3826.85642829
+7 s7 31 s31/8 -3697.79390825
+7 s7 31 s31/10 -4711.21976699
+7 s7 32 s32/1 -4224.76328171
+7 s7 32 s32/3 -4880.3701751
+7 s7 32 s32/6 -3467.34232266
+7 s7 32 s32/8 -4205.0790813
+7 s7 32 s32/10 -3366.64775879
+7 s7 35 s35/1 -4139.19915643
+7 s7 35 s35/3 -4165.24385506
+7 s7 35 s35/6 -3757.11460823
+7 s7 35 s35/8 -3488.0609092
+7 s7 35 s35/10 -3316.41532002
+7 s7 37 s37/1 -4439.26346467
+7 s7 37 s37/3 -4628.42859719
+7 s7 37 s37/6 -4800.49047203
+7 s7 37 s37/8 -4425.21313548
+7 s7 37 s37/10 -4472.06844594
+7 s7 38 s38/1 -3637.57257635
+7 s7 38 s38/3 -3831.59619911
+7 s7 38 s38/6 -3844.91237951
+7 s7 38 s38/8 -3161.92143097
+7 s7 38 s38/10 -3168.10019452
+7 s7 40 s40/1 -3577.73736278
+7 s7 40 s40/3 -3146.39774768
+7 s7 40 s40/6 -3882.04884366
+7 s7 40 s40/8 -3735.30412249
+7 s7 40 s40/10 -4467.95343226
+8 s8 3 s3/1 -3816.49167388
+8 s8 3 s3/3 -4243.79743359
+8 s8 3 s3/6 -3082.51718778
+8 s8 3 s3/8 -3020.22874228
+8 s8 3 s3/10 -4113.09549687
+8 s8 4 s4/1 -3039.48610771
+8 s8 4 s4/3 -3040.63946246
+8 s8 4 s4/6 -3395.10221087
+8 s8 4 s4/8 -3116.55675349
+8 s8 4 s4/10 -4497.62739774
+8 s8 7 s7/1 -4211.6114398
+8 s8 7 s7/3 -3931.41737091
+8 s8 7 s7/6 -3580.80042267
+8 s8 7 s7/8 -3709.35948031
+8 s8 7 s7/10 -4510.99928392
+8 s8 8 s8/1 -1135.46945823
+8 s8 8 s8/3 -1664.95236718
+8 s8 8 s8/6 -1745.06667956
+8 s8 8 s8/8 -1874.43093948
+8 s8 8 s8/10 -2061.08463491
+8 s8 9 s9/1 -4297.44821021
+8 s8 9 s9/3 -4353.85917889
+8 s8 9 s9/6 -3575.52734928
+8 s8 9 s9/8 -3475.1781057
+8 s8 9 s9/10 -4719.13057395
+8 s8 13 s13/1 -4636.95144656
+8 s8 13 s13/3 -4732.44942349
+8 s8 13 s13/6 -4704.23970245
+8 s8 13 s13/8 -4514.0326596
+8 s8 13 s13/10 -4266.08581029
+8 s8 15 s15/1 -3669.79436722
+8 s8 15 s15/3 -3580.75949187
+8 s8 15 s15/6 -3609.71332974
+8 s8 15 s15/8 -3755.57239855
+8 s8 15 s15/10 -3543.09126099
+8 s8 18 s18/1 -4961.2173049
+8 s8 18 s18/3 -4109.75653182
+8 s8 18 s18/6 -3995.44195704
+8 s8 18 s18/8 -4177.49528886
+8 s8 18 s18/10 -3950.04207524
+8 s8 19 s19/1 -4297.15335629
+8 s8 19 s19/3 -4870.31852193
+8 s8 19 s19/6 -4496.97200871
+8 s8 19 s19/8 -4094.66435512
+8 s8 19 s19/10 -3822.2449824
+8 s8 22 s22/1 -4780.99227159
+8 s8 22 s22/3 -4689.028013
+8 s8 22 s22/6 -4984.82882451
+8 s8 22 s22/8 -4879.72886553
+8 s8 22 s22/10 -5098.05356772
+8 s8 23 s23/1 -3405.79008991
+8 s8 23 s23/3 -4776.51868726
+8 s8 23 s23/6 -4161.72307492
+8 s8 23 s23/8 -4788.46294731
+8 s8 23 s23/10 -3315.41957354
+8 s8 25 s25/1 -3824.59345334
+8 s8 25 s25/3 -3845.76304451
+8 s8 25 s25/6 -3763.12504434
+8 s8 25 s25/8 -3761.5899582
+8 s8 25 s25/10 -3905.03364425
+8 s8 28 s28/1 -4877.23858214
+8 s8 28 s28/3 -4705.39011288
+8 s8 28 s28/6 -4772.27918626
+8 s8 28 s28/8 -5550.62266467
+8 s8 28 s28/10 -4717.01599088
+8 s8 30 s30/1 -4084.52503825
+8 s8 30 s30/3 -4221.1789981
+8 s8 30 s30/6 -4061.9396941
+8 s8 30 s30/8 -4709.78243598
+8 s8 30 s30/10 -3900.24932223
+8 s8 31 s31/1 -4796.206716
+8 s8 31 s31/3 -5007.39195856
+8 s8 31 s31/6 -4423.3107164
+8 s8 31 s31/8 -4652.91164347
+8 s8 31 s31/10 -4980.18129086
+8 s8 32 s32/1 -3938.07008877
+8 s8 32 s32/3 -4224.23005286
+8 s8 32 s32/6 -2928.42135463
+8 s8 32 s32/8 -3585.26122854
+8 s8 32 s32/10 -3020.08375318
+8 s8 35 s35/1 -4733.303325
+8 s8 35 s35/3 -4275.11431188
+8 s8 35 s35/6 -3467.16231594
+8 s8 35 s35/8 -3506.0442336
+8 s8 35 s35/10 -4471.58251982
+8 s8 37 s37/1 -5197.10341632
+8 s8 37 s37/3 -5296.46506571
+8 s8 37 s37/6 -5060.04946633
+8 s8 37 s37/8 -4485.87436358
+8 s8 37 s37/10 -4939.53354307
+8 s8 38 s38/1 -3295.6245965
+8 s8 38 s38/3 -3303.72233957
+8 s8 38 s38/6 -3557.30039322
+8 s8 38 s38/8 -3781.97830608
+8 s8 38 s38/10 -3744.9474251
+8 s8 40 s40/1 -4572.35498313
+8 s8 40 s40/3 -4854.67113335
+8 s8 40 s40/6 -4103.05579492
+8 s8 40 s40/8 -4230.86819166
+8 s8 40 s40/10 -3904.31330825
+9 s9 3 s3/1 -2547.5104482
+9 s9 3 s3/3 -2725.45115096
+9 s9 3 s3/6 -2211.99297617
+9 s9 3 s3/8 -2416.50020167
+9 s9 3 s3/10 -2808.00169181
+9 s9 4 s4/1 -2252.65199646
+9 s9 4 s4/3 -2590.48954693
+9 s9 4 s4/6 -3289.80948945
+9 s9 4 s4/8 -2569.14238439
+9 s9 4 s4/10 -2649.76082109
+9 s9 7 s7/1 -3300.80205386
+9 s9 7 s7/3 -3384.85442682
+9 s9 7 s7/6 -3308.89117021
+9 s9 7 s7/8 -3280.71373687
+9 s9 7 s7/10 -3315.55371503
+9 s9 8 s8/1 -4185.21171568
+9 s9 8 s8/3 -3634.51475298
+9 s9 8 s8/6 -4019.79386655
+9 s9 8 s8/8 -3900.67066506
+9 s9 8 s8/10 -3532.26591473
+9 s9 9 s9/1 -1232.98008048
+9 s9 9 s9/3 -1256.06667593
+9 s9 9 s9/6 -1764.52243494
+9 s9 9 s9/8 -1447.87853552
+9 s9 9 s9/10 -1789.71184484
+9 s9 13 s13/1 -4619.25396528
+9 s9 13 s13/3 -5175.65502321
+9 s9 13 s13/6 -4272.85697332
+9 s9 13 s13/8 -4553.62609701
+9 s9 13 s13/10 -4244.44673611
+9 s9 15 s15/1 -3454.43840637
+9 s9 15 s15/3 -3439.87009412
+9 s9 15 s15/6 -3578.29135252
+9 s9 15 s15/8 -3440.83204868
+9 s9 15 s15/10 -2665.60947707
+9 s9 18 s18/1 -4148.87008937
+9 s9 18 s18/3 -4109.69400345
+9 s9 18 s18/6 -4091.07132553
+9 s9 18 s18/8 -4208.3489515
+9 s9 18 s18/10 -3757.36612039
+9 s9 19 s19/1 -4807.20953164
+9 s9 19 s19/3 -5347.47059831
+9 s9 19 s19/6 -5037.02683897
+9 s9 19 s19/8 -5158.78820124
+9 s9 19 s19/10 -4623.00188
+9 s9 22 s22/1 -4154.24807601
+9 s9 22 s22/3 -3844.22286129
+9 s9 22 s22/6 -4415.27940247
+9 s9 22 s22/8 -4209.98015364
+9 s9 22 s22/10 -4700.9501879
+9 s9 23 s23/1 -2403.64952559
+9 s9 23 s23/3 -2965.62721504
+9 s9 23 s23/6 -2970.82455651
+9 s9 23 s23/8 -2439.9060999
+9 s9 23 s23/10 -2362.75062609
+9 s9 25 s25/1 -2186.76811782
+9 s9 25 s25/3 -2250.01746741
+9 s9 25 s25/6 -2913.21012077
+9 s9 25 s25/8 -3486.83051857
+9 s9 25 s25/10 -2463.4559735
+9 s9 28 s28/1 -4918.87479674
+9 s9 28 s28/3 -4681.85746463
+9 s9 28 s28/6 -4617.28665292
+9 s9 28 s28/8 -4548.91590351
+9 s9 28 s28/10 -4964.8811564
+9 s9 30 s30/1 -2468.85347323
+9 s9 30 s30/3 -2684.22105025
+9 s9 30 s30/6 -2352.19611749
+9 s9 30 s30/8 -3203.79571838
+9 s9 30 s30/10 -2589.19072649
+9 s9 31 s31/1 -1990.71715309
+9 s9 31 s31/3 -4574.3250072
+9 s9 31 s31/6 -2638.76143027
+9 s9 31 s31/8 -2136.9668398
+9 s9 31 s31/10 -4586.19479594
+9 s9 32 s32/1 -4540.36181713
+9 s9 32 s32/3 -4868.08338276
+9 s9 32 s32/6 -4037.78030625
+9 s9 32 s32/8 -4490.67607519
+9 s9 32 s32/10 -3923.63980576
+9 s9 35 s35/1 -3121.69389479
+9 s9 35 s35/3 -3916.72829133
+9 s9 35 s35/6 -3123.62025962
+9 s9 35 s35/8 -2480.64668786
+9 s9 35 s35/10 -3432.45445572
+9 s9 37 s37/1 -4479.69370996
+9 s9 37 s37/3 -4742.56540091
+9 s9 37 s37/6 -4993.89089683
+9 s9 37 s37/8 -4566.20131271
+9 s9 37 s37/10 -4537.43975603
+9 s9 38 s38/1 -2505.17244521
+9 s9 38 s38/3 -2707.94431745
+9 s9 38 s38/6 -2761.29272417
+9 s9 38 s38/8 -2263.62593044
+9 s9 38 s38/10 -2398.09045021
+9 s9 40 s40/1 -2928.99104151
+9 s9 40 s40/3 -3022.18661213
+9 s9 40 s40/6 -2909.42717431
+9 s9 40 s40/8 -2900.50106801
+9 s9 40 s40/10 -3514.24554484
+13 s13 3 s3/1 -3202.38137554
+13 s13 3 s3/3 -3308.2248404
+13 s13 3 s3/6 -3501.44047001
+13 s13 3 s3/8 -3262.35823784
+13 s13 3 s3/10 -3444.20525571
+13 s13 4 s4/1 -3649.59387841
+13 s13 4 s4/3 -3390.63212187
+13 s13 4 s4/6 -3246.33460094
+13 s13 4 s4/8 -3342.89496156
+13 s13 4 s4/10 -4299.54590767
+13 s13 7 s7/1 -4715.98664504
+13 s13 7 s7/3 -4609.27291027
+13 s13 7 s7/6 -4422.0260616
+13 s13 7 s7/8 -4722.80244759
+13 s13 7 s7/10 -4029.53815479
+13 s13 8 s8/1 -4670.41935822
+13 s13 8 s8/3 -4525.99460014
+13 s13 8 s8/6 -4406.83573849
+13 s13 8 s8/8 -4474.32175203
+13 s13 8 s8/10 -4572.86719878
+13 s13 9 s9/1 -4637.22294275
+13 s13 9 s9/3 -4500.651687
+13 s13 9 s9/6 -4463.61015407
+13 s13 9 s9/8 -4243.16691824
+13 s13 9 s9/10 -4572.15435639
+13 s13 13 s13/1 -1025.77704523
+13 s13 13 s13/3 -1783.98005114
+13 s13 13 s13/6 -1558.11784716
+13 s13 13 s13/8 -1039.99583084
+13 s13 13 s13/10 -703.448590077
+13 s13 15 s15/1 -4038.32937849
+13 s13 15 s15/3 -4158.46410153
+13 s13 15 s15/6 -3796.56417856
+13 s13 15 s15/8 -4429.3755221
+13 s13 15 s15/10 -3585.52994631
+13 s13 18 s18/1 -2812.99173883
+13 s13 18 s18/3 -1891.55964525
+13 s13 18 s18/6 -2035.67549695
+13 s13 18 s18/8 -1978.19724817
+13 s13 18 s18/10 -2499.42504522
+13 s13 19 s19/1 -3567.82071157
+13 s13 19 s19/3 -3234.31779564
+13 s13 19 s19/6 -3159.33639979
+13 s13 19 s19/8 -3323.52201903
+13 s13 19 s19/10 -3551.06114754
+13 s13 22 s22/1 -5414.57148439
+13 s13 22 s22/3 -5371.51231446
+13 s13 22 s22/6 -5895.08586155
+13 s13 22 s22/8 -5541.10555282
+13 s13 22 s22/10 -5289.97985403
+13 s13 23 s23/1 -4783.79443316
+13 s13 23 s23/3 -5184.20935404
+13 s13 23 s23/6 -4767.83616152
+13 s13 23 s23/8 -5121.71712236
+13 s13 23 s23/10 -4559.26698216
+13 s13 25 s25/1 -3377.53134774
+13 s13 25 s25/3 -3115.54927275
+13 s13 25 s25/6 -2950.2693355
+13 s13 25 s25/8 -2610.67305436
+13 s13 25 s25/10 -3284.9945593
+13 s13 28 s28/1 -2818.43584739
+13 s13 28 s28/3 -2939.87837017
+13 s13 28 s28/6 -2959.54612292
+13 s13 28 s28/8 -3249.15642063
+13 s13 28 s28/10 -2605.52287392
+13 s13 30 s30/1 -5339.28315308
+13 s13 30 s30/3 -5611.91473319
+13 s13 30 s30/6 -5330.75403669
+13 s13 30 s30/8 -5777.47373497
+13 s13 30 s30/10 -5300.57333828
+13 s13 31 s31/1 -5210.82295907
+13 s13 31 s31/3 -4412.76465696
+13 s13 31 s31/6 -4441.92121769
+13 s13 31 s31/8 -4896.76699795
+13 s13 31 s31/10 -4488.13181919
+13 s13 32 s32/1 -3150.51061775
+13 s13 32 s32/3 -3159.71478883
+13 s13 32 s32/6 -3334.54053001
+13 s13 32 s32/8 -3056.73154297
+13 s13 32 s32/10 -3413.7973795
+13 s13 35 s35/1 -3886.54628516
+13 s13 35 s35/3 -3043.08940014
+13 s13 35 s35/6 -2749.45139543
+13 s13 35 s35/8 -3165.90623178
+13 s13 35 s35/10 -3046.81538122
+13 s13 37 s37/1 -2678.74294941
+13 s13 37 s37/3 -2658.9158326
+13 s13 37 s37/6 -3609.67071608
+13 s13 37 s37/8 -3538.43631387
+13 s13 37 s37/10 -2501.21295259
+13 s13 38 s38/1 -4953.92150692
+13 s13 38 s38/3 -4742.48319921
+13 s13 38 s38/6 -5178.55887189
+13 s13 38 s38/8 -5038.90368513
+13 s13 38 s38/10 -4841.33560269
+13 s13 40 s40/1 -2809.70264194
+13 s13 40 s40/3 -3157.01332876
+13 s13 40 s40/6 -2927.3338441
+13 s13 40 s40/8 -2688.96600375
+13 s13 40 s40/10 -3069.88991179
+15 s15 3 s3/1 -2580.30354292
+15 s15 3 s3/3 -2834.29603042
+15 s15 3 s3/6 -2759.19839368
+15 s15 3 s3/8 -2783.20695581
+15 s15 3 s3/10 -3143.83963287
+15 s15 4 s4/1 -2202.64057116
+15 s15 4 s4/3 -2301.81039791
+15 s15 4 s4/6 -3097.5947528
+15 s15 4 s4/8 -2350.44748544
+15 s15 4 s4/10 -3349.64729233
+15 s15 7 s7/1 -3311.13835445
+15 s15 7 s7/3 -3267.20955526
+15 s15 7 s7/6 -2929.4992405
+15 s15 7 s7/8 -3137.60235246
+15 s15 7 s7/10 -3259.5085004
+15 s15 8 s8/1 -3351.22118121
+15 s15 8 s8/3 -3589.75913922
+15 s15 8 s8/6 -3772.85395682
+15 s15 8 s8/8 -3625.2943284
+15 s15 8 s8/10 -3654.16304296
+15 s15 9 s9/1 -2915.57607571
+15 s15 9 s9/3 -2894.11208415
+15 s15 9 s9/6 -2772.64507605
+15 s15 9 s9/8 -2588.56558412
+15 s15 9 s9/10 -3200.31211964
+15 s15 13 s13/1 -3586.37478927
+15 s15 13 s13/3 -3774.84487141
+15 s15 13 s13/6 -3542.40649551
+15 s15 13 s13/8 -3742.37638037
+15 s15 13 s13/10 -3370.21784657
+15 s15 15 s15/1 -2402.53690896
+15 s15 15 s15/3 -2367.48473176
+15 s15 15 s15/6 -2374.53446452
+15 s15 15 s15/8 -2022.0055133
+15 s15 15 s15/10 -969.500884681
+15 s15 18 s18/1 -3871.88457482
+15 s15 18 s18/3 -3148.77140084
+15 s15 18 s18/6 -3291.11248654
+15 s15 18 s18/8 -3218.72499924
+15 s15 18 s18/10 -3401.64969692
+15 s15 19 s19/1 -3757.87263186
+15 s15 19 s19/3 -4112.05649595
+15 s15 19 s19/6 -3812.79868872
+15 s15 19 s19/8 -4000.182565
+15 s15 19 s19/10 -3583.69493135
+15 s15 22 s22/1 -3195.0359962
+15 s15 22 s22/3 -3028.62720878
+15 s15 22 s22/6 -3498.44994816
+15 s15 22 s22/8 -3283.34848436
+15 s15 22 s22/10 -3446.01197175
+15 s15 23 s23/1 -3070.25974401
+15 s15 23 s23/3 -3390.20344442
+15 s15 23 s23/6 -2932.20788748
+15 s15 23 s23/8 -3571.3765668
+15 s15 23 s23/10 -2954.78677002
+15 s15 25 s25/1 -2611.29833149
+15 s15 25 s25/3 -2829.31199376
+15 s15 25 s25/6 -2714.51118348
+15 s15 25 s25/8 -2870.18228171
+15 s15 25 s25/10 -2864.16113222
+15 s15 28 s28/1 -3753.4390575
+15 s15 28 s28/3 -3623.60109655
+15 s15 28 s28/6 -3554.51786063
+15 s15 28 s28/8 -4121.24848957
+15 s15 28 s28/10 -3803.49807022
+15 s15 30 s30/1 -2649.16787496
+15 s15 30 s30/3 -2898.3050272
+15 s15 30 s30/6 -2667.58480765
+15 s15 30 s30/8 -3007.14301998
+15 s15 30 s30/10 -2629.9532381
+15 s15 31 s31/1 -2816.97617563
+15 s15 31 s31/3 -3076.41676091
+15 s15 31 s31/6 -2482.64472589
+15 s15 31 s31/8 -2679.15146696
+15 s15 31 s31/10 -3032.7179238
+15 s15 32 s32/1 -3455.24452617
+15 s15 32 s32/3 -3442.20655852
+15 s15 32 s32/6 -2990.03785573
+15 s15 32 s32/8 -3263.88075526
+15 s15 32 s32/10 -2841.40823188
+15 s15 35 s35/1 -2748.56316738
+15 s15 35 s35/3 -2025.04895307
+15 s15 35 s35/6 -2608.84048224
+15 s15 35 s35/8 -2225.51881792
+15 s15 35 s35/10 -2699.40465375
+15 s15 37 s37/1 -3776.23292984
+15 s15 37 s37/3 -3875.69905416
+15 s15 37 s37/6 -3703.36249652
+15 s15 37 s37/8 -3265.46678469
+15 s15 37 s37/10 -3826.94635927
+15 s15 38 s38/1 -3084.26750791
+15 s15 38 s38/3 -2851.27680759
+15 s15 38 s38/6 -3295.81461978
+15 s15 38 s38/8 -3172.81880218
+15 s15 38 s38/10 -2947.70788332
+15 s15 40 s40/1 -2943.88908446
+15 s15 40 s40/3 -3270.57500985
+15 s15 40 s40/6 -3019.89230379
+15 s15 40 s40/8 -2933.41439825
+15 s15 40 s40/10 -2891.00228583
+18 s18 3 s3/1 -2956.0754384
+18 s18 3 s3/3 -2753.84726042
+18 s18 3 s3/6 -3202.07741089
+18 s18 3 s3/8 -3223.11593887
+18 s18 3 s3/10 -2672.34954412
+18 s18 4 s4/1 -3433.27996686
+18 s18 4 s4/3 -3560.49800004
+18 s18 4 s4/6 -3365.12571015
+18 s18 4 s4/8 -3343.40806464
+18 s18 4 s4/10 -3335.1372178
+18 s18 7 s7/1 -4104.2010016
+18 s18 7 s7/3 -3962.80832438
+18 s18 7 s7/6 -3984.14020527
+18 s18 7 s7/8 -4326.38507592
+18 s18 7 s7/10 -3257.72684289
+18 s18 8 s8/1 -4836.19576879
+18 s18 8 s8/3 -4152.65556388
+18 s18 8 s8/6 -4134.79509243
+18 s18 8 s8/8 -4138.08421509
+18 s18 8 s8/10 -4040.64411074
+18 s18 9 s9/1 -4398.74565735
+18 s18 9 s9/3 -4257.16821011
+18 s18 9 s9/6 -4452.68844392
+18 s18 9 s9/8 -3882.39685689
+18 s18 9 s9/10 -3796.72563078
+18 s18 13 s13/1 -2740.04630919
+18 s18 13 s13/3 -3060.0403958
+18 s18 13 s13/6 -1630.54131366
+18 s18 13 s13/8 -2421.86464267
+18 s18 13 s13/10 -1997.96008334
+18 s18 15 s15/1 -3876.18244178
+18 s18 15 s15/3 -4022.47338995
+18 s18 15 s15/6 -3795.16118689
+18 s18 15 s15/8 -4223.76072291
+18 s18 15 s15/10 -3537.02525272
+18 s18 18 s18/1 -1368.23821308
+18 s18 18 s18/3 -2066.23727685
+18 s18 18 s18/6 -1587.61885353
+18 s18 18 s18/8 -1839.87833423
+18 s18 18 s18/10 -1990.61368518
+18 s18 19 s19/1 -4252.46720452
+18 s18 19 s19/3 -4139.21533354
+18 s18 19 s19/6 -4281.91841669
+18 s18 19 s19/8 -4104.2220241
+18 s18 19 s19/10 -4395.90138652
+18 s18 22 s22/1 -5777.64079119
+18 s18 22 s22/3 -5629.23262098
+18 s18 22 s22/6 -6322.34503807
+18 s18 22 s22/8 -5891.32768241
+18 s18 22 s22/10 -5932.51211239
+18 s18 23 s23/1 -4440.91979543
+18 s18 23 s23/3 -4879.48453038
+18 s18 23 s23/6 -4783.21865357
+18 s18 23 s23/8 -4380.11974451
+18 s18 23 s23/10 -4314.32765436
+18 s18 25 s25/1 -2878.87604183
+18 s18 25 s25/3 -2601.15384147
+18 s18 25 s25/6 -2763.80042895
+18 s18 25 s25/8 -3275.1127543
+18 s18 25 s25/10 -2710.48883585
+18 s18 28 s28/1 -3883.4795926
+18 s18 28 s28/3 -4014.70519937
+18 s18 28 s28/6 -3864.86883847
+18 s18 28 s28/8 -3617.13881658
+18 s18 28 s28/10 -3927.90765349
+18 s18 30 s30/1 -4917.40113865
+18 s18 30 s30/3 -5253.20232186
+18 s18 30 s30/6 -4902.57477108
+18 s18 30 s30/8 -5610.87560505
+18 s18 30 s30/10 -5071.17081244
+18 s18 31 s31/1 -4970.03856356
+18 s18 31 s31/3 -4780.61996987
+18 s18 31 s31/6 -4481.51880791
+18 s18 31 s31/8 -4749.72667526
+18 s18 31 s31/10 -4752.82800544
+18 s18 32 s32/1 -2884.34375405
+18 s18 32 s32/3 -3357.01185028
+18 s18 32 s32/6 -3294.4650071
+18 s18 32 s32/8 -3358.04252319
+18 s18 32 s32/10 -3465.1118564
+18 s18 35 s35/1 -4054.0884318
+18 s18 35 s35/3 -3541.25317234
+18 s18 35 s35/6 -2447.59004413
+18 s18 35 s35/8 -2683.93015099
+18 s18 35 s35/10 -2927.94916434
+18 s18 37 s37/1 -3388.73624303
+18 s18 37 s37/3 -3528.1627107
+18 s18 37 s37/6 -4547.2080635
+18 s18 37 s37/8 -4411.99514613
+18 s18 37 s37/10 -3340.94174374
+18 s18 38 s38/1 -4926.36256402
+18 s18 38 s38/3 -4839.07834759
+18 s18 38 s38/6 -5135.8908713
+18 s18 38 s38/8 -4499.47476968
+18 s18 38 s38/10 -4760.28286303
+18 s18 40 s40/1 -2584.2597622
+18 s18 40 s40/3 -2220.28936413
+18 s18 40 s40/6 -3041.32775422
+18 s18 40 s40/8 -2592.87675242
+18 s18 40 s40/10 -3699.5280574
+19 s19 3 s3/1 -4005.79246239
+19 s19 3 s3/3 -4118.92914119
+19 s19 3 s3/6 -3833.14889994
+19 s19 3 s3/8 -3715.575243
+19 s19 3 s3/10 -3939.12020766
+19 s19 4 s4/1 -3860.16054019
+19 s19 4 s4/3 -3381.42907685
+19 s19 4 s4/6 -2945.51696829
+19 s19 4 s4/8 -3243.10737747
+19 s19 4 s4/10 -4452.30579568
+19 s19 7 s7/1 -4507.31651077
+19 s19 7 s7/3 -4382.64231377
+19 s19 7 s7/6 -4072.18663786
+19 s19 7 s7/8 -4514.54034327
+19 s19 7 s7/10 -4232.66998104
+19 s19 8 s8/1 -3990.13253476
+19 s19 8 s8/3 -3726.14317857
+19 s19 8 s8/6 -3455.3955025
+19 s19 8 s8/8 -3531.65964868
+19 s19 8 s8/10 -3811.69795385
+19 s19 9 s9/1 -4804.84536787
+19 s19 9 s9/3 -4630.67492625
+19 s19 9 s9/6 -4542.81319946
+19 s19 9 s9/8 -4591.6733388
+19 s19 9 s9/10 -4912.24892349
+19 s19 13 s13/1 -3408.93242688
+19 s19 13 s13/3 -3636.10644374
+19 s19 13 s13/6 -3575.5230924
+19 s19 13 s13/8 -3289.4655635
+19 s19 13 s13/10 -3252.51422672
+19 s19 15 s15/1 -2502.05494556
+19 s19 15 s15/3 -2560.5900693
+19 s19 15 s15/6 -2174.31152183
+19 s19 15 s15/8 -3363.01313433
+19 s19 15 s15/10 -4132.71151481
+19 s19 18 s18/1 -4098.47532505
+19 s19 18 s18/3 -3791.90925274
+19 s19 18 s18/6 -3671.29856609
+19 s19 18 s18/8 -3836.71681672
+19 s19 18 s18/10 -4058.53157732
+19 s19 19 s19/1 -1655.10609509
+19 s19 19 s19/3 -1856.32442417
+19 s19 19 s19/6 -1981.77662831
+19 s19 19 s19/8 -1523.05351521
+19 s19 19 s19/10 -1793.32063537
+19 s19 22 s22/1 -4542.93709979
+19 s19 22 s22/3 -4635.20062189
+19 s19 22 s22/6 -5138.72256328
+19 s19 22 s22/8 -4765.76162168
+19 s19 22 s22/10 -4569.45199841
+19 s19 23 s23/1 -5065.46201531
+19 s19 23 s23/3 -5420.00135699
+19 s19 23 s23/6 -5058.84946146
+19 s19 23 s23/8 -5477.31680922
+19 s19 23 s23/10 -4714.11885335
+19 s19 25 s25/1 -4100.03600349
+19 s19 25 s25/3 -3788.16763441
+19 s19 25 s25/6 -3668.54705235
+19 s19 25 s25/8 -3174.69288854
+19 s19 25 s25/10 -3891.93512538
+19 s19 28 s28/1 -3672.44822887
+19 s19 28 s28/3 -3812.86840783
+19 s19 28 s28/6 -3780.88145851
+19 s19 28 s28/8 -4165.96288079
+19 s19 28 s28/10 -3337.29227785
+19 s19 30 s30/1 -5068.60509747
+19 s19 30 s30/3 -5434.14163217
+19 s19 30 s30/6 -5091.08219443
+19 s19 30 s30/8 -5324.80076583
+19 s19 30 s30/10 -4972.50450074
+19 s19 31 s31/1 -5305.66141746
+19 s19 31 s31/3 -3515.22861155
+19 s19 31 s31/6 -4189.50566417
+19 s19 31 s31/8 -4843.40808253
+19 s19 31 s31/10 -3660.63476966
+19 s19 32 s32/1 -2757.87174686
+19 s19 32 s32/3 -2711.40948091
+19 s19 32 s32/6 -2238.58130064
+19 s19 32 s32/8 -2184.17893198
+19 s19 32 s32/10 -2245.49686462
+19 s19 35 s35/1 -4935.13588897
+19 s19 35 s35/3 -3622.32708653
+19 s19 35 s35/6 -3149.32892904
+19 s19 35 s35/8 -3679.30587397
+19 s19 35 s35/10 -3981.87228096
+19 s19 37 s37/1 -4190.64319758
+19 s19 37 s37/3 -4273.59867669
+19 s19 37 s37/6 -3188.35987423
+19 s19 37 s37/8 -2939.93025623
+19 s19 37 s37/10 -3739.14927102
+19 s19 38 s38/1 -5132.75426835
+19 s19 38 s38/3 -4887.07661704
+19 s19 38 s38/6 -5341.51844801
+19 s19 38 s38/8 -5280.0711527
+19 s19 38 s38/10 -5097.22377921
+19 s19 40 s40/1 -4408.92556724
+19 s19 40 s40/3 -4593.0477807
+19 s19 40 s40/6 -4322.70610622
+19 s19 40 s40/8 -4277.09971507
+19 s19 40 s40/10 -4340.68119243
+22 s22 3 s3/1 -4013.83712581
+22 s22 3 s3/3 -4245.36091725
+22 s22 3 s3/6 -4722.0005028
+22 s22 3 s3/8 -4557.14551599
+22 s22 3 s3/10 -4681.20048979
+22 s22 4 s4/1 -3972.68768043
+22 s22 4 s4/3 -3803.29638751
+22 s22 4 s4/6 -4846.51452184
+22 s22 4 s4/8 -3932.32391055
+22 s22 4 s4/10 -4979.62265907
+22 s22 7 s7/1 -4500.57252797
+22 s22 7 s7/3 -4711.79647694
+22 s22 7 s7/6 -4246.06155028
+22 s22 7 s7/8 -4473.03310168
+22 s22 7 s7/10 -4771.9361284
+22 s22 8 s8/1 -4808.75178772
+22 s22 8 s8/3 -5343.98374147
+22 s22 8 s8/6 -5345.90674104
+22 s22 8 s8/8 -5506.97670535
+22 s22 8 s8/10 -5362.94961502
+22 s22 9 s9/1 -3961.80579929
+22 s22 9 s9/3 -3938.10362431
+22 s22 9 s9/6 -4430.72639074
+22 s22 9 s9/8 -4573.51790429
+22 s22 9 s9/10 -4746.78613148
+22 s22 13 s13/1 -5118.0573909
+22 s22 13 s13/3 -5607.88818019
+22 s22 13 s13/6 -5450.28639594
+22 s22 13 s13/8 -5618.92461221
+22 s22 13 s13/10 -5269.30155745
+22 s22 15 s15/1 -3288.79672215
+22 s22 15 s15/3 -3155.55321591
+22 s22 15 s15/6 -3290.84168107
+22 s22 15 s15/8 -3060.21058005
+22 s22 15 s15/10 -3611.64723744
+22 s22 18 s18/1 -6041.21843213
+22 s22 18 s18/3 -5627.85835651
+22 s22 18 s18/6 -5861.88863557
+22 s22 18 s18/8 -5749.26554893
+22 s22 18 s18/10 -6014.4979931
+22 s22 19 s19/1 -4535.04894157
+22 s22 19 s19/3 -5014.09830014
+22 s22 19 s19/6 -4377.88594459
+22 s22 19 s19/8 -4849.96254847
+22 s22 19 s19/10 -4155.11215747
+22 s22 22 s22/1 -515.267348009
+22 s22 22 s22/3 -948.789791163
+22 s22 22 s22/6 -1236.73608805
+22 s22 22 s22/8 -703.084336005
+22 s22 22 s22/10 -974.100293608
+22 s22 23 s23/1 -4848.46219366
+22 s22 23 s23/3 -4427.04439093
+22 s22 23 s23/6 -4246.68145015
+22 s22 23 s23/8 -4982.13108183
+22 s22 23 s23/10 -4667.97047257
+22 s22 25 s25/1 -4786.34227314
+22 s22 25 s25/3 -4911.21676656
+22 s22 25 s25/6 -4626.34028371
+22 s22 25 s25/8 -4656.62335836
+22 s22 25 s25/10 -4872.79827361
+22 s22 28 s28/1 -4443.72189883
+22 s22 28 s28/3 -4186.33599304
+22 s22 28 s28/6 -4236.66798511
+22 s22 28 s28/8 -4657.9993282
+22 s22 28 s28/10 -4475.19769706
+22 s22 30 s30/1 -3498.14355065
+22 s22 30 s30/3 -3666.29410946
+22 s22 30 s30/6 -3665.83521491
+22 s22 30 s30/8 -3217.52750188
+22 s22 30 s30/10 -3434.77055482
+22 s22 31 s31/1 -3556.91714853
+22 s22 31 s31/3 -3458.06518471
+22 s22 31 s31/6 -3016.7938301
+22 s22 31 s31/8 -3298.13128919
+22 s22 31 s31/10 -3434.44289401
+22 s22 32 s32/1 -5419.57225464
+22 s22 32 s32/3 -5171.4314143
+22 s22 32 s32/6 -4530.98788336
+22 s22 32 s32/8 -4837.08556526
+22 s22 32 s32/10 -4175.5812598
+22 s22 35 s35/1 -4552.24712413
+22 s22 35 s35/3 -3474.81249522
+22 s22 35 s35/6 -4649.99115585
+22 s22 35 s35/8 -4618.95104803
+22 s22 35 s35/10 -4853.86653993
+22 s22 37 s37/1 -4657.89159791
+22 s22 37 s37/3 -4753.32433721
+22 s22 37 s37/6 -3407.21749321
+22 s22 37 s37/8 -2896.36740895
+22 s22 37 s37/10 -4695.07449402
+22 s22 38 s38/1 -4441.09611284
+22 s22 38 s38/3 -3904.35113202
+22 s22 38 s38/6 -4643.11936678
+22 s22 38 s38/8 -4656.44212352
+22 s22 38 s38/10 -4053.67652122
+22 s22 40 s40/1 -4775.90517716
+22 s22 40 s40/3 -5412.87280174
+22 s22 40 s40/6 -4934.41367373
+22 s22 40 s40/8 -4823.481109
+22 s22 40 s40/10 -4752.20632024
+23 s23 3 s3/1 -3065.793728
+23 s23 3 s3/3 -3304.1012835
+23 s23 3 s3/6 -2697.94897454
+23 s23 3 s3/8 -2973.96709773
+23 s23 3 s3/10 -3566.87643249
+23 s23 4 s4/1 -3094.90242262
+23 s23 4 s4/3 -3411.1778258
+23 s23 4 s4/6 -3857.43636003
+23 s23 4 s4/8 -3478.50057655
+23 s23 4 s4/10 -3162.81838569
+23 s23 7 s7/1 -2970.79992083
+23 s23 7 s7/3 -3061.24569793
+23 s23 7 s7/6 -3027.32222561
+23 s23 7 s7/8 -2632.47938729
+23 s23 7 s7/10 -3661.11323529
+23 s23 8 s8/1 -4030.10186955
+23 s23 8 s8/3 -4046.05381812
+23 s23 8 s8/6 -4444.70155607
+23 s23 8 s8/8 -4195.29697767
+23 s23 8 s8/10 -3971.18744652
+23 s23 9 s9/1 -2465.22492143
+23 s23 9 s9/3 -2631.16651264
+23 s23 9 s9/6 -2331.92162879
+23 s23 9 s9/8 -2595.47426281
+23 s23 9 s9/10 -3109.15007245
+23 s23 13 s13/1 -4925.13286069
+23 s23 13 s13/3 -5261.47692111
+23 s23 13 s13/6 -4728.2214681
+23 s23 13 s13/8 -4804.98067266
+23 s23 13 s13/10 -4585.90879842
+23 s23 15 s15/1 -3513.75609217
+23 s23 15 s15/3 -3547.3463239
+23 s23 15 s15/6 -3652.02243904
+23 s23 15 s15/8 -3701.23646049
+23 s23 15 s15/10 -2773.22918254
+23 s23 18 s18/1 -4497.83217492
+23 s23 18 s18/3 -4301.17531852
+23 s23 18 s18/6 -4468.58853409
+23 s23 18 s18/8 -4424.05826795
+23 s23 18 s18/10 -4098.27151373
+23 s23 19 s19/1 -5223.28531335
+23 s23 19 s19/3 -5610.25680194
+23 s23 19 s19/6 -5351.32214373
+23 s23 19 s19/8 -5291.98946574
+23 s23 19 s19/10 -5051.51557636
+23 s23 22 s22/1 -4207.6908045
+23 s23 22 s22/3 -4053.78539765
+23 s23 22 s22/6 -4258.27826468
+23 s23 22 s22/8 -4411.93016966
+23 s23 22 s22/10 -4706.94088805
+23 s23 23 s23/1 -1879.51262825
+23 s23 23 s23/3 -1794.12311521
+23 s23 23 s23/6 -1253.49476703
+23 s23 23 s23/8 -1932.52036884
+23 s23 23 s23/10 -1955.91394431
+23 s23 25 s25/1 -3123.01825674
+23 s23 25 s25/3 -3316.35999994
+23 s23 25 s25/6 -3614.98555187
+23 s23 25 s25/8 -3803.60236161
+23 s23 25 s25/10 -3402.73744394
+23 s23 28 s28/1 -5279.40944257
+23 s23 28 s28/3 -5064.11538426
+23 s23 28 s28/6 -5055.93827636
+23 s23 28 s28/8 -5065.31467415
+23 s23 28 s28/10 -5178.60269835
+23 s23 30 s30/1 -2554.16599194
+23 s23 30 s30/3 -2376.32433571
+23 s23 30 s30/6 -2383.73666842
+23 s23 30 s30/8 -3071.95287764
+23 s23 30 s30/10 -2516.99715024
+23 s23 31 s31/1 -2762.73930966
+23 s23 31 s31/3 -4528.00262345
+23 s23 31 s31/6 -3396.31487831
+23 s23 31 s31/8 -3130.10792911
+23 s23 31 s31/10 -4470.28306039
+23 s23 32 s32/1 -4537.19613397
+23 s23 32 s32/3 -4949.68831805
+23 s23 32 s32/6 -4004.08246528
+23 s23 32 s32/8 -4583.91867321
+23 s23 32 s32/10 -3911.71276254
+23 s23 35 s35/1 -3178.23727789
+23 s23 35 s35/3 -4169.62277632
+23 s23 35 s35/6 -3801.6848293
+23 s23 35 s35/8 -3398.16793702
+23 s23 35 s35/10 -3728.28743801
+23 s23 37 s37/1 -5014.94351534
+23 s23 37 s37/3 -5172.0063639
+23 s23 37 s37/6 -5156.52421938
+23 s23 37 s37/8 -4788.3829074
+23 s23 37 s37/10 -5104.5348761
+23 s23 38 s38/1 -1880.96858467
+23 s23 38 s38/3 -2573.59823519
+23 s23 38 s38/6 -1714.16722371
+23 s23 38 s38/8 -2167.66742222
+23 s23 38 s38/10 -1955.26863906
+23 s23 40 s40/1 -3445.08418791
+23 s23 40 s40/3 -3641.3180666
+23 s23 40 s40/6 -3453.03156199
+23 s23 40 s40/8 -3560.2184106
+23 s23 40 s40/10 -3218.5535354
+25 s25 3 s3/1 -2329.44030111
+25 s25 3 s3/3 -2840.82679839
+25 s25 3 s3/6 -2617.51310471
+25 s25 3 s3/8 -2589.40533444
+25 s25 3 s3/10 -3131.96090955
+25 s25 4 s4/1 -2341.42599985
+25 s25 4 s4/3 -2138.24343048
+25 s25 4 s4/6 -2588.53367105
+25 s25 4 s4/8 -2112.51058765
+25 s25 4 s4/10 -3405.71001087
+25 s25 7 s7/1 -4405.81440483
+25 s25 7 s7/3 -4315.60479214
+25 s25 7 s7/6 -4059.91436578
+25 s25 7 s7/8 -4347.02735436
+25 s25 7 s7/10 -4085.14799994
+25 s25 8 s8/1 -3964.4355233
+25 s25 8 s8/3 -3848.83262637
+25 s25 8 s8/6 -3972.95654206
+25 s25 8 s8/8 -3711.48917503
+25 s25 8 s8/10 -3858.17849827
+25 s25 9 s9/1 -3333.50104347
+25 s25 9 s9/3 -3143.60390272
+25 s25 9 s9/6 -3055.56925526
+25 s25 9 s9/8 -2993.60713502
+25 s25 9 s9/10 -3472.42961378
+25 s25 13 s13/1 -2481.39989591
+25 s25 13 s13/3 -3310.77716289
+25 s25 13 s13/6 -2880.99606547
+25 s25 13 s13/8 -2766.27796515
+25 s25 13 s13/10 -2532.27222606
+25 s25 15 s15/1 -3279.68222934
+25 s25 15 s15/3 -3377.99742875
+25 s25 15 s15/6 -3150.34334081
+25 s25 15 s15/8 -3544.02251423
+25 s25 15 s15/10 -2544.41193594
+25 s25 18 s18/1 -3428.56105084
+25 s25 18 s18/3 -2314.42745202
+25 s25 18 s18/6 -2886.36192677
+25 s25 18 s18/8 -2545.05739956
+25 s25 18 s18/10 -2908.12292822
+25 s25 19 s19/1 -3343.86910217
+25 s25 19 s19/3 -3543.28909774
+25 s25 19 s19/6 -3365.40096021
+25 s25 19 s19/8 -3876.75857854
+25 s25 19 s19/10 -3189.69426311
+25 s25 22 s22/1 -4304.68450911
+25 s25 22 s22/3 -4163.02903211
+25 s25 22 s22/6 -4817.65197756
+25 s25 22 s22/8 -4451.18722857
+25 s25 22 s22/10 -4471.29497265
+25 s25 23 s23/1 -3794.61832674
+25 s25 23 s23/3 -4168.8206655
+25 s25 23 s23/6 -3523.84366372
+25 s25 23 s23/8 -4313.06370365
+25 s25 23 s23/10 -3608.02088704
+25 s25 25 s25/1 -1838.60862847
+25 s25 25 s25/3 -1782.56863456
+25 s25 25 s25/6 -1216.40330853
+25 s25 25 s25/8 -1750.899971
+25 s25 25 s25/10 -1838.89845752
+25 s25 28 s28/1 -3634.10212113
+25 s25 28 s28/3 -3424.76087525
+25 s25 28 s28/6 -3470.36152622
+25 s25 28 s28/8 -3840.14976053
+25 s25 28 s28/10 -3294.02273488
+25 s25 30 s30/1 -3732.82801593
+25 s25 30 s30/3 -4034.50397355
+25 s25 30 s30/6 -3895.80456991
+25 s25 30 s30/8 -4159.03526867
+25 s25 30 s30/10 -3659.54249067
+25 s25 31 s31/1 -3770.18624237
+25 s25 31 s31/3 -3487.74961013
+25 s25 31 s31/6 -2903.11810446
+25 s25 31 s31/8 -3406.07700979
+25 s25 31 s31/10 -3491.37591069
+25 s25 32 s32/1 -3090.8704628
+25 s25 32 s32/3 -2982.2893244
+25 s25 32 s32/6 -2928.50863376
+25 s25 32 s32/8 -2970.6854678
+25 s25 32 s32/10 -2948.27100708
+25 s25 35 s35/1 -3170.61334149
+25 s25 35 s35/3 -2696.64961689
+25 s25 35 s35/6 -1972.04360821
+25 s25 35 s35/8 -2161.00210149
+25 s25 35 s35/10 -3099.22511213
+25 s25 37 s37/1 -3605.089065
+25 s25 37 s37/3 -3797.33965343
+25 s25 37 s37/6 -3754.47967655
+25 s25 37 s37/8 -3353.7051036
+25 s25 37 s37/10 -3503.75382349
+25 s25 38 s38/1 -3641.71938148
+25 s25 38 s38/3 -3350.24606883
+25 s25 38 s38/6 -3906.65418999
+25 s25 38 s38/8 -3910.46997475
+25 s25 38 s38/10 -3809.94789038
+25 s25 40 s40/1 -2884.1708444
+25 s25 40 s40/3 -3383.93941208
+25 s25 40 s40/6 -2857.00240553
+25 s25 40 s40/8 -2697.34629589
+25 s25 40 s40/10 -2657.30514148
+28 s28 3 s3/1 -3343.13203827
+28 s28 3 s3/3 -3479.74879865
+28 s28 3 s3/6 -3647.43620707
+28 s28 3 s3/8 -3523.3625319
+28 s28 3 s3/10 -3513.08010005
+28 s28 4 s4/1 -3536.27254189
+28 s28 4 s4/3 -3179.88974284
+28 s28 4 s4/6 -3287.28292174
+28 s28 4 s4/8 -3081.13132712
+28 s28 4 s4/10 -4084.05996736
+28 s28 7 s7/1 -4099.21523338
+28 s28 7 s7/3 -4161.40756193
+28 s28 7 s7/6 -3784.13515954
+28 s28 7 s7/8 -4253.64258383
+28 s28 7 s7/10 -3818.67816343
+28 s28 8 s8/1 -4332.70279236
+28 s28 8 s8/3 -4307.15653445
+28 s28 8 s8/6 -4173.91805596
+28 s28 8 s8/8 -4294.37274636
+28 s28 8 s8/10 -4255.55759304
+28 s28 9 s9/1 -4363.99319121
+28 s28 9 s9/3 -4119.6475689
+28 s28 9 s9/6 -4347.27499476
+28 s28 9 s9/8 -4355.09835002
+28 s28 9 s9/10 -4454.41667374
+28 s28 13 s13/1 -3427.68004988
+28 s28 13 s13/3 -3894.83224322
+28 s28 13 s13/6 -3518.23779878
+28 s28 13 s13/8 -3597.2422859
+28 s28 13 s13/10 -3331.20191065
+28 s28 15 s15/1 -2323.51302233
+28 s28 15 s15/3 -2362.00431219
+28 s28 15 s15/6 -2125.98012646
+28 s28 15 s15/8 -3053.4200304
+28 s28 15 s15/10 -3712.17094447
+28 s28 18 s18/1 -4130.08684075
+28 s28 18 s18/3 -3912.59060716
+28 s28 18 s18/6 -3915.74148171
+28 s28 18 s18/8 -3952.48281946
+28 s28 18 s18/10 -4313.03277019
+28 s28 19 s19/1 -2330.25832055
+28 s28 19 s19/3 -2587.91598855
+28 s28 19 s19/6 -2453.72496914
+28 s28 19 s19/8 -2614.40674008
+28 s28 19 s19/10 -2369.94510467
+28 s28 22 s22/1 -3586.97324551
+28 s28 22 s22/3 -3704.40336174
+28 s28 22 s22/6 -4209.35570582
+28 s28 22 s22/8 -3860.98889304
+28 s28 22 s22/10 -3711.03609186
+28 s28 23 s23/1 -4726.31138129
+28 s28 23 s23/3 -4879.52411067
+28 s28 23 s23/6 -4595.7550428
+28 s28 23 s23/8 -4931.96090397
+28 s28 23 s23/10 -4391.21594075
+28 s28 25 s25/1 -3802.92084037
+28 s28 25 s25/3 -3634.05810549
+28 s28 25 s25/6 -3465.07743388
+28 s28 25 s25/8 -3264.71440694
+28 s28 25 s25/10 -3666.63727597
+28 s28 28 s28/1 -2986.81952345
+28 s28 28 s28/3 -3081.51548619
+28 s28 28 s28/6 -2984.96527253
+28 s28 28 s28/8 -3279.0341711
+28 s28 28 s28/10 -2852.94390455
+28 s28 30 s30/1 -4583.97997175
+28 s28 30 s30/3 -4963.26130459
+28 s28 30 s30/6 -4652.29130916
+28 s28 30 s30/8 -4858.98844591
+28 s28 30 s30/10 -4539.14989958
+28 s28 31 s31/1 -4601.00652661
+28 s28 31 s31/3 -3130.82374316
+28 s28 31 s31/6 -3477.47758598
+28 s28 31 s31/8 -4159.77114721
+28 s28 31 s31/10 -3147.93322094
+28 s28 32 s32/1 -3170.92803926
+28 s28 32 s32/3 -3075.19829312
+28 s28 32 s32/6 -2584.91437959
+28 s28 32 s32/8 -2642.44907404
+28 s28 32 s32/10 -2362.34409511
+28 s28 35 s35/1 -4535.74623183
+28 s28 35 s35/3 -3186.07643383
+28 s28 35 s35/6 -3156.70592316
+28 s28 35 s35/8 -3493.69792028
+28 s28 35 s35/10 -3704.77841057
+28 s28 37 s37/1 -3406.47248485
+28 s28 37 s37/3 -3507.23804154
+28 s28 37 s37/6 -2084.05575339
+28 s28 37 s37/8 -1769.18045321
+28 s28 37 s37/10 -3134.97429258
+28 s28 38 s38/1 -4887.38217448
+28 s28 38 s38/3 -4504.3661083
+28 s28 38 s38/6 -5127.43366899
+28 s28 38 s38/8 -4986.48662022
+28 s28 38 s38/10 -4667.74987614
+28 s28 40 s40/1 -3958.09669873
+28 s28 40 s40/3 -4200.01409183
+28 s28 40 s40/6 -4210.01283002
+28 s28 40 s40/8 -3954.86517811
+28 s28 40 s40/10 -4202.50025715
+30 s30 3 s3/1 -3913.00733265
+30 s30 3 s3/3 -4345.05141324
+30 s30 3 s3/6 -4031.3020103
+30 s30 3 s3/8 -4218.16474898
+30 s30 3 s3/10 -4701.93820993
+30 s30 4 s4/1 -3481.8768697
+30 s30 4 s4/3 -3739.48900015
+30 s30 4 s4/6 -4692.20061636
+30 s30 4 s4/8 -3835.0624544
+30 s30 4 s4/10 -4319.02602269
+30 s30 7 s7/1 -4063.53450929
+30 s30 7 s7/3 -4139.64880935
+30 s30 7 s7/6 -4012.38820175
+30 s30 7 s7/8 -3830.81385156
+30 s30 7 s7/10 -4624.7437418
+30 s30 8 s8/1 -4619.44653813
+30 s30 8 s8/3 -4833.26913827
+30 s30 8 s8/6 -5224.74104042
+30 s30 8 s8/8 -4904.41346544
+30 s30 8 s8/10 -4847.99263946
+30 s30 9 s9/1 -2975.73424387
+30 s30 9 s9/3 -3139.78450061
+30 s30 9 s9/6 -3170.31878614
+30 s30 9 s9/8 -3313.98776978
+30 s30 9 s9/10 -3925.41954159
+30 s30 13 s13/1 -5798.30896077
+30 s30 13 s13/3 -6244.65250104
+30 s30 13 s13/6 -5926.20292869
+30 s30 13 s13/8 -6036.52752935
+30 s30 13 s13/10 -5783.59604252
+30 s30 15 s15/1 -3763.88171871
+30 s30 15 s15/3 -3689.04823233
+30 s30 15 s15/6 -3919.43102002
+30 s30 15 s15/8 -3318.33723667
+30 s30 15 s15/10 -3002.84890822
+30 s30 18 s18/1 -5962.32886757
+30 s30 18 s18/3 -5524.26290721
+30 s30 18 s18/6 -5772.92084517
+30 s30 18 s18/8 -5592.16865828
+30 s30 18 s18/10 -5499.46776906
+30 s30 19 s19/1 -5471.7855931
+30 s30 19 s19/3 -6047.05163418
+30 s30 19 s19/6 -5699.94451026
+30 s30 19 s19/8 -5979.04374791
+30 s30 19 s19/10 -5254.62480286
+30 s30 22 s22/1 -3146.86740793
+30 s30 22 s22/3 -2879.21295297
+30 s30 22 s22/6 -3061.91597599
+30 s30 22 s22/8 -3258.40420461
+30 s30 22 s22/10 -3761.46166507
+30 s30 23 s23/1 -3375.6338731
+30 s30 23 s23/3 -2978.92747129
+30 s30 23 s23/6 -2705.31036504
+30 s30 23 s23/8 -3598.22134369
+30 s30 23 s23/10 -3394.24856588
+30 s30 25 s25/1 -4041.15819454
+30 s30 25 s25/3 -4297.37052267
+30 s30 25 s25/6 -4308.49765575
+30 s30 25 s25/8 -4652.21834027
+30 s30 25 s25/10 -4336.26693869
+30 s30 28 s28/1 -6076.53361463
+30 s30 28 s28/3 -5816.51880993
+30 s30 28 s28/6 -5833.38920666
+30 s30 28 s28/8 -6053.47393294
+30 s30 28 s28/10 -5992.22370309
+30 s30 30 s30/1 -1695.33118524
+30 s30 30 s30/3 -1608.11413011
+30 s30 30 s30/6 -1499.75038695
+30 s30 30 s30/8 -825.90900339
+30 s30 30 s30/10 -1437.95656679
+30 s30 31 s31/1 -2356.43835638
+30 s30 31 s31/3 -4055.42384883
+30 s30 31 s31/6 -2919.51134664
+30 s30 31 s31/8 -2633.93536299
+30 s30 31 s31/10 -4006.795115
+30 s30 32 s32/1 -5481.03063405
+30 s30 32 s32/3 -5526.14236159
+30 s30 32 s32/6 -4775.53057542
+30 s30 32 s32/8 -5291.11139842
+30 s30 32 s32/10 -4528.57215715
+30 s30 35 s35/1 -3640.3288671
+30 s30 35 s35/3 -4208.79565148
+30 s30 35 s35/6 -4518.29965451
+30 s30 35 s35/8 -4062.94446209
+30 s30 35 s35/10 -4649.9587983
+30 s30 37 s37/1 -5984.78222918
+30 s30 37 s37/3 -6136.4322262
+30 s30 37 s37/6 -5474.86705904
+30 s30 37 s37/8 -4947.21766845
+30 s30 37 s37/10 -6085.5670564
+30 s30 38 s38/1 -3028.99255218
+30 s30 38 s38/3 -2918.55614479
+30 s30 38 s38/6 -3039.57294451
+30 s30 38 s38/8 -3207.95262708
+30 s30 38 s38/10 -2745.00190154
+30 s30 40 s40/1 -4634.95426544
+30 s30 40 s40/3 -5014.31076122
+30 s30 40 s40/6 -4476.16998797
+30 s30 40 s40/8 -4603.99325218
+30 s30 40 s40/10 -4357.37992428
+31 s31 3 s3/1 -3294.69415772
+31 s31 3 s3/3 -3557.88055283
+31 s31 3 s3/6 -3617.60373216
+31 s31 3 s3/8 -3736.1793475
+31 s31 3 s3/10 -4055.32742762
+31 s31 4 s4/1 -3043.46778458
+31 s31 4 s4/3 -3023.23998174
+31 s31 4 s4/6 -3728.16930154
+31 s31 4 s4/8 -2978.33707274
+31 s31 4 s4/10 -3803.69514613
+31 s31 7 s7/1 -3908.23309344
+31 s31 7 s7/3 -3946.16493716
+31 s31 7 s7/6 -3857.43168016
+31 s31 7 s7/8 -4039.50737097
+31 s31 7 s7/10 -3910.4052828
+31 s31 8 s8/1 -4523.85343244
+31 s31 8 s8/3 -4652.36177247
+31 s31 8 s8/6 -4903.43793328
+31 s31 8 s8/8 -4586.26265549
+31 s31 8 s8/10 -4635.5875901
+31 s31 9 s9/1 -3171.57454251
+31 s31 9 s9/3 -3068.93748052
+31 s31 9 s9/6 -3304.14498655
+31 s31 9 s9/8 -3462.79992375
+31 s31 9 s9/10 -3660.99143487
+31 s31 13 s13/1 -4425.26237254
+31 s31 13 s13/3 -4887.90456047
+31 s31 13 s13/6 -4543.10357587
+31 s31 13 s13/8 -4634.50875902
+31 s31 13 s13/10 -4423.75586687
+31 s31 15 s15/1 -2653.96880799
+31 s31 15 s15/3 -2674.72545803
+31 s31 15 s15/6 -2745.06735481
+31 s31 15 s15/8 -2346.42288294
+31 s31 15 s15/10 -2495.08709261
+31 s31 18 s18/1 -4789.84400569
+31 s31 18 s18/3 -4304.64348271
+31 s31 18 s18/6 -4618.95118142
+31 s31 18 s18/8 -4359.95159701
+31 s31 18 s18/10 -4574.80266252
+31 s31 19 s19/1 -3802.18582905
+31 s31 19 s19/3 -4279.32466407
+31 s31 19 s19/6 -4223.2929879
+31 s31 19 s19/8 -4694.10862641
+31 s31 19 s19/10 -3880.49209192
+31 s31 22 s22/1 -2743.51602101
+31 s31 22 s22/3 -2593.27686403
+31 s31 22 s22/6 -3133.32442951
+31 s31 22 s22/8 -2997.20411043
+31 s31 22 s22/10 -3149.36484519
+31 s31 23 s23/1 -3905.79070148
+31 s31 23 s23/3 -3679.30549599
+31 s31 23 s23/6 -3307.17298559
+31 s31 23 s23/8 -4001.95959155
+31 s31 23 s23/10 -3759.27839067
+31 s31 25 s25/1 -3366.66588954
+31 s31 25 s25/3 -3515.54391224
+31 s31 25 s25/6 -3318.17438283
+31 s31 25 s25/8 -3615.32411462
+31 s31 25 s25/10 -3476.17240873
+31 s31 28 s28/1 -4713.20512491
+31 s31 28 s28/3 -4579.26031206
+31 s31 28 s28/6 -4544.75232505
+31 s31 28 s28/8 -4801.17980935
+31 s31 28 s28/10 -4593.27737246
+31 s31 30 s30/1 -2674.14867654
+31 s31 30 s30/3 -3005.96043866
+31 s31 30 s30/6 -2829.01846893
+31 s31 30 s30/8 -2483.52177124
+31 s31 30 s30/10 -2549.22458936
+31 s31 31 s31/1 -2724.2754152
+31 s31 31 s31/3 -1857.41403824
+31 s31 31 s31/6 -1973.44433813
+31 s31 31 s31/8 -2513.49716235
+31 s31 31 s31/10 -1820.97103732
+31 s31 32 s32/1 -3973.23686415
+31 s31 32 s32/3 -3943.5738161
+31 s31 32 s32/6 -3606.32094631
+31 s31 32 s32/8 -3785.05453983
+31 s31 32 s32/10 -3356.11317668
+31 s31 35 s35/1 -3137.66816407
+31 s31 35 s35/3 -2852.55321543
+31 s31 35 s35/6 -3241.79608545
+31 s31 35 s35/8 -3022.29091214
+31 s31 35 s35/10 -3552.58870649
+31 s31 37 s37/1 -4703.79279182
+31 s31 37 s37/3 -4833.07734018
+31 s31 37 s37/6 -3907.52926699
+31 s31 37 s37/8 -3487.72961561
+31 s31 37 s37/10 -4719.02596974
+31 s31 38 s38/1 -3804.69487163
+31 s31 38 s38/3 -3545.79490704
+31 s31 38 s38/6 -3960.3768924
+31 s31 38 s38/8 -3950.49614872
+31 s31 38 s38/10 -3699.42709121
+31 s31 40 s40/1 -3886.98211706
+31 s31 40 s40/3 -4191.18238079
+31 s31 40 s40/6 -4066.15707928
+31 s31 40 s40/8 -3980.62440027
+31 s31 40 s40/10 -3984.41323747
+32 s32 3 s3/1 -3481.44865816
+32 s32 3 s3/3 -3595.59422267
+32 s32 3 s3/6 -3340.32436965
+32 s32 3 s3/8 -3530.55916379
+32 s32 3 s3/10 -3733.86113116
+32 s32 4 s4/1 -3415.99834875
+32 s32 4 s4/3 -3352.85775891
+32 s32 4 s4/6 -3257.52441401
+32 s32 4 s4/8 -3216.48660203
+32 s32 4 s4/10 -3879.77419768
+32 s32 7 s7/1 -3996.80171914
+32 s32 7 s7/3 -3800.22323738
+32 s32 7 s7/6 -3599.63763993
+32 s32 7 s7/8 -4023.09287769
+32 s32 7 s7/10 -3723.8961306
+32 s32 8 s8/1 -3927.44454704
+32 s32 8 s8/3 -3676.39887399
+32 s32 8 s8/6 -3720.73898374
+32 s32 8 s8/8 -3447.80882094
+32 s32 8 s8/10 -3643.68488641
+32 s32 9 s9/1 -4359.49267419
+32 s32 9 s9/3 -4222.77898444
+32 s32 9 s9/6 -4216.79980363
+32 s32 9 s9/8 -4140.4437327
+32 s32 9 s9/10 -4450.82974639
+32 s32 13 s13/1 -3308.04268181
+32 s32 13 s13/3 -3580.13299752
+32 s32 13 s13/6 -3159.09017895
+32 s32 13 s13/8 -3283.76704583
+32 s32 13 s13/10 -3080.31334708
+32 s32 15 s15/1 -2398.62231509
+32 s32 15 s15/3 -2503.02526136
+32 s32 15 s15/6 -2209.21900396
+32 s32 15 s15/8 -3036.37839137
+32 s32 15 s15/10 -3490.34409742
+32 s32 18 s18/1 -3303.33083543
+32 s32 18 s18/3 -2913.41746349
+32 s32 18 s18/6 -3008.40792755
+32 s32 18 s18/8 -2873.03663611
+32 s32 18 s18/10 -3197.93494951
+32 s32 19 s19/1 -2619.90662239
+32 s32 19 s19/3 -2734.07164667
+32 s32 19 s19/6 -3126.62695763
+32 s32 19 s19/8 -2986.49752003
+32 s32 19 s19/10 -2953.1627146
+32 s32 22 s22/1 -4760.38387621
+32 s32 22 s22/3 -4753.34213918
+32 s32 22 s22/6 -5278.21922142
+32 s32 22 s22/8 -5031.68731869
+32 s32 22 s22/10 -5008.58954608
+32 s32 23 s23/1 -4424.88536858
+32 s32 23 s23/3 -4720.8973672
+32 s32 23 s23/6 -4350.28166904
+32 s32 23 s23/8 -4771.40699913
+32 s32 23 s23/10 -4202.95712702
+32 s32 25 s25/1 -3402.83132332
+32 s32 25 s25/3 -3225.41484415
+32 s32 25 s25/6 -3027.31174396
+32 s32 25 s25/8 -3207.78734977
+32 s32 25 s25/10 -3260.90211767
+32 s32 28 s28/1 -4262.18547504
+32 s32 28 s28/3 -4313.88973205
+32 s32 28 s28/6 -4300.78708628
+32 s32 28 s28/8 -4384.79956853
+32 s32 28 s28/10 -3808.79171646
+32 s32 30 s30/1 -4586.57713103
+32 s32 30 s30/3 -4857.61993231
+32 s32 30 s30/6 -4608.97429863
+32 s32 30 s30/8 -4894.14196906
+32 s32 30 s30/10 -4530.84126705
+32 s32 31 s31/1 -4965.28305801
+32 s32 31 s31/3 -3232.97665263
+32 s32 31 s31/6 -4109.43022166
+32 s32 31 s31/8 -4700.69670199
+32 s32 31 s31/10 -3158.6222623
+32 s32 32 s32/1 -1400.04142319
+32 s32 32 s32/3 -1471.63862249
+32 s32 32 s32/6 -1516.39381803
+32 s32 32 s32/8 -1179.08179137
+32 s32 32 s32/10 -1606.25051683
+32 s32 35 s35/1 -3998.48265398
+32 s32 35 s35/3 -3357.37138441
+32 s32 35 s35/6 -2802.69294465
+32 s32 35 s35/8 -3137.78371976
+32 s32 35 s35/10 -3394.4396583
+32 s32 37 s37/1 -4383.78071256
+32 s32 37 s37/3 -4454.22960435
+32 s32 37 s37/6 -3651.92757765
+32 s32 37 s37/8 -3432.14617407
+32 s32 37 s37/10 -4075.51765463
+32 s32 38 s38/1 -4684.65223915
+32 s32 38 s38/3 -4481.2456882
+32 s32 38 s38/6 -4819.61377814
+32 s32 38 s38/8 -4752.66048128
+32 s32 38 s38/10 -4679.25783168
+32 s32 40 s40/1 -3713.20737165
+32 s32 40 s40/3 -3993.88791391
+32 s32 40 s40/6 -3706.94187692
+32 s32 40 s40/8 -3660.09483497
+32 s32 40 s40/10 -3638.98252641
+35 s35 3 s3/1 -2629.99743718
+35 s35 3 s3/3 -2728.48998423
+35 s35 3 s3/6 -2929.77990244
+35 s35 3 s3/8 -2737.72206345
+35 s35 3 s3/10 -2949.71829906
+35 s35 4 s4/1 -2601.23631638
+35 s35 4 s4/3 -2396.55979124
+35 s35 4 s4/6 -2546.29151109
+35 s35 4 s4/8 -2339.13926292
+35 s35 4 s4/10 -3324.81878496
+35 s35 7 s7/1 -3913.13111744
+35 s35 7 s7/3 -3876.07567135
+35 s35 7 s7/6 -3672.47456635
+35 s35 7 s7/8 -3980.36207192
+35 s35 7 s7/10 -3347.45454423
+35 s35 8 s8/1 -4038.67376066
+35 s35 8 s8/3 -3806.1353599
+35 s35 8 s8/6 -3898.74319573
+35 s35 8 s8/8 -3816.06122627
+35 s35 8 s8/10 -3849.60319515
+35 s35 9 s9/1 -3502.24046593
+35 s35 9 s9/3 -3385.56018459
+35 s35 9 s9/6 -3406.93863815
+35 s35 9 s9/8 -3107.60749355
+35 s35 9 s9/10 -3389.4402753
+35 s35 13 s13/1 -2624.28110155
+35 s35 13 s13/3 -2765.94302571
+35 s35 13 s13/6 -2543.86600788
+35 s35 13 s13/8 -2650.98496007
+35 s35 13 s13/10 -2343.05172093
+35 s35 15 s15/1 -2993.10453694
+35 s35 15 s15/3 -3076.91109514
+35 s35 15 s15/6 -2861.95651434
+35 s35 15 s15/8 -3031.66118545
+35 s35 15 s15/10 -2109.33741856
+35 s35 18 s18/1 -3035.49730933
+35 s35 18 s18/3 -2313.33089252
+35 s35 18 s18/6 -2511.11161463
+35 s35 18 s18/8 -2454.69728093
+35 s35 18 s18/10 -2654.99253428
+35 s35 19 s19/1 -3399.99579481
+35 s35 19 s19/3 -3545.84878311
+35 s35 19 s19/6 -3342.75380654
+35 s35 19 s19/8 -3644.82417017
+35 s35 19 s19/10 -3342.46548391
+35 s35 22 s22/1 -4144.58588782
+35 s35 22 s22/3 -4013.39977843
+35 s35 22 s22/6 -4569.5954763
+35 s35 22 s22/8 -4253.70722731
+35 s35 22 s22/10 -4172.92650511
+35 s35 23 s23/1 -3879.24107414
+35 s35 23 s23/3 -4182.86068514
+35 s35 23 s23/6 -3826.88461692
+35 s35 23 s23/8 -4164.38029282
+35 s35 23 s23/10 -3700.40739818
+35 s35 25 s25/1 -2353.51220217
+35 s35 25 s25/3 -2351.75940108
+35 s35 25 s25/6 -2215.93558444
+35 s35 25 s25/8 -2281.75100329
+35 s35 25 s25/10 -2396.53146639
+35 s35 28 s28/1 -3242.62293578
+35 s35 28 s28/3 -3145.54405433
+35 s35 28 s28/6 -3161.69901133
+35 s35 28 s28/8 -3460.48280145
+35 s35 28 s28/10 -3130.20867157
+35 s35 30 s30/1 -3719.69872843
+35 s35 30 s30/3 -4033.57701225
+35 s35 30 s30/6 -3835.96540364
+35 s35 30 s30/8 -4213.43393094
+35 s35 30 s30/10 -3737.83513544
+35 s35 31 s31/1 -3637.87436761
+35 s35 31 s31/3 -3257.6985864
+35 s35 31 s31/6 -2823.29980411
+35 s35 31 s31/8 -3301.15243938
+35 s35 31 s31/10 -3281.1310619
+35 s35 32 s32/1 -2982.21528736
+35 s35 32 s32/3 -3153.57772893
+35 s35 32 s32/6 -2910.44123827
+35 s35 32 s32/8 -2934.4008954
+35 s35 32 s32/10 -2908.80485422
+35 s35 35 s35/1 -3027.39385142
+35 s35 35 s35/3 -1977.74812817
+35 s35 35 s35/6 -1777.94978034
+35 s35 35 s35/8 -1726.81146917
+35 s35 35 s35/10 -2337.52098854
+35 s35 37 s37/1 -3083.80116802
+35 s35 37 s37/3 -3175.91404615
+35 s35 37 s37/6 -3564.29392185
+35 s35 37 s37/8 -3242.77652296
+35 s35 37 s37/10 -3104.98121563
+35 s35 38 s38/1 -3949.35061046
+35 s35 38 s38/3 -3787.29739957
+35 s35 38 s38/6 -4217.60402972
+35 s35 38 s38/8 -3878.23065452
+35 s35 38 s38/10 -3938.91071819
+35 s35 40 s40/1 -2492.86221414
+35 s35 40 s40/3 -2685.54559886
+35 s35 40 s40/6 -2855.14417866
+35 s35 40 s40/8 -2565.77623868
+35 s35 40 s40/10 -3047.82986247
+37 s37 3 s3/1 -3347.73193542
+37 s37 3 s3/3 -3386.29089298
+37 s37 3 s3/6 -4145.74220476
+37 s37 3 s3/8 -3841.49225099
+37 s37 3 s3/10 -3708.19810549
+37 s37 4 s4/1 -3992.94431208
+37 s37 4 s4/3 -3674.34102399
+37 s37 4 s4/6 -4056.12617671
+37 s37 4 s4/8 -3687.67324754
+37 s37 4 s4/10 -4723.12608509
+37 s37 7 s7/1 -4671.00523462
+37 s37 7 s7/3 -4852.12652774
+37 s37 7 s7/6 -4358.69169597
+37 s37 7 s7/8 -4761.07266948
+37 s37 7 s7/10 -4244.93718081
+37 s37 8 s8/1 -4888.13275433
+37 s37 8 s8/3 -5222.4471334
+37 s37 8 s8/6 -4989.53297198
+37 s37 8 s8/8 -5380.61437698
+37 s37 8 s8/10 -5245.10245345
+37 s37 9 s9/1 -4461.97197329
+37 s37 9 s9/3 -4317.86362434
+37 s37 9 s9/6 -4763.27936789
+37 s37 9 s9/8 -4706.75225409
+37 s37 9 s9/10 -4762.90492801
+37 s37 13 s13/1 -2705.98850595
+37 s37 13 s13/3 -3492.47406384
+37 s37 13 s13/6 -3208.28121704
+37 s37 13 s13/8 -3204.92184035
+37 s37 13 s13/10 -2846.81650282
+37 s37 15 s15/1 -3475.5819192
+37 s37 15 s15/3 -3500.44254169
+37 s37 15 s15/6 -3253.21773129
+37 s37 15 s15/8 -3869.45696446
+37 s37 15 s15/10 -3735.74466224
+37 s37 18 s18/1 -4248.18462448
+37 s37 18 s18/3 -3835.2689915
+37 s37 18 s18/6 -3988.82120835
+37 s37 18 s18/8 -4000.35744946
+37 s37 18 s18/10 -4415.8952017
+37 s37 19 s19/1 -3428.65549423
+37 s37 19 s19/3 -3334.64597979
+37 s37 19 s19/6 -2745.93723939
+37 s37 19 s19/8 -3126.11526158
+37 s37 19 s19/10 -3246.85900974
+37 s37 22 s22/1 -3802.08835708
+37 s37 22 s22/3 -3898.95474126
+37 s37 22 s22/6 -4369.19801658
+37 s37 22 s22/8 -3907.1245176
+37 s37 22 s22/10 -3607.64737813
+37 s37 23 s23/1 -5205.00445868
+37 s37 23 s23/3 -5168.54275138
+37 s37 23 s23/6 -4980.94796855
+37 s37 23 s23/8 -5350.01537911
+37 s37 23 s23/10 -4959.9234081
+37 s37 25 s25/1 -4059.25815544
+37 s37 25 s25/3 -3953.32278429
+37 s37 25 s25/6 -3640.25144807
+37 s37 25 s25/8 -3478.25513417
+37 s37 25 s25/10 -3985.58588488
+37 s37 28 s28/1 -1770.3525039
+37 s37 28 s28/3 -1862.35119548
+37 s37 28 s28/6 -1796.32858027
+37 s37 28 s28/8 -2230.13715335
+37 s37 28 s28/10 -1843.95641805
+37 s37 30 s30/1 -5135.49776734
+37 s37 30 s30/3 -5424.60823062
+37 s37 30 s30/6 -5200.91129295
+37 s37 30 s30/8 -5356.54450147
+37 s37 30 s30/10 -5130.36181483
+37 s37 31 s31/1 -4813.52373089
+37 s37 31 s31/3 -3874.07295501
+37 s37 31 s31/6 -3843.42289871
+37 s37 31 s31/8 -4411.64509181
+37 s37 31 s31/10 -3863.04735893
+37 s37 32 s32/1 -3947.16038218
+37 s37 32 s32/3 -3669.46229069
+37 s37 32 s32/6 -3563.89629466
+37 s37 32 s32/8 -3431.84465293
+37 s37 32 s32/10 -3416.12471004
+37 s37 35 s35/1 -4310.62579244
+37 s37 35 s35/3 -2845.25367679
+37 s37 35 s35/6 -3678.21231785
+37 s37 35 s35/8 -3958.77686193
+37 s37 35 s35/10 -3708.69894331
+37 s37 37 s37/1 -2026.73809469
+37 s37 37 s37/3 -2076.5065985
+37 s37 37 s37/6 -1322.12745022
+37 s37 37 s37/8 -1420.40271347
+37 s37 37 s37/10 -1799.09150143
+37 s37 38 s38/1 -5194.52366806
+37 s37 38 s38/3 -4756.94476628
+37 s37 38 s38/6 -5457.50111132
+37 s37 38 s38/8 -5315.70013416
+37 s37 38 s38/10 -4868.01182272
+37 s37 40 s40/1 -3517.01393705
+37 s37 40 s40/3 -4115.52328612
+37 s37 40 s40/6 -3826.76525207
+37 s37 40 s40/8 -3550.5571365
+37 s37 40 s40/10 -3838.17065346
+38 s38 3 s3/1 -2500.66524809
+38 s38 3 s3/3 -3113.76487532
+38 s38 3 s3/6 -2268.34645822
+38 s38 3 s3/8 -2518.65944776
+38 s38 3 s3/10 -3312.4448462
+38 s38 4 s4/1 -2358.3472841
+38 s38 4 s4/3 -2820.58463101
+38 s38 4 s4/6 -3767.53975525
+38 s38 4 s4/8 -2905.51038405
+38 s38 4 s4/10 -3364.95835537
+38 s38 7 s7/1 -3079.51500683
+38 s38 7 s7/3 -2995.94686187
+38 s38 7 s7/6 -2728.64006669
+38 s38 7 s7/8 -2632.18971995
+38 s38 7 s7/10 -3580.2942623
+38 s38 8 s8/1 -3401.48475841
+38 s38 8 s8/3 -3170.84565396
+38 s38 8 s8/6 -3565.07308101
+38 s38 8 s8/8 -3542.05330799
+38 s38 8 s8/10 -3205.57917872
+38 s38 9 s9/1 -2443.45811206
+38 s38 9 s9/3 -2624.20317848
+38 s38 9 s9/6 -2452.88289599
+38 s38 9 s9/8 -2045.23427053
+38 s38 9 s9/10 -3276.71105312
+38 s38 13 s13/1 -4721.97426652
+38 s38 13 s13/3 -5226.71057651
+38 s38 13 s13/6 -4680.83782604
+38 s38 13 s13/8 -4765.99705531
+38 s38 13 s13/10 -4423.14289953
+38 s38 15 s15/1 -3688.28384289
+38 s38 15 s15/3 -3598.51972277
+38 s38 15 s15/6 -3768.57386495
+38 s38 15 s15/8 -3455.04650083
+38 s38 15 s15/10 -2655.02750604
+38 s38 18 s18/1 -4745.50875736
+38 s38 18 s18/3 -4292.87295517
+38 s38 18 s18/6 -4286.22959369
+38 s38 18 s18/8 -4323.9459001
+38 s38 18 s18/10 -4070.24822599
+38 s38 19 s19/1 -5065.02813215
+38 s38 19 s19/3 -5596.88172312
+38 s38 19 s19/6 -5112.50499266
+38 s38 19 s19/8 -5196.17038292
+38 s38 19 s19/10 -4680.31338835
+38 s38 22 s22/1 -4021.19787287
+38 s38 22 s22/3 -3786.51071329
+38 s38 22 s22/6 -4126.76659422
+38 s38 22 s22/8 -4065.28029675
+38 s38 22 s22/10 -4500.77994993
+38 s38 23 s23/1 -1661.15610539
+38 s38 23 s23/3 -3004.62043703
+38 s38 23 s23/6 -2592.15772151
+38 s38 23 s23/8 -2839.53533334
+38 s38 23 s23/10 -1886.64429816
+38 s38 25 s25/1 -2759.63230835
+38 s38 25 s25/3 -3053.91603984
+38 s38 25 s25/6 -3286.6060079
+38 s38 25 s25/8 -3919.08978822
+38 s38 25 s25/10 -3123.42430915
+38 s38 28 s28/1 -4986.3941653
+38 s38 28 s28/3 -4693.8398904
+38 s38 28 s28/6 -4733.98872901
+38 s38 28 s28/8 -5112.93431814
+38 s38 28 s28/10 -4951.60499646
+38 s38 30 s30/1 -2171.70657427
+38 s38 30 s30/3 -2248.55987093
+38 s38 30 s30/6 -2181.24702757
+38 s38 30 s30/8 -3093.05158571
+38 s38 30 s30/10 -2149.11586703
+38 s38 31 s31/1 -2676.45733009
+38 s38 31 s31/3 -4915.56732116
+38 s38 31 s31/6 -3152.65508137
+38 s38 31 s31/8 -2864.95806167
+38 s38 31 s31/10 -4942.57718181
+38 s38 32 s32/1 -4855.40392521
+38 s38 32 s32/3 -5162.90276935
+38 s38 32 s32/6 -3858.1984399
+38 s38 32 s32/8 -4687.73273849
+38 s38 32 s32/10 -3771.2787541
+38 s38 35 s35/1 -3397.84237105
+38 s38 35 s35/3 -4119.31301927
+38 s38 35 s35/6 -3394.96054168
+38 s38 35 s35/8 -3015.43872493
+38 s38 35 s35/10 -4064.95202992
+38 s38 37 s37/1 -4882.73064872
+38 s38 37 s37/3 -5081.54156869
+38 s38 37 s37/6 -5186.66678655
+38 s38 37 s37/8 -4640.2911261
+38 s38 37 s37/10 -4932.9113395
+38 s38 38 s38/1 -1436.2690717
+38 s38 38 s38/3 -1193.10987941
+38 s38 38 s38/6 -1871.70903439
+38 s38 38 s38/8 -1502.77950363
+38 s38 38 s38/10 -1295.39466213
+38 s38 40 s40/1 -3610.15958833
+38 s38 40 s40/3 -3930.3899188
+38 s38 40 s40/6 -3367.88066228
+38 s38 40 s40/8 -3469.37561895
+38 s38 40 s40/10 -3436.14514204
+40 s40 3 s3/1 -2651.09965589
+40 s40 3 s3/3 -2683.04351464
+40 s40 3 s3/6 -2445.93813943
+40 s40 3 s3/8 -2073.66669064
+40 s40 3 s3/10 -2813.14996979
+40 s40 4 s4/1 -2568.59239584
+40 s40 4 s4/3 -2532.61350347
+40 s40 4 s4/6 -2594.61908498
+40 s40 4 s4/8 -2621.96322247
+40 s40 4 s4/10 -3338.43480092
+40 s40 7 s7/1 -3678.20163099
+40 s40 7 s7/3 -3596.8945058
+40 s40 7 s7/6 -3396.75831689
+40 s40 7 s7/8 -3567.20188339
+40 s40 7 s7/10 -3221.24213788
+40 s40 8 s8/1 -3715.39341458
+40 s40 8 s8/3 -3571.88906273
+40 s40 8 s8/6 -3730.13258897
+40 s40 8 s8/8 -3603.12267398
+40 s40 8 s8/10 -3590.12354748
+40 s40 9 s9/1 -3548.4965001
+40 s40 9 s9/3 -3472.79256194
+40 s40 9 s9/6 -2863.6915347
+40 s40 9 s9/8 -2720.70479404
+40 s40 9 s9/10 -3294.53578043
+40 s40 13 s13/1 -2815.20644872
+40 s40 13 s13/3 -2764.01526588
+40 s40 13 s13/6 -2694.45585779
+40 s40 13 s13/8 -2500.66028557
+40 s40 13 s13/10 -2249.42220386
+40 s40 15 s15/1 -3607.07793083
+40 s40 15 s15/3 -3681.10792076
+40 s40 15 s15/6 -3516.22845085
+40 s40 15 s15/8 -3790.99726558
+40 s40 15 s15/10 -2371.56146064
+40 s40 18 s18/1 -2885.25365973
+40 s40 18 s18/3 -1730.26525228
+40 s40 18 s18/6 -1920.5352865
+40 s40 18 s18/8 -2041.83010019
+40 s40 18 s18/10 -1902.29679874
+40 s40 19 s19/1 -4146.34040048
+40 s40 19 s19/3 -4291.00986689
+40 s40 19 s19/6 -4104.42545501
+40 s40 19 s19/8 -4078.28359243
+40 s40 19 s19/10 -3964.82241087
+40 s40 22 s22/1 -4923.93362995
+40 s40 22 s22/3 -4790.15479765
+40 s40 22 s22/6 -5163.44878234
+40 s40 22 s22/8 -5045.57023204
+40 s40 22 s22/10 -5077.34842893
+40 s40 23 s23/1 -3195.09963137
+40 s40 23 s23/3 -4083.00238199
+40 s40 23 s23/6 -3343.03813699
+40 s40 23 s23/8 -3692.5758183
+40 s40 23 s23/10 -2921.14528812
+40 s40 25 s25/1 -2474.2456049
+40 s40 25 s25/3 -2495.90369101
+40 s40 25 s25/6 -2700.66256782
+40 s40 25 s25/8 -2093.23218401
+40 s40 25 s25/10 -2753.63733789
+40 s40 28 s28/1 -3607.32239622
+40 s40 28 s28/3 -3523.64440717
+40 s40 28 s28/6 -3508.00347721
+40 s40 28 s28/8 -3794.96537331
+40 s40 28 s28/10 -3545.02350553
+40 s40 30 s30/1 -4117.68401116
+40 s40 30 s30/3 -4318.14358145
+40 s40 30 s30/6 -3970.30405567
+40 s40 30 s30/8 -4663.03394225
+40 s40 30 s30/10 -4114.2734629
+40 s40 31 s31/1 -3883.11730819
+40 s40 31 s31/3 -4347.05405545
+40 s40 31 s31/6 -3585.00166747
+40 s40 31 s31/8 -3752.95802879
+40 s40 31 s31/10 -4361.37878865
+40 s40 32 s32/1 -3198.90321628
+40 s40 32 s32/3 -3536.7907758
+40 s40 32 s32/6 -3207.0830193
+40 s40 32 s32/8 -3269.19701762
+40 s40 32 s32/10 -3209.67847964
+40 s40 35 s35/1 -3144.80178138
+40 s40 35 s35/3 -2695.41443799
+40 s40 35 s35/6 -2639.71050693
+40 s40 35 s35/8 -2324.91676937
+40 s40 35 s35/10 -2033.60969477
+40 s40 37 s37/1 -3242.39681112
+40 s40 37 s37/3 -3311.51818371
+40 s40 37 s37/6 -4308.81184137
+40 s40 37 s37/8 -3954.90331952
+40 s40 37 s37/10 -3302.59396222
+40 s40 38 s38/1 -3399.74494682
+40 s40 38 s38/3 -3670.11719236
+40 s40 38 s38/6 -3704.4046877
+40 s40 38 s38/8 -3711.69159941
+40 s40 38 s38/10 -3659.77792774
+40 s40 40 s40/1 -2186.09198446
+40 s40 40 s40/3 -2228.13430956
+40 s40 40 s40/6 -2470.78602967
+40 s40 40 s40/8 -2214.25145046
+40 s40 40 s40/10 -2276.02148295
diff --git a/bob/bio/base/test/data/scores.mask b/bob/bio/base/test/data/scores.mask
new file mode 100644
index 0000000000000000000000000000000000000000..287c3f4dd2529898ffb161538333f16763a770a1
--- /dev/null
+++ b/bob/bio/base/test/data/scores.mask
@@ -0,0 +1,5 @@
+S2
+unknown-gallery.lst
+unknown-probe.lst
+MB 100 20 xV4
+ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ
\ No newline at end of file
diff --git a/bob/bio/base/test/data/scores.mtx b/bob/bio/base/test/data/scores.mtx
new file mode 100644
index 0000000000000000000000000000000000000000..e148dbf80e4699b8bec08bcf34a88cb2a9cbde59
Binary files /dev/null and b/bob/bio/base/test/data/scores.mtx differ
diff --git a/bob/bio/base/test/data/search.mask b/bob/bio/base/test/data/search.mask
new file mode 100644
index 0000000000000000000000000000000000000000..46ac522954d5eefa938bb579f0df8a32ccc69330
Binary files /dev/null and b/bob/bio/base/test/data/search.mask differ
diff --git a/bob/bio/base/test/data/search.mtx b/bob/bio/base/test/data/search.mtx
new file mode 100644
index 0000000000000000000000000000000000000000..5b0872e0667b3cc6210378d24ff74d710ec47003
Binary files /dev/null and b/bob/bio/base/test/data/search.mtx differ
diff --git a/bob/bio/base/test/data/test-4col.txt b/bob/bio/base/test/data/test-4col.txt
new file mode 100644
index 0000000000000000000000000000000000000000..3cc4dfeae1fcf413808e118a85d874d8d5849777
--- /dev/null
+++ b/bob/bio/base/test/data/test-4col.txt
@@ -0,0 +1,910 @@
+f_1014 f_1014 x 0.175237
+f_1014 f_1014 x 0.304839
+f_1014 f_1014 x 0.256713
+f_1014 f_1014 x 0.37347
+f_1014 f_1014 x 0.4842
+f_1014 f_1016 x -0.132795
+f_1014 f_1016 x -0.090261
+f_1014 f_1016 x -0.116631
+f_1014 f_1016 x -0.067892
+f_1014 f_1016 x -0.101526
+f_1015 f_1015 x 0.054443
+f_1015 f_1015 x 0.258395
+f_1015 f_1015 x 0.210023
+f_1015 f_1015 x 0.19985
+f_1015 f_1015 x 0.25951
+f_1015 f_1017 x -0.106891
+f_1015 f_1017 x -0.167279
+f_1015 f_1017 x -0.158916
+f_1015 f_1017 x -0.177507
+f_1015 f_1017 x -0.125337
+f_1016 f_1016 x 0.21881
+f_1016 f_1016 x 0.126132
+f_1016 f_1016 x 0.37815
+f_1016 f_1016 x 0.222685
+f_1016 f_1016 x 0.307243
+f_1016 f_1018 x -0.049229
+f_1016 f_1018 x -0.1148
+f_1016 f_1018 x -0.111412
+f_1016 f_1018 x -0.126608
+f_1016 f_1018 x -0.084573
+f_1017 f_1017 x -0.017341
+f_1017 f_1017 x 0.026926
+f_1017 f_1017 x 0.11222
+f_1017 f_1017 x 0.037274
+f_1017 f_1017 x 0.028239
+f_1017 f_1019 x -0.068405
+f_1017 f_1019 x -0.086171
+f_1017 f_1019 x -0.135923
+f_1017 f_1019 x -0.081824
+f_1017 f_1019 x -0.178919
+f_1018 f_1018 x 0.237832
+f_1018 f_1018 x 0.21383
+f_1018 f_1018 x 0.197277
+f_1018 f_1018 x 0.004259
+f_1018 f_1018 x 0.244453
+f_1018 f_1020 x -0.147546
+f_1018 f_1020 x -0.043125
+f_1018 f_1020 x -0.173616
+f_1018 f_1020 x -0.143199
+f_1018 f_1020 x -0.105378
+f_1019 f_1019 x 0.042442
+f_1019 f_1019 x 0.115268
+f_1019 f_1019 x 0.170583
+f_1019 f_1019 x 0.206193
+f_1019 f_1019 x 0.096731
+f_1019 f_1021 x -0.15031
+f_1019 f_1021 x -0.132395
+f_1019 f_1021 x -0.169058
+f_1019 f_1021 x -0.156056
+f_1019 f_1021 x -0.155288
+f_1020 f_1020 x 0.03643
+f_1020 f_1020 x 0.117264
+f_1020 f_1020 x 0.285537
+f_1020 f_1020 x 0.359734
+f_1020 f_1020 x 0.382881
+f_1020 f_1022 x 0.015456
+f_1020 f_1022 x -0.098693
+f_1020 f_1022 x 0.001723
+f_1020 f_1022 x -0.069837
+f_1020 f_1022 x 0.010294
+f_1021 f_1021 x 0.101494
+f_1021 f_1021 x 0.182224
+f_1021 f_1021 x 0.012012
+f_1021 f_1021 x 0.035786
+f_1021 f_1021 x 0.178588
+f_1021 f_1023 x -0.012187
+f_1021 f_1023 x -0.150579
+f_1021 f_1023 x -0.076234
+f_1021 f_1023 x -0.078789
+f_1021 f_1023 x -0.047604
+f_1022 f_1022 x 0.286642
+f_1022 f_1022 x -0.043404
+f_1022 f_1022 x 0.141256
+f_1022 f_1022 x 0.203942
+f_1022 f_1022 x 0.116838
+f_1022 f_1024 x -0.064643
+f_1022 f_1024 x -0.095398
+f_1022 f_1024 x -0.093624
+f_1022 f_1024 x -0.086501
+f_1022 f_1024 x -0.114908
+f_1023 f_1023 x 0.164015
+f_1023 f_1023 x 0.333836
+f_1023 f_1023 x 0.227632
+f_1023 f_1023 x 0.221866
+f_1023 f_1023 x 0.256993
+f_1023 f_1025 x -0.212049
+f_1023 f_1025 x -0.214593
+f_1023 f_1025 x -0.178651
+f_1023 f_1025 x -0.116316
+f_1023 f_1025 x -0.16932
+f_1024 f_1024 x 0.315482
+f_1024 f_1024 x 0.186705
+f_1024 f_1024 x 0.174492
+f_1024 f_1024 x 0.182486
+f_1024 f_1024 x 0.197654
+f_1024 f_1026 x -0.104582
+f_1024 f_1026 x -0.14075
+f_1024 f_1026 x -0.091511
+f_1024 f_1026 x -0.151864
+f_1024 f_1026 x -0.136013
+f_1025 f_1014 x -0.119154
+f_1025 f_1014 x -0.150153
+f_1025 f_1014 x -0.087496
+f_1025 f_1014 x -0.132967
+f_1025 f_1014 x -0.074032
+f_1025 f_1025 x -0.098941
+f_1025 f_1025 x -0.056289
+f_1025 f_1025 x -0.185361
+f_1025 f_1025 x 0.017452
+f_1025 f_1025 x 0.17846
+f_1026 f_1015 x -0.145975
+f_1026 f_1015 x -0.145888
+f_1026 f_1015 x -0.177149
+f_1026 f_1015 x -0.166486
+f_1026 f_1015 x -0.202473
+f_1026 f_1026 x 0.307376
+f_1026 f_1026 x 0.154666
+f_1026 f_1026 x 0.131216
+f_1026 f_1026 x 0.131029
+f_1026 f_1026 x 0.067151
+m_1040 m_1040 x 0.135275
+m_1040 m_1040 x 0.249472
+m_1040 m_1040 x 0.185975
+m_1040 m_1040 x 0.141155
+m_1040 m_1040 x 0.361171
+m_1040 m_1042 x -0.152226
+m_1040 m_1042 x -0.15413
+m_1040 m_1042 x -0.022675
+m_1040 m_1042 x -0.03507
+m_1040 m_1042 x -0.108974
+m_1041 m_1041 x 0.256448
+m_1041 m_1041 x 0.244108
+m_1041 m_1041 x 0.28142
+m_1041 m_1041 x 0.131366
+m_1041 m_1041 x 0.238593
+m_1041 m_1043 x -0.109183
+m_1041 m_1043 x -0.078833
+m_1041 m_1043 x -0.072502
+m_1041 m_1043 x -0.066688
+m_1041 m_1043 x -0.205101
+m_1042 m_1042 x 0.018683
+m_1042 m_1042 x 0.250633
+m_1042 m_1042 x 0.311741
+m_1042 m_1042 x 0.169665
+m_1042 m_1042 x 0.180004
+m_1042 m_1044 x -0.098772
+m_1042 m_1044 x -0.176161
+m_1042 m_1044 x -0.115254
+m_1042 m_1044 x -0.128812
+m_1042 m_1044 x -0.109547
+m_1043 m_1043 x 0.129869
+m_1043 m_1043 x 0.383131
+m_1043 m_1043 x 0.294704
+m_1043 m_1043 x 0.374444
+m_1043 m_1043 x 0.326108
+m_1043 m_1045 x -0.170887
+m_1043 m_1045 x -0.139108
+m_1043 m_1045 x -0.174187
+m_1043 m_1045 x -0.176998
+m_1043 m_1045 x -0.159841
+m_1044 m_1044 x 0.120106
+m_1044 m_1044 x 0.008721
+m_1044 m_1044 x 0.156735
+m_1044 m_1044 x 0.10402
+m_1044 m_1044 x 0.103297
+m_1044 m_1046 x -0.06416
+m_1044 m_1046 x -0.111405
+m_1044 m_1046 x -0.128987
+m_1044 m_1046 x -0.115382
+m_1044 m_1046 x -0.179751
+m_1045 m_1045 x 0.226013
+m_1045 m_1045 x 0.30898
+m_1045 m_1045 x 0.244402
+m_1045 m_1045 x 0.185819
+m_1045 m_1045 x 0.352065
+m_1045 m_1047 x -0.165835
+m_1045 m_1047 x -0.198608
+m_1045 m_1047 x -0.147002
+m_1045 m_1047 x -0.149473
+m_1045 m_1047 x -0.223582
+m_1046 m_1046 x 0.327642
+m_1046 m_1046 x 0.163479
+m_1046 m_1046 x 0.194457
+m_1046 m_1046 x 0.248568
+m_1046 m_1046 x 0.276627
+m_1046 m_1048 x -0.23229
+m_1046 m_1048 x -0.2629
+m_1046 m_1048 x -0.231205
+m_1046 m_1048 x -0.189854
+m_1046 m_1048 x -0.24022
+m_1047 m_1047 x 0.107771
+m_1047 m_1047 x 0.287596
+m_1047 m_1047 x 0.340219
+m_1047 m_1047 x 0.110695
+m_1047 m_1047 x 0.273247
+m_1047 m_1049 x -0.113823
+m_1047 m_1049 x -0.206661
+m_1047 m_1049 x -0.09003
+m_1047 m_1049 x -0.172021
+m_1047 m_1049 x -0.18018
+m_1048 m_1048 x 0.231718
+m_1048 m_1048 x 0.032567
+m_1048 m_1048 x 0.37068
+m_1048 m_1048 x 0.531794
+m_1048 m_1048 x 0.251853
+m_1048 m_1050 x -0.039807
+m_1048 m_1050 x -0.158791
+m_1048 m_1050 x -0.123597
+m_1048 m_1050 x -0.195967
+m_1048 m_1050 x -0.10318
+m_1049 m_1049 x 0.137166
+m_1049 m_1049 x 0.07881
+m_1049 m_1049 x 0.122634
+m_1049 m_1049 x 0.067998
+m_1049 m_1049 x 0.032458
+m_1049 m_1051 x -0.045168
+m_1049 m_1051 x -0.07624
+m_1049 m_1051 x -0.010425
+m_1049 m_1051 x -0.007416
+m_1049 m_1051 x -0.104273
+m_1050 m_1050 x 0.198104
+m_1050 m_1050 x 0.238023
+m_1050 m_1050 x 0.325879
+m_1050 m_1050 x 0.212732
+m_1050 m_1050 x 0.07356
+m_1050 m_1052 x -0.136036
+m_1050 m_1052 x -0.04766
+m_1050 m_1052 x -0.15562
+m_1050 m_1052 x -0.159182
+m_1050 m_1052 x -0.166221
+m_1051 m_1040 x -0.045368
+m_1051 m_1040 x -0.094739
+m_1051 m_1040 x -0.073475
+m_1051 m_1040 x -0.166177
+m_1051 m_1040 x -0.174827
+m_1051 m_1051 x 0.457431
+m_1051 m_1051 x 0.155697
+m_1051 m_1051 x 0.479951
+m_1051 m_1051 x 0.281574
+m_1051 m_1051 x 0.206361
+m_1052 m_1041 x -0.193203
+m_1052 m_1041 x -0.083981
+m_1052 m_1041 x -0.100523
+m_1052 m_1041 x -0.13021
+m_1052 m_1041 x -0.174762
+m_1052 m_1052 x 0.092376
+m_1052 m_1052 x 0.095863
+m_1052 m_1052 x 0.070707
+m_1052 m_1052 x 0.120926
+m_1052 m_1052 x 0.053403
+f_1014 f_1014 x 0.437731
+f_1014 f_1014 x 0.318402
+f_1014 f_1014 x 0.428893
+f_1014 f_1014 x 0.453113
+f_1014 f_1014 x 0.495515
+f_1014 f_1017 x -0.11742
+f_1014 f_1017 x -0.070269
+f_1014 f_1017 x -0.106312
+f_1014 f_1017 x -0.144875
+f_1014 f_1017 x -0.094553
+f_1015 f_1015 x 0.22944
+f_1015 f_1015 x 0.143853
+f_1015 f_1015 x 0.345441
+f_1015 f_1015 x 0.292318
+f_1015 f_1015 x 0.489542
+f_1015 f_1018 x -0.167798
+f_1015 f_1018 x -0.079764
+f_1015 f_1018 x -0.097843
+f_1015 f_1018 x -0.155892
+f_1015 f_1018 x -0.132385
+f_1016 f_1016 x 0.160622
+f_1016 f_1016 x 0.171162
+f_1016 f_1016 x 0.157513
+f_1016 f_1016 x 0.135925
+f_1016 f_1016 x 0.06149
+f_1016 f_1019 x -0.050159
+f_1016 f_1019 x -0.057178
+f_1016 f_1019 x -0.074997
+f_1016 f_1019 x -0.051324
+f_1016 f_1019 x -0.048703
+f_1017 f_1017 x 0.209104
+f_1017 f_1017 x 0.175552
+f_1017 f_1017 x 0.137198
+f_1017 f_1017 x 0.171513
+f_1017 f_1017 x 0.130996
+f_1017 f_1020 x -0.243561
+f_1017 f_1020 x -0.115798
+f_1017 f_1020 x -0.034842
+f_1017 f_1020 x -0.131362
+f_1017 f_1020 x -0.159915
+f_1018 f_1018 x -0.005463
+f_1018 f_1018 x 0.206381
+f_1018 f_1018 x 0.146986
+f_1018 f_1018 x 0.069634
+f_1018 f_1018 x 0.037562
+f_1018 f_1021 x -0.147572
+f_1018 f_1021 x -0.098223
+f_1018 f_1021 x -0.139565
+f_1018 f_1021 x -0.110759
+f_1018 f_1021 x -0.147047
+f_1019 f_1019 x 0.249895
+f_1019 f_1019 x 0.278538
+f_1019 f_1019 x 0.259574
+f_1019 f_1019 x 0.17637
+f_1019 f_1019 x 0.157258
+f_1019 f_1022 x -0.118328
+f_1019 f_1022 x -0.041292
+f_1019 f_1022 x -0.052633
+f_1019 f_1022 x -0.080992
+f_1019 f_1022 x -0.127107
+f_1020 f_1020 x 0.218971
+f_1020 f_1020 x 0.04365
+f_1020 f_1020 x 0.088146
+f_1020 f_1020 x 0.160735
+f_1020 f_1020 x 0.171037
+f_1020 f_1023 x -0.143461
+f_1020 f_1023 x -0.125433
+f_1020 f_1023 x -0.129891
+f_1020 f_1023 x -0.187145
+f_1020 f_1023 x -0.177769
+f_1021 f_1021 x -0.000116
+f_1021 f_1021 x 0.01191
+f_1021 f_1021 x -0.076906
+f_1021 f_1021 x -0.115962
+f_1021 f_1021 x -0.065717
+f_1021 f_1024 x -0.219317
+f_1021 f_1024 x -0.20047
+f_1021 f_1024 x -0.219448
+f_1021 f_1024 x -0.181918
+f_1021 f_1024 x -0.221209
+f_1022 f_1022 x 0.092949
+f_1022 f_1022 x 0.13708
+f_1022 f_1022 x 0.007386
+f_1022 f_1022 x 0.04151
+f_1022 f_1022 x 0.076811
+f_1022 f_1025 x -0.148761
+f_1022 f_1025 x -0.186116
+f_1022 f_1025 x -0.149164
+f_1022 f_1025 x -0.171441
+f_1022 f_1025 x -0.2179
+f_1023 f_1023 x 0.155696
+f_1023 f_1023 x 0.065824
+f_1023 f_1023 x 0.091544
+f_1023 f_1023 x 0.109188
+f_1023 f_1023 x 0.132669
+f_1023 f_1026 x -0.107141
+f_1023 f_1026 x -0.112328
+f_1023 f_1026 x -0.117225
+f_1023 f_1026 x -0.054713
+f_1023 f_1026 x -0.045185
+f_1024 f_1014 x -0.029009
+f_1024 f_1014 x -0.142735
+f_1024 f_1014 x -0.10747
+f_1024 f_1014 x -0.046912
+f_1024 f_1014 x -0.078291
+f_1024 f_1024 x 0.155625
+f_1024 f_1024 x 0.218861
+f_1024 f_1024 x 0.24453
+f_1024 f_1024 x 0.164316
+f_1024 f_1024 x 0.037576
+f_1025 f_1015 x -0.120623
+f_1025 f_1015 x -0.150187
+f_1025 f_1015 x -0.15106
+f_1025 f_1015 x -0.042806
+f_1025 f_1015 x -0.120825
+f_1025 f_1025 x 0.187759
+f_1025 f_1025 x 0.014105
+f_1025 f_1025 x 0.01868
+f_1025 f_1025 x 0.000269
+f_1025 f_1025 x 0.129064
+f_1026 f_1016 x -0.090137
+f_1026 f_1016 x -0.191546
+f_1026 f_1016 x -0.202833
+f_1026 f_1016 x -0.06334
+f_1026 f_1016 x -0.180062
+f_1026 f_1026 x 0.112111
+f_1026 f_1026 x 0.265684
+f_1026 f_1026 x 0.164375
+f_1026 f_1026 x 0.167411
+f_1026 f_1026 x 0.127449
+m_1040 m_1040 x 0.209957
+m_1040 m_1040 x 0.271467
+m_1040 m_1040 x 0.4301
+m_1040 m_1040 x 0.33632
+m_1040 m_1040 x 0.387182
+m_1040 m_1043 x -0.089345
+m_1040 m_1043 x -0.060908
+m_1040 m_1043 x -0.003329
+m_1040 m_1043 x -0.050925
+m_1040 m_1043 x -0.085675
+m_1041 m_1041 x 0.182627
+m_1041 m_1041 x 0.200762
+m_1041 m_1041 x 0.117049
+m_1041 m_1041 x 0.276846
+m_1041 m_1041 x 0.099233
+m_1041 m_1044 x -0.086125
+m_1041 m_1044 x -0.157261
+m_1041 m_1044 x -0.133127
+m_1041 m_1044 x -0.054866
+m_1041 m_1044 x -0.076243
+m_1042 m_1042 x 0.07247
+m_1042 m_1042 x 0.247412
+m_1042 m_1042 x 0.15837
+m_1042 m_1042 x 0.178847
+m_1042 m_1042 x 0.24374
+m_1042 m_1045 x -0.140707
+m_1042 m_1045 x -0.079508
+m_1042 m_1045 x -0.143072
+m_1042 m_1045 x -0.150436
+m_1042 m_1045 x -0.106972
+m_1043 m_1043 x 0.173801
+m_1043 m_1043 x 0.218501
+m_1043 m_1043 x 0.026206
+m_1043 m_1043 x -0.002241
+m_1043 m_1043 x -0.004563
+m_1043 m_1046 x -0.104471
+m_1043 m_1046 x -0.059102
+m_1043 m_1046 x -0.086887
+m_1043 m_1046 x -0.0566
+m_1043 m_1046 x -0.020795
+m_1044 m_1044 x 0.032542
+m_1044 m_1044 x 0.110404
+m_1044 m_1044 x 0.044183
+m_1044 m_1044 x 0.097114
+m_1044 m_1044 x 0.160409
+m_1044 m_1047 x -0.156181
+m_1044 m_1047 x -0.14282
+m_1044 m_1047 x -0.085566
+m_1044 m_1047 x -0.125108
+m_1044 m_1047 x -0.115352
+m_1045 m_1045 x 0.172385
+m_1045 m_1045 x 0.126612
+m_1045 m_1045 x 0.077574
+m_1045 m_1045 x 0.289203
+m_1045 m_1045 x 0.253339
+m_1045 m_1048 x -0.256196
+m_1045 m_1048 x -0.253315
+m_1045 m_1048 x -0.22607
+m_1045 m_1048 x -0.118963
+m_1045 m_1048 x -0.170421
+m_1046 m_1046 x -0.021949
+m_1046 m_1046 x -0.013185
+m_1046 m_1046 x 0.2579
+m_1046 m_1046 x 0.142666
+m_1046 m_1046 x 0.317434
+m_1046 m_1049 x -0.119188
+m_1046 m_1049 x -0.111455
+m_1046 m_1049 x -0.06934
+m_1046 m_1049 x -0.140823
+m_1046 m_1049 x -0.16487
+m_1047 m_1047 x 0.048617
+m_1047 m_1047 x 0.091316
+m_1047 m_1047 x 0.108092
+m_1047 m_1047 x 0.042686
+m_1047 m_1047 x 0.082616
+m_1047 m_1050 x -0.086422
+m_1047 m_1050 x -0.135674
+m_1047 m_1050 x -0.092624
+m_1047 m_1050 x -0.221991
+m_1047 m_1050 x -0.072428
+m_1048 m_1048 x -0.040296
+m_1048 m_1048 x 0.304093
+m_1048 m_1048 x 0.274446
+m_1048 m_1048 x 0.218834
+m_1048 m_1048 x 0.019644
+m_1048 m_1051 x -0.081076
+m_1048 m_1051 x -0.106185
+m_1048 m_1051 x -0.146137
+m_1048 m_1051 x -0.1589
+m_1048 m_1051 x -0.156646
+m_1049 m_1049 x 0.08706
+m_1049 m_1049 x 0.190712
+m_1049 m_1049 x 0.157489
+m_1049 m_1049 x 0.050289
+m_1049 m_1049 x 0.115878
+m_1049 m_1052 x -0.055599
+m_1049 m_1052 x -0.077193
+m_1049 m_1052 x -0.065377
+m_1049 m_1052 x -0.021629
+m_1049 m_1052 x -0.083342
+m_1050 m_1040 x -0.096163
+m_1050 m_1040 x -0.137793
+m_1050 m_1040 x -0.186286
+m_1050 m_1040 x -0.141722
+m_1050 m_1040 x -0.099895
+m_1050 m_1050 x 0.018712
+m_1050 m_1050 x 0.061794
+m_1050 m_1050 x -0.00523
+m_1050 m_1050 x 0.117835
+m_1050 m_1050 x -0.07796
+m_1051 m_1041 x -0.090685
+m_1051 m_1041 x -0.14119
+m_1051 m_1041 x -0.084481
+m_1051 m_1041 x -0.144805
+m_1051 m_1041 x -0.149656
+m_1051 m_1051 x 0.149061
+m_1051 m_1051 x 0.298765
+m_1051 m_1051 x 0.194495
+m_1051 m_1051 x 0.272661
+m_1051 m_1051 x 0.252346
+m_1052 m_1042 x -0.149167
+m_1052 m_1042 x -0.16615
+m_1052 m_1042 x -0.276333
+m_1052 m_1042 x -0.188244
+m_1052 m_1042 x -0.199263
+m_1052 m_1052 x 0.074832
+m_1052 m_1052 x 0.111728
+m_1052 m_1052 x 0.011147
+m_1052 m_1052 x 0.096093
+m_1052 m_1052 x 0.014352
+f_1014 f_1014 x 0.108577
+f_1014 f_1014 x 0.227893
+f_1014 f_1014 x 0.253652
+f_1014 f_1014 x 0.32725
+f_1014 f_1014 x 0.340216
+f_1014 f_1018 x -0.102353
+f_1014 f_1018 x -0.111658
+f_1014 f_1018 x -0.065165
+f_1014 f_1018 x -0.090465
+f_1014 f_1018 x -0.087901
+f_1015 f_1015 x 0.276852
+f_1015 f_1015 x 0.324612
+f_1015 f_1015 x 0.336296
+f_1015 f_1015 x 0.235154
+f_1015 f_1015 x 0.256454
+f_1015 f_1019 x -0.078625
+f_1015 f_1019 x -0.109084
+f_1015 f_1019 x -0.059179
+f_1015 f_1019 x -0.147283
+f_1015 f_1019 x -0.151253
+f_1016 f_1016 x 0.09251
+f_1016 f_1016 x 0.238722
+f_1016 f_1016 x 0.120821
+f_1016 f_1016 x 0.203909
+f_1016 f_1016 x 0.031465
+f_1016 f_1020 x -0.080126
+f_1016 f_1020 x -0.164751
+f_1016 f_1020 x -0.121187
+f_1016 f_1020 x -0.082511
+f_1016 f_1020 x -0.113241
+f_1017 f_1017 x 0.028233
+f_1017 f_1017 x 0.148459
+f_1017 f_1017 x -0.018476
+f_1017 f_1017 x 0.061587
+f_1017 f_1017 x 0.021536
+f_1017 f_1021 x 0.016132
+f_1017 f_1021 x -0.121139
+f_1017 f_1021 x -0.060869
+f_1017 f_1021 x -0.09941
+f_1017 f_1021 x -0.118627
+f_1018 f_1018 x 0.158122
+f_1018 f_1018 x 0.126481
+f_1018 f_1018 x 0.071357
+f_1018 f_1018 x 0.098801
+f_1018 f_1018 x 0.141165
+f_1018 f_1022 x -0.064997
+f_1018 f_1022 x -0.045456
+f_1018 f_1022 x -0.123946
+f_1018 f_1022 x -0.100114
+f_1018 f_1022 x -0.101694
+f_1019 f_1019 x 0.092109
+f_1019 f_1019 x 0.097601
+f_1019 f_1019 x 0.180552
+f_1019 f_1019 x 0.099773
+f_1019 f_1019 x 0.169073
+f_1019 f_1023 x -0.052974
+f_1019 f_1023 x -0.10636
+f_1019 f_1023 x -0.135503
+f_1019 f_1023 x -0.079938
+f_1019 f_1023 x -0.055776
+f_1020 f_1020 x 0.260382
+f_1020 f_1020 x 0.119577
+f_1020 f_1020 x -0.004131
+f_1020 f_1020 x 0.098814
+f_1020 f_1020 x 0.086
+f_1020 f_1024 x -0.028026
+f_1020 f_1024 x -0.026484
+f_1020 f_1024 x -0.072186
+f_1020 f_1024 x -0.06285
+f_1020 f_1024 x 0.003419
+f_1021 f_1021 x 0.039163
+f_1021 f_1021 x 0.033955
+f_1021 f_1021 x 0.062135
+f_1021 f_1021 x 0.010597
+f_1021 f_1021 x 0.091413
+f_1021 f_1025 x -0.248219
+f_1021 f_1025 x -0.151833
+f_1021 f_1025 x -0.176115
+f_1021 f_1025 x -0.131918
+f_1021 f_1025 x -0.077725
+f_1022 f_1022 x 0.180838
+f_1022 f_1022 x 0.143177
+f_1022 f_1022 x 0.232578
+f_1022 f_1022 x 0.289811
+f_1022 f_1022 x 0.114453
+f_1022 f_1026 x -0.158982
+f_1022 f_1026 x -0.060544
+f_1022 f_1026 x -0.105571
+f_1022 f_1026 x -0.176789
+f_1022 f_1026 x -0.077864
+f_1023 f_1014 x -0.107909
+f_1023 f_1014 x -0.12447
+f_1023 f_1014 x -0.081167
+f_1023 f_1014 x -0.036152
+f_1023 f_1014 x -0.067161
+f_1023 f_1023 x 0.15069
+f_1023 f_1023 x 0.233796
+f_1023 f_1023 x 0.205184
+f_1023 f_1023 x 0.017664
+f_1023 f_1023 x 0.151249
+f_1024 f_1015 x -0.109158
+f_1024 f_1015 x -0.069678
+f_1024 f_1015 x -0.130969
+f_1024 f_1015 x -0.104467
+f_1024 f_1015 x -0.141174
+f_1024 f_1024 x 0.263034
+f_1024 f_1024 x 0.273758
+f_1024 f_1024 x 0.216361
+f_1024 f_1024 x 0.234225
+f_1024 f_1024 x 0.195322
+f_1025 f_1016 x -0.07368
+f_1025 f_1016 x -0.013295
+f_1025 f_1016 x -0.052979
+f_1025 f_1016 x -0.080032
+f_1025 f_1016 x -0.046169
+f_1025 f_1025 x 0.040995
+f_1025 f_1025 x 0.015184
+f_1025 f_1025 x -0.038587
+f_1025 f_1025 x 0.115313
+f_1025 f_1025 x -0.025057
+f_1026 f_1017 x -0.134662
+f_1026 f_1017 x -0.173454
+f_1026 f_1017 x -0.107414
+f_1026 f_1017 x -0.072375
+f_1026 f_1017 x -0.096127
+f_1026 f_1026 x -0.027845
+f_1026 f_1026 x -0.109461
+f_1026 f_1026 x 0.14858
+f_1026 f_1026 x -0.049125
+f_1026 f_1026 x 0.001497
+m_1040 m_1040 x 0.221399
+m_1040 m_1040 x 0.279534
+m_1040 m_1040 x 0.199229
+m_1040 m_1040 x 0.133006
+m_1040 m_1040 x 0.082303
+m_1040 m_1044 x -0.049536
+m_1040 m_1044 x -0.113089
+m_1040 m_1044 x -0.149159
+m_1040 m_1044 x -0.116671
+m_1040 m_1044 x -0.111438
+m_1041 m_1041 x 0.051518
+m_1041 m_1041 x 0.08079
+m_1041 m_1041 x 0.071167
+m_1041 m_1041 x 0.077873
+m_1041 m_1041 x 0.120539
+m_1041 m_1045 x -0.109798
+m_1041 m_1045 x -0.019602
+m_1041 m_1045 x -0.018571
+m_1041 m_1045 x -0.097454
+m_1041 m_1045 x -0.14162
+m_1042 m_1042 x 0.239908
+m_1042 m_1042 x 0.394366
+m_1042 m_1042 x 0.424995
+m_1042 m_1042 x 0.362606
+m_1042 m_1042 x 0.083466
+m_1042 m_1046 x -0.082171
+m_1042 m_1046 x -0.082347
+m_1042 m_1046 x 0.019412
+m_1042 m_1046 x -0.132104
+m_1042 m_1046 x -0.10197
+m_1043 m_1043 x 0.141103
+m_1043 m_1043 x 0.151438
+m_1043 m_1043 x 0.123697
+m_1043 m_1043 x 0.187986
+m_1043 m_1043 x 0.112817
+m_1043 m_1047 x -0.077024
+m_1043 m_1047 x -0.042302
+m_1043 m_1047 x -0.026802
+m_1043 m_1047 x -0.083944
+m_1043 m_1047 x -0.155431
+m_1044 m_1044 x -0.028161
+m_1044 m_1044 x 0.054529
+m_1044 m_1044 x 0.13168
+m_1044 m_1044 x 0.038872
+m_1044 m_1044 x 0.077572
+m_1044 m_1048 x -0.213132
+m_1044 m_1048 x -0.193029
+m_1044 m_1048 x -0.200924
+m_1044 m_1048 x -0.16708
+m_1044 m_1048 x -0.204056
+m_1045 m_1045 x 0.153144
+m_1045 m_1045 x 0.093438
+m_1045 m_1045 x 0.087949
+m_1045 m_1045 x 0.160263
+m_1045 m_1045 x 0.084367
+m_1045 m_1049 x -0.045984
+m_1045 m_1049 x -0.118589
+m_1045 m_1049 x -0.018129
+m_1045 m_1049 x -0.108371
+m_1045 m_1049 x -0.158667
+m_1046 m_1046 x -0.106347
+m_1046 m_1046 x 0.159463
+m_1046 m_1046 x 0.269966
+m_1046 m_1046 x 0.168759
+m_1046 m_1046 x 0.289834
+m_1046 m_1050 x -0.101596
+m_1046 m_1050 x -0.128711
+m_1046 m_1050 x -0.059498
+m_1046 m_1050 x -0.173279
+m_1046 m_1050 x -0.110372
+m_1047 m_1047 x 0.071048
+m_1047 m_1047 x 0.20056
+m_1047 m_1047 x 0.176091
+m_1047 m_1047 x 0.098561
+m_1047 m_1047 x 0.164626
+m_1047 m_1051 x -0.093315
+m_1047 m_1051 x -0.018984
+m_1047 m_1051 x -0.103095
+m_1047 m_1051 x -0.077934
+m_1047 m_1051 x -0.118351
+m_1048 m_1048 x 0.377338
+m_1048 m_1048 x 0.424671
+m_1048 m_1048 x 0.297769
+m_1048 m_1048 x -0.005302
+m_1048 m_1048 x 0.196666
+m_1048 m_1052 x -0.069208
+m_1048 m_1052 x -0.177879
+m_1048 m_1052 x -0.10231
+m_1048 m_1052 x -0.122667
+m_1048 m_1052 x -0.068862
+m_1049 m_1040 x -0.153227
+m_1049 m_1040 x -0.184595
+m_1049 m_1040 x -0.136615
+m_1049 m_1040 x -0.077627
+m_1049 m_1040 x -0.106458
+m_1049 m_1049 x 0.111003
+m_1049 m_1049 x 0.101531
+m_1049 m_1049 x 0.123256
+m_1049 m_1049 x 0.12464
+m_1049 m_1049 x 0.051604
+m_1050 m_1041 x -0.054181
+m_1050 m_1041 x -0.140659
+m_1050 m_1041 x -0.129502
+m_1050 m_1041 x -0.108929
+m_1050 m_1041 x -0.032078
+m_1050 m_1050 x 0.126906
+m_1050 m_1050 x 0.13685
+m_1050 m_1050 x 0.033093
+m_1050 m_1050 x 0.047939
+m_1050 m_1050 x -0.013868
+m_1051 m_1042 x -0.153977
+m_1051 m_1042 x -0.113284
+m_1051 m_1042 x -0.23003
+m_1051 m_1042 x -0.186212
+m_1051 m_1042 x -0.145767
+m_1051 m_1051 x 0.235478
+m_1051 m_1051 x 0.207846
+m_1051 m_1051 x 0.278796
+m_1051 m_1051 x 0.142962
+m_1051 m_1051 x 0.180351
+m_1052 m_1043 x -0.178691
+m_1052 m_1043 x -0.197601
+m_1052 m_1043 x -0.129918
+m_1052 m_1043 x -0.167795
+m_1052 m_1043 x -0.175029
+m_1052 m_1052 x 0.082763
+m_1052 m_1052 x 0.112163
+m_1052 m_1052 x 0.188003
+m_1052 m_1052 x 0.044418
+m_1052 m_1052 x 0.127454
+f_1014 f_1015 x 0.014841
+f_1014 f_1015 x -0.026769
+f_1014 f_1015 x -0.080662
+f_1014 f_1015 x -0.085209
+f_1014 f_1015 x -0.072679
+f_1015 f_1016 x -0.164857
+f_1015 f_1016 x -0.178725
+f_1015 f_1016 x -0.128464
+f_1015 f_1016 x -0.214679
+f_1015 f_1016 x -0.134944
+f_1016 f_1017 x -0.014597
+f_1016 f_1017 x -0.071501
+f_1016 f_1017 x -0.128072
+f_1016 f_1017 x -0.123337
+f_1016 f_1017 x -0.116541
+f_1017 f_1018 x -0.141496
+f_1017 f_1018 x -0.196624
+f_1017 f_1018 x -0.173068
+f_1017 f_1018 x -0.230658
+f_1017 f_1018 x -0.205358
+f_1018 f_1019 x -0.048368
+f_1018 f_1019 x -0.043071
+f_1018 f_1019 x -0.049429
+f_1018 f_1019 x -0.014632
+f_1018 f_1019 x -0.093057
+f_1019 f_1020 x -0.124173
+f_1019 f_1020 x -0.122335
+f_1019 f_1020 x -0.078392
+f_1019 f_1020 x -0.211568
+f_1019 f_1020 x -0.221264
+f_1020 f_1021 x -0.190812
+f_1020 f_1021 x -0.130903
+f_1020 f_1021 x -0.148297
+f_1020 f_1021 x -0.218195
+f_1020 f_1021 x -0.130123
+f_1021 f_1022 x -0.020938
+f_1021 f_1022 x 0.032565
+f_1021 f_1022 x 0.029753
+f_1021 f_1022 x 0.008387
+f_1021 f_1022 x -0.029518
+f_1022 f_1023 x -0.065429
+f_1022 f_1023 x -0.0499
+f_1022 f_1023 x -0.092752
+f_1022 f_1023 x -0.115253
+f_1022 f_1023 x -0.043749
+f_1023 f_1024 x -0.160373
+f_1023 f_1024 x -0.073335
+f_1023 f_1024 x -0.05861
+f_1023 f_1024 x -0.094012
+f_1023 f_1024 x -0.056688
+f_1024 f_1025 x -0.328486
+f_1024 f_1025 x -0.308301
+f_1024 f_1025 x -0.220186
+f_1024 f_1025 x -0.365362
+f_1024 f_1025 x -0.178491
+f_1025 f_1026 x -0.098447
+f_1025 f_1026 x -0.079008
+f_1025 f_1026 x -0.120396
+f_1025 f_1026 x -0.092791
+f_1025 f_1026 x -0.052482
+f_1026 f_1014 x -0.066869
+f_1026 f_1014 x -0.139432
+f_1026 f_1014 x -0.037634
+f_1026 f_1014 x -0.20375
+f_1026 f_1014 x -0.132627
+m_1040 m_1041 x -0.045661
+m_1040 m_1041 x -0.025406
+m_1040 m_1041 x -0.075282
+m_1040 m_1041 x -0.05577
+m_1040 m_1041 x -0.070087
+m_1041 m_1042 x -0.205976
+m_1041 m_1042 x -0.130663
+m_1041 m_1042 x -0.081094
+m_1041 m_1042 x -0.097618
+m_1041 m_1042 x -0.021077
+m_1042 m_1043 x -0.037937
+m_1042 m_1043 x -0.002371
+m_1042 m_1043 x 0.012176
+m_1042 m_1043 x -0.093591
+m_1042 m_1043 x -0.038423
+m_1043 m_1044 x -0.101432
+m_1043 m_1044 x -0.039491
+m_1043 m_1044 x -0.11965
+m_1043 m_1044 x -0.109702
+m_1043 m_1044 x -0.156936
+m_1044 m_1045 x -0.085479
+m_1044 m_1045 x -0.13362
+m_1044 m_1045 x -0.12149
+m_1044 m_1045 x -0.075713
+m_1044 m_1045 x -0.08801
+m_1045 m_1046 x -0.106102
+m_1045 m_1046 x -0.141614
+m_1045 m_1046 x -0.150365
+m_1045 m_1046 x -0.123084
+m_1045 m_1046 x -0.201897
+m_1046 m_1047 x -0.125069
+m_1046 m_1047 x -0.168533
+m_1046 m_1047 x -0.112757
+m_1046 m_1047 x -0.1736
+m_1046 m_1047 x -0.172724
+m_1047 m_1048 x -0.166386
+m_1047 m_1048 x -0.170671
+m_1047 m_1048 x -0.058329
+m_1047 m_1048 x -0.109204
+m_1047 m_1048 x -0.122232
+m_1048 m_1049 x -0.204613
+m_1048 m_1049 x -0.219919
+m_1048 m_1049 x -0.146424
+m_1048 m_1049 x -0.16871
+m_1048 m_1049 x -0.142253
+m_1049 m_1050 x -0.051034
+m_1049 m_1050 x -0.103298
+m_1049 m_1050 x -0.035702
+m_1049 m_1050 x -0.100288
+m_1049 m_1050 x -0.00913
+m_1050 m_1051 x -0.073954
+m_1050 m_1051 x -0.099813
+m_1050 m_1051 x -0.044652
+m_1050 m_1051 x -0.043802
+m_1050 m_1051 x -0.139938
+m_1051 m_1052 x -0.109771
+m_1051 m_1052 x -0.121056
+m_1051 m_1052 x -0.102811
+m_1051 m_1052 x -0.097827
+m_1051 m_1052 x -0.106235
+m_1052 m_1040 x -0.129523
+m_1052 m_1040 x -0.167863
+m_1052 m_1040 x -0.179332
+m_1052 m_1040 x -0.169263
+m_1052 m_1040 x -0.188729
diff --git a/bob/bio/base/test/data/test-5col.txt b/bob/bio/base/test/data/test-5col.txt
new file mode 100644
index 0000000000000000000000000000000000000000..430047a567c7fbd0ab3ec68ab5888732324b9b8c
--- /dev/null
+++ b/bob/bio/base/test/data/test-5col.txt
@@ -0,0 +1,910 @@
+f_1014 x f_1014 x 0.175237
+f_1014 x f_1014 x 0.304839
+f_1014 x f_1014 x 0.256713
+f_1014 x f_1014 x 0.37347
+f_1014 x f_1014 x 0.4842
+f_1014 x f_1016 x -0.132795
+f_1014 x f_1016 x -0.090261
+f_1014 x f_1016 x -0.116631
+f_1014 x f_1016 x -0.067892
+f_1014 x f_1016 x -0.101526
+f_1015 x f_1015 x 0.054443
+f_1015 x f_1015 x 0.258395
+f_1015 x f_1015 x 0.210023
+f_1015 x f_1015 x 0.19985
+f_1015 x f_1015 x 0.25951
+f_1015 x f_1017 x -0.106891
+f_1015 x f_1017 x -0.167279
+f_1015 x f_1017 x -0.158916
+f_1015 x f_1017 x -0.177507
+f_1015 x f_1017 x -0.125337
+f_1016 x f_1016 x 0.21881
+f_1016 x f_1016 x 0.126132
+f_1016 x f_1016 x 0.37815
+f_1016 x f_1016 x 0.222685
+f_1016 x f_1016 x 0.307243
+f_1016 x f_1018 x -0.049229
+f_1016 x f_1018 x -0.1148
+f_1016 x f_1018 x -0.111412
+f_1016 x f_1018 x -0.126608
+f_1016 x f_1018 x -0.084573
+f_1017 x f_1017 x -0.017341
+f_1017 x f_1017 x 0.026926
+f_1017 x f_1017 x 0.11222
+f_1017 x f_1017 x 0.037274
+f_1017 x f_1017 x 0.028239
+f_1017 x f_1019 x -0.068405
+f_1017 x f_1019 x -0.086171
+f_1017 x f_1019 x -0.135923
+f_1017 x f_1019 x -0.081824
+f_1017 x f_1019 x -0.178919
+f_1018 x f_1018 x 0.237832
+f_1018 x f_1018 x 0.21383
+f_1018 x f_1018 x 0.197277
+f_1018 x f_1018 x 0.004259
+f_1018 x f_1018 x 0.244453
+f_1018 x f_1020 x -0.147546
+f_1018 x f_1020 x -0.043125
+f_1018 x f_1020 x -0.173616
+f_1018 x f_1020 x -0.143199
+f_1018 x f_1020 x -0.105378
+f_1019 x f_1019 x 0.042442
+f_1019 x f_1019 x 0.115268
+f_1019 x f_1019 x 0.170583
+f_1019 x f_1019 x 0.206193
+f_1019 x f_1019 x 0.096731
+f_1019 x f_1021 x -0.15031
+f_1019 x f_1021 x -0.132395
+f_1019 x f_1021 x -0.169058
+f_1019 x f_1021 x -0.156056
+f_1019 x f_1021 x -0.155288
+f_1020 x f_1020 x 0.03643
+f_1020 x f_1020 x 0.117264
+f_1020 x f_1020 x 0.285537
+f_1020 x f_1020 x 0.359734
+f_1020 x f_1020 x 0.382881
+f_1020 x f_1022 x 0.015456
+f_1020 x f_1022 x -0.098693
+f_1020 x f_1022 x 0.001723
+f_1020 x f_1022 x -0.069837
+f_1020 x f_1022 x 0.010294
+f_1021 x f_1021 x 0.101494
+f_1021 x f_1021 x 0.182224
+f_1021 x f_1021 x 0.012012
+f_1021 x f_1021 x 0.035786
+f_1021 x f_1021 x 0.178588
+f_1021 x f_1023 x -0.012187
+f_1021 x f_1023 x -0.150579
+f_1021 x f_1023 x -0.076234
+f_1021 x f_1023 x -0.078789
+f_1021 x f_1023 x -0.047604
+f_1022 x f_1022 x 0.286642
+f_1022 x f_1022 x -0.043404
+f_1022 x f_1022 x 0.141256
+f_1022 x f_1022 x 0.203942
+f_1022 x f_1022 x 0.116838
+f_1022 x f_1024 x -0.064643
+f_1022 x f_1024 x -0.095398
+f_1022 x f_1024 x -0.093624
+f_1022 x f_1024 x -0.086501
+f_1022 x f_1024 x -0.114908
+f_1023 x f_1023 x 0.164015
+f_1023 x f_1023 x 0.333836
+f_1023 x f_1023 x 0.227632
+f_1023 x f_1023 x 0.221866
+f_1023 x f_1023 x 0.256993
+f_1023 x f_1025 x -0.212049
+f_1023 x f_1025 x -0.214593
+f_1023 x f_1025 x -0.178651
+f_1023 x f_1025 x -0.116316
+f_1023 x f_1025 x -0.16932
+f_1024 x f_1024 x 0.315482
+f_1024 x f_1024 x 0.186705
+f_1024 x f_1024 x 0.174492
+f_1024 x f_1024 x 0.182486
+f_1024 x f_1024 x 0.197654
+f_1024 x f_1026 x -0.104582
+f_1024 x f_1026 x -0.14075
+f_1024 x f_1026 x -0.091511
+f_1024 x f_1026 x -0.151864
+f_1024 x f_1026 x -0.136013
+f_1025 x f_1014 x -0.119154
+f_1025 x f_1014 x -0.150153
+f_1025 x f_1014 x -0.087496
+f_1025 x f_1014 x -0.132967
+f_1025 x f_1014 x -0.074032
+f_1025 x f_1025 x -0.098941
+f_1025 x f_1025 x -0.056289
+f_1025 x f_1025 x -0.185361
+f_1025 x f_1025 x 0.017452
+f_1025 x f_1025 x 0.17846
+f_1026 x f_1015 x -0.145975
+f_1026 x f_1015 x -0.145888
+f_1026 x f_1015 x -0.177149
+f_1026 x f_1015 x -0.166486
+f_1026 x f_1015 x -0.202473
+f_1026 x f_1026 x 0.307376
+f_1026 x f_1026 x 0.154666
+f_1026 x f_1026 x 0.131216
+f_1026 x f_1026 x 0.131029
+f_1026 x f_1026 x 0.067151
+m_1040 x m_1040 x 0.135275
+m_1040 x m_1040 x 0.249472
+m_1040 x m_1040 x 0.185975
+m_1040 x m_1040 x 0.141155
+m_1040 x m_1040 x 0.361171
+m_1040 x m_1042 x -0.152226
+m_1040 x m_1042 x -0.15413
+m_1040 x m_1042 x -0.022675
+m_1040 x m_1042 x -0.03507
+m_1040 x m_1042 x -0.108974
+m_1041 x m_1041 x 0.256448
+m_1041 x m_1041 x 0.244108
+m_1041 x m_1041 x 0.28142
+m_1041 x m_1041 x 0.131366
+m_1041 x m_1041 x 0.238593
+m_1041 x m_1043 x -0.109183
+m_1041 x m_1043 x -0.078833
+m_1041 x m_1043 x -0.072502
+m_1041 x m_1043 x -0.066688
+m_1041 x m_1043 x -0.205101
+m_1042 x m_1042 x 0.018683
+m_1042 x m_1042 x 0.250633
+m_1042 x m_1042 x 0.311741
+m_1042 x m_1042 x 0.169665
+m_1042 x m_1042 x 0.180004
+m_1042 x m_1044 x -0.098772
+m_1042 x m_1044 x -0.176161
+m_1042 x m_1044 x -0.115254
+m_1042 x m_1044 x -0.128812
+m_1042 x m_1044 x -0.109547
+m_1043 x m_1043 x 0.129869
+m_1043 x m_1043 x 0.383131
+m_1043 x m_1043 x 0.294704
+m_1043 x m_1043 x 0.374444
+m_1043 x m_1043 x 0.326108
+m_1043 x m_1045 x -0.170887
+m_1043 x m_1045 x -0.139108
+m_1043 x m_1045 x -0.174187
+m_1043 x m_1045 x -0.176998
+m_1043 x m_1045 x -0.159841
+m_1044 x m_1044 x 0.120106
+m_1044 x m_1044 x 0.008721
+m_1044 x m_1044 x 0.156735
+m_1044 x m_1044 x 0.10402
+m_1044 x m_1044 x 0.103297
+m_1044 x m_1046 x -0.06416
+m_1044 x m_1046 x -0.111405
+m_1044 x m_1046 x -0.128987
+m_1044 x m_1046 x -0.115382
+m_1044 x m_1046 x -0.179751
+m_1045 x m_1045 x 0.226013
+m_1045 x m_1045 x 0.30898
+m_1045 x m_1045 x 0.244402
+m_1045 x m_1045 x 0.185819
+m_1045 x m_1045 x 0.352065
+m_1045 x m_1047 x -0.165835
+m_1045 x m_1047 x -0.198608
+m_1045 x m_1047 x -0.147002
+m_1045 x m_1047 x -0.149473
+m_1045 x m_1047 x -0.223582
+m_1046 x m_1046 x 0.327642
+m_1046 x m_1046 x 0.163479
+m_1046 x m_1046 x 0.194457
+m_1046 x m_1046 x 0.248568
+m_1046 x m_1046 x 0.276627
+m_1046 x m_1048 x -0.23229
+m_1046 x m_1048 x -0.2629
+m_1046 x m_1048 x -0.231205
+m_1046 x m_1048 x -0.189854
+m_1046 x m_1048 x -0.24022
+m_1047 x m_1047 x 0.107771
+m_1047 x m_1047 x 0.287596
+m_1047 x m_1047 x 0.340219
+m_1047 x m_1047 x 0.110695
+m_1047 x m_1047 x 0.273247
+m_1047 x m_1049 x -0.113823
+m_1047 x m_1049 x -0.206661
+m_1047 x m_1049 x -0.09003
+m_1047 x m_1049 x -0.172021
+m_1047 x m_1049 x -0.18018
+m_1048 x m_1048 x 0.231718
+m_1048 x m_1048 x 0.032567
+m_1048 x m_1048 x 0.37068
+m_1048 x m_1048 x 0.531794
+m_1048 x m_1048 x 0.251853
+m_1048 x m_1050 x -0.039807
+m_1048 x m_1050 x -0.158791
+m_1048 x m_1050 x -0.123597
+m_1048 x m_1050 x -0.195967
+m_1048 x m_1050 x -0.10318
+m_1049 x m_1049 x 0.137166
+m_1049 x m_1049 x 0.07881
+m_1049 x m_1049 x 0.122634
+m_1049 x m_1049 x 0.067998
+m_1049 x m_1049 x 0.032458
+m_1049 x m_1051 x -0.045168
+m_1049 x m_1051 x -0.07624
+m_1049 x m_1051 x -0.010425
+m_1049 x m_1051 x -0.007416
+m_1049 x m_1051 x -0.104273
+m_1050 x m_1050 x 0.198104
+m_1050 x m_1050 x 0.238023
+m_1050 x m_1050 x 0.325879
+m_1050 x m_1050 x 0.212732
+m_1050 x m_1050 x 0.07356
+m_1050 x m_1052 x -0.136036
+m_1050 x m_1052 x -0.04766
+m_1050 x m_1052 x -0.15562
+m_1050 x m_1052 x -0.159182
+m_1050 x m_1052 x -0.166221
+m_1051 x m_1040 x -0.045368
+m_1051 x m_1040 x -0.094739
+m_1051 x m_1040 x -0.073475
+m_1051 x m_1040 x -0.166177
+m_1051 x m_1040 x -0.174827
+m_1051 x m_1051 x 0.457431
+m_1051 x m_1051 x 0.155697
+m_1051 x m_1051 x 0.479951
+m_1051 x m_1051 x 0.281574
+m_1051 x m_1051 x 0.206361
+m_1052 x m_1041 x -0.193203
+m_1052 x m_1041 x -0.083981
+m_1052 x m_1041 x -0.100523
+m_1052 x m_1041 x -0.13021
+m_1052 x m_1041 x -0.174762
+m_1052 x m_1052 x 0.092376
+m_1052 x m_1052 x 0.095863
+m_1052 x m_1052 x 0.070707
+m_1052 x m_1052 x 0.120926
+m_1052 x m_1052 x 0.053403
+f_1014 x f_1014 x 0.437731
+f_1014 x f_1014 x 0.318402
+f_1014 x f_1014 x 0.428893
+f_1014 x f_1014 x 0.453113
+f_1014 x f_1014 x 0.495515
+f_1014 x f_1017 x -0.11742
+f_1014 x f_1017 x -0.070269
+f_1014 x f_1017 x -0.106312
+f_1014 x f_1017 x -0.144875
+f_1014 x f_1017 x -0.094553
+f_1015 x f_1015 x 0.22944
+f_1015 x f_1015 x 0.143853
+f_1015 x f_1015 x 0.345441
+f_1015 x f_1015 x 0.292318
+f_1015 x f_1015 x 0.489542
+f_1015 x f_1018 x -0.167798
+f_1015 x f_1018 x -0.079764
+f_1015 x f_1018 x -0.097843
+f_1015 x f_1018 x -0.155892
+f_1015 x f_1018 x -0.132385
+f_1016 x f_1016 x 0.160622
+f_1016 x f_1016 x 0.171162
+f_1016 x f_1016 x 0.157513
+f_1016 x f_1016 x 0.135925
+f_1016 x f_1016 x 0.06149
+f_1016 x f_1019 x -0.050159
+f_1016 x f_1019 x -0.057178
+f_1016 x f_1019 x -0.074997
+f_1016 x f_1019 x -0.051324
+f_1016 x f_1019 x -0.048703
+f_1017 x f_1017 x 0.209104
+f_1017 x f_1017 x 0.175552
+f_1017 x f_1017 x 0.137198
+f_1017 x f_1017 x 0.171513
+f_1017 x f_1017 x 0.130996
+f_1017 x f_1020 x -0.243561
+f_1017 x f_1020 x -0.115798
+f_1017 x f_1020 x -0.034842
+f_1017 x f_1020 x -0.131362
+f_1017 x f_1020 x -0.159915
+f_1018 x f_1018 x -0.005463
+f_1018 x f_1018 x 0.206381
+f_1018 x f_1018 x 0.146986
+f_1018 x f_1018 x 0.069634
+f_1018 x f_1018 x 0.037562
+f_1018 x f_1021 x -0.147572
+f_1018 x f_1021 x -0.098223
+f_1018 x f_1021 x -0.139565
+f_1018 x f_1021 x -0.110759
+f_1018 x f_1021 x -0.147047
+f_1019 x f_1019 x 0.249895
+f_1019 x f_1019 x 0.278538
+f_1019 x f_1019 x 0.259574
+f_1019 x f_1019 x 0.17637
+f_1019 x f_1019 x 0.157258
+f_1019 x f_1022 x -0.118328
+f_1019 x f_1022 x -0.041292
+f_1019 x f_1022 x -0.052633
+f_1019 x f_1022 x -0.080992
+f_1019 x f_1022 x -0.127107
+f_1020 x f_1020 x 0.218971
+f_1020 x f_1020 x 0.04365
+f_1020 x f_1020 x 0.088146
+f_1020 x f_1020 x 0.160735
+f_1020 x f_1020 x 0.171037
+f_1020 x f_1023 x -0.143461
+f_1020 x f_1023 x -0.125433
+f_1020 x f_1023 x -0.129891
+f_1020 x f_1023 x -0.187145
+f_1020 x f_1023 x -0.177769
+f_1021 x f_1021 x -0.000116
+f_1021 x f_1021 x 0.01191
+f_1021 x f_1021 x -0.076906
+f_1021 x f_1021 x -0.115962
+f_1021 x f_1021 x -0.065717
+f_1021 x f_1024 x -0.219317
+f_1021 x f_1024 x -0.20047
+f_1021 x f_1024 x -0.219448
+f_1021 x f_1024 x -0.181918
+f_1021 x f_1024 x -0.221209
+f_1022 x f_1022 x 0.092949
+f_1022 x f_1022 x 0.13708
+f_1022 x f_1022 x 0.007386
+f_1022 x f_1022 x 0.04151
+f_1022 x f_1022 x 0.076811
+f_1022 x f_1025 x -0.148761
+f_1022 x f_1025 x -0.186116
+f_1022 x f_1025 x -0.149164
+f_1022 x f_1025 x -0.171441
+f_1022 x f_1025 x -0.2179
+f_1023 x f_1023 x 0.155696
+f_1023 x f_1023 x 0.065824
+f_1023 x f_1023 x 0.091544
+f_1023 x f_1023 x 0.109188
+f_1023 x f_1023 x 0.132669
+f_1023 x f_1026 x -0.107141
+f_1023 x f_1026 x -0.112328
+f_1023 x f_1026 x -0.117225
+f_1023 x f_1026 x -0.054713
+f_1023 x f_1026 x -0.045185
+f_1024 x f_1014 x -0.029009
+f_1024 x f_1014 x -0.142735
+f_1024 x f_1014 x -0.10747
+f_1024 x f_1014 x -0.046912
+f_1024 x f_1014 x -0.078291
+f_1024 x f_1024 x 0.155625
+f_1024 x f_1024 x 0.218861
+f_1024 x f_1024 x 0.24453
+f_1024 x f_1024 x 0.164316
+f_1024 x f_1024 x 0.037576
+f_1025 x f_1015 x -0.120623
+f_1025 x f_1015 x -0.150187
+f_1025 x f_1015 x -0.15106
+f_1025 x f_1015 x -0.042806
+f_1025 x f_1015 x -0.120825
+f_1025 x f_1025 x 0.187759
+f_1025 x f_1025 x 0.014105
+f_1025 x f_1025 x 0.01868
+f_1025 x f_1025 x 0.000269
+f_1025 x f_1025 x 0.129064
+f_1026 x f_1016 x -0.090137
+f_1026 x f_1016 x -0.191546
+f_1026 x f_1016 x -0.202833
+f_1026 x f_1016 x -0.06334
+f_1026 x f_1016 x -0.180062
+f_1026 x f_1026 x 0.112111
+f_1026 x f_1026 x 0.265684
+f_1026 x f_1026 x 0.164375
+f_1026 x f_1026 x 0.167411
+f_1026 x f_1026 x 0.127449
+m_1040 x m_1040 x 0.209957
+m_1040 x m_1040 x 0.271467
+m_1040 x m_1040 x 0.4301
+m_1040 x m_1040 x 0.33632
+m_1040 x m_1040 x 0.387182
+m_1040 x m_1043 x -0.089345
+m_1040 x m_1043 x -0.060908
+m_1040 x m_1043 x -0.003329
+m_1040 x m_1043 x -0.050925
+m_1040 x m_1043 x -0.085675
+m_1041 x m_1041 x 0.182627
+m_1041 x m_1041 x 0.200762
+m_1041 x m_1041 x 0.117049
+m_1041 x m_1041 x 0.276846
+m_1041 x m_1041 x 0.099233
+m_1041 x m_1044 x -0.086125
+m_1041 x m_1044 x -0.157261
+m_1041 x m_1044 x -0.133127
+m_1041 x m_1044 x -0.054866
+m_1041 x m_1044 x -0.076243
+m_1042 x m_1042 x 0.07247
+m_1042 x m_1042 x 0.247412
+m_1042 x m_1042 x 0.15837
+m_1042 x m_1042 x 0.178847
+m_1042 x m_1042 x 0.24374
+m_1042 x m_1045 x -0.140707
+m_1042 x m_1045 x -0.079508
+m_1042 x m_1045 x -0.143072
+m_1042 x m_1045 x -0.150436
+m_1042 x m_1045 x -0.106972
+m_1043 x m_1043 x 0.173801
+m_1043 x m_1043 x 0.218501
+m_1043 x m_1043 x 0.026206
+m_1043 x m_1043 x -0.002241
+m_1043 x m_1043 x -0.004563
+m_1043 x m_1046 x -0.104471
+m_1043 x m_1046 x -0.059102
+m_1043 x m_1046 x -0.086887
+m_1043 x m_1046 x -0.0566
+m_1043 x m_1046 x -0.020795
+m_1044 x m_1044 x 0.032542
+m_1044 x m_1044 x 0.110404
+m_1044 x m_1044 x 0.044183
+m_1044 x m_1044 x 0.097114
+m_1044 x m_1044 x 0.160409
+m_1044 x m_1047 x -0.156181
+m_1044 x m_1047 x -0.14282
+m_1044 x m_1047 x -0.085566
+m_1044 x m_1047 x -0.125108
+m_1044 x m_1047 x -0.115352
+m_1045 x m_1045 x 0.172385
+m_1045 x m_1045 x 0.126612
+m_1045 x m_1045 x 0.077574
+m_1045 x m_1045 x 0.289203
+m_1045 x m_1045 x 0.253339
+m_1045 x m_1048 x -0.256196
+m_1045 x m_1048 x -0.253315
+m_1045 x m_1048 x -0.22607
+m_1045 x m_1048 x -0.118963
+m_1045 x m_1048 x -0.170421
+m_1046 x m_1046 x -0.021949
+m_1046 x m_1046 x -0.013185
+m_1046 x m_1046 x 0.2579
+m_1046 x m_1046 x 0.142666
+m_1046 x m_1046 x 0.317434
+m_1046 x m_1049 x -0.119188
+m_1046 x m_1049 x -0.111455
+m_1046 x m_1049 x -0.06934
+m_1046 x m_1049 x -0.140823
+m_1046 x m_1049 x -0.16487
+m_1047 x m_1047 x 0.048617
+m_1047 x m_1047 x 0.091316
+m_1047 x m_1047 x 0.108092
+m_1047 x m_1047 x 0.042686
+m_1047 x m_1047 x 0.082616
+m_1047 x m_1050 x -0.086422
+m_1047 x m_1050 x -0.135674
+m_1047 x m_1050 x -0.092624
+m_1047 x m_1050 x -0.221991
+m_1047 x m_1050 x -0.072428
+m_1048 x m_1048 x -0.040296
+m_1048 x m_1048 x 0.304093
+m_1048 x m_1048 x 0.274446
+m_1048 x m_1048 x 0.218834
+m_1048 x m_1048 x 0.019644
+m_1048 x m_1051 x -0.081076
+m_1048 x m_1051 x -0.106185
+m_1048 x m_1051 x -0.146137
+m_1048 x m_1051 x -0.1589
+m_1048 x m_1051 x -0.156646
+m_1049 x m_1049 x 0.08706
+m_1049 x m_1049 x 0.190712
+m_1049 x m_1049 x 0.157489
+m_1049 x m_1049 x 0.050289
+m_1049 x m_1049 x 0.115878
+m_1049 x m_1052 x -0.055599
+m_1049 x m_1052 x -0.077193
+m_1049 x m_1052 x -0.065377
+m_1049 x m_1052 x -0.021629
+m_1049 x m_1052 x -0.083342
+m_1050 x m_1040 x -0.096163
+m_1050 x m_1040 x -0.137793
+m_1050 x m_1040 x -0.186286
+m_1050 x m_1040 x -0.141722
+m_1050 x m_1040 x -0.099895
+m_1050 x m_1050 x 0.018712
+m_1050 x m_1050 x 0.061794
+m_1050 x m_1050 x -0.00523
+m_1050 x m_1050 x 0.117835
+m_1050 x m_1050 x -0.07796
+m_1051 x m_1041 x -0.090685
+m_1051 x m_1041 x -0.14119
+m_1051 x m_1041 x -0.084481
+m_1051 x m_1041 x -0.144805
+m_1051 x m_1041 x -0.149656
+m_1051 x m_1051 x 0.149061
+m_1051 x m_1051 x 0.298765
+m_1051 x m_1051 x 0.194495
+m_1051 x m_1051 x 0.272661
+m_1051 x m_1051 x 0.252346
+m_1052 x m_1042 x -0.149167
+m_1052 x m_1042 x -0.16615
+m_1052 x m_1042 x -0.276333
+m_1052 x m_1042 x -0.188244
+m_1052 x m_1042 x -0.199263
+m_1052 x m_1052 x 0.074832
+m_1052 x m_1052 x 0.111728
+m_1052 x m_1052 x 0.011147
+m_1052 x m_1052 x 0.096093
+m_1052 x m_1052 x 0.014352
+f_1014 x f_1014 x 0.108577
+f_1014 x f_1014 x 0.227893
+f_1014 x f_1014 x 0.253652
+f_1014 x f_1014 x 0.32725
+f_1014 x f_1014 x 0.340216
+f_1014 x f_1018 x -0.102353
+f_1014 x f_1018 x -0.111658
+f_1014 x f_1018 x -0.065165
+f_1014 x f_1018 x -0.090465
+f_1014 x f_1018 x -0.087901
+f_1015 x f_1015 x 0.276852
+f_1015 x f_1015 x 0.324612
+f_1015 x f_1015 x 0.336296
+f_1015 x f_1015 x 0.235154
+f_1015 x f_1015 x 0.256454
+f_1015 x f_1019 x -0.078625
+f_1015 x f_1019 x -0.109084
+f_1015 x f_1019 x -0.059179
+f_1015 x f_1019 x -0.147283
+f_1015 x f_1019 x -0.151253
+f_1016 x f_1016 x 0.09251
+f_1016 x f_1016 x 0.238722
+f_1016 x f_1016 x 0.120821
+f_1016 x f_1016 x 0.203909
+f_1016 x f_1016 x 0.031465
+f_1016 x f_1020 x -0.080126
+f_1016 x f_1020 x -0.164751
+f_1016 x f_1020 x -0.121187
+f_1016 x f_1020 x -0.082511
+f_1016 x f_1020 x -0.113241
+f_1017 x f_1017 x 0.028233
+f_1017 x f_1017 x 0.148459
+f_1017 x f_1017 x -0.018476
+f_1017 x f_1017 x 0.061587
+f_1017 x f_1017 x 0.021536
+f_1017 x f_1021 x 0.016132
+f_1017 x f_1021 x -0.121139
+f_1017 x f_1021 x -0.060869
+f_1017 x f_1021 x -0.09941
+f_1017 x f_1021 x -0.118627
+f_1018 x f_1018 x 0.158122
+f_1018 x f_1018 x 0.126481
+f_1018 x f_1018 x 0.071357
+f_1018 x f_1018 x 0.098801
+f_1018 x f_1018 x 0.141165
+f_1018 x f_1022 x -0.064997
+f_1018 x f_1022 x -0.045456
+f_1018 x f_1022 x -0.123946
+f_1018 x f_1022 x -0.100114
+f_1018 x f_1022 x -0.101694
+f_1019 x f_1019 x 0.092109
+f_1019 x f_1019 x 0.097601
+f_1019 x f_1019 x 0.180552
+f_1019 x f_1019 x 0.099773
+f_1019 x f_1019 x 0.169073
+f_1019 x f_1023 x -0.052974
+f_1019 x f_1023 x -0.10636
+f_1019 x f_1023 x -0.135503
+f_1019 x f_1023 x -0.079938
+f_1019 x f_1023 x -0.055776
+f_1020 x f_1020 x 0.260382
+f_1020 x f_1020 x 0.119577
+f_1020 x f_1020 x -0.004131
+f_1020 x f_1020 x 0.098814
+f_1020 x f_1020 x 0.086
+f_1020 x f_1024 x -0.028026
+f_1020 x f_1024 x -0.026484
+f_1020 x f_1024 x -0.072186
+f_1020 x f_1024 x -0.06285
+f_1020 x f_1024 x 0.003419
+f_1021 x f_1021 x 0.039163
+f_1021 x f_1021 x 0.033955
+f_1021 x f_1021 x 0.062135
+f_1021 x f_1021 x 0.010597
+f_1021 x f_1021 x 0.091413
+f_1021 x f_1025 x -0.248219
+f_1021 x f_1025 x -0.151833
+f_1021 x f_1025 x -0.176115
+f_1021 x f_1025 x -0.131918
+f_1021 x f_1025 x -0.077725
+f_1022 x f_1022 x 0.180838
+f_1022 x f_1022 x 0.143177
+f_1022 x f_1022 x 0.232578
+f_1022 x f_1022 x 0.289811
+f_1022 x f_1022 x 0.114453
+f_1022 x f_1026 x -0.158982
+f_1022 x f_1026 x -0.060544
+f_1022 x f_1026 x -0.105571
+f_1022 x f_1026 x -0.176789
+f_1022 x f_1026 x -0.077864
+f_1023 x f_1014 x -0.107909
+f_1023 x f_1014 x -0.12447
+f_1023 x f_1014 x -0.081167
+f_1023 x f_1014 x -0.036152
+f_1023 x f_1014 x -0.067161
+f_1023 x f_1023 x 0.15069
+f_1023 x f_1023 x 0.233796
+f_1023 x f_1023 x 0.205184
+f_1023 x f_1023 x 0.017664
+f_1023 x f_1023 x 0.151249
+f_1024 x f_1015 x -0.109158
+f_1024 x f_1015 x -0.069678
+f_1024 x f_1015 x -0.130969
+f_1024 x f_1015 x -0.104467
+f_1024 x f_1015 x -0.141174
+f_1024 x f_1024 x 0.263034
+f_1024 x f_1024 x 0.273758
+f_1024 x f_1024 x 0.216361
+f_1024 x f_1024 x 0.234225
+f_1024 x f_1024 x 0.195322
+f_1025 x f_1016 x -0.07368
+f_1025 x f_1016 x -0.013295
+f_1025 x f_1016 x -0.052979
+f_1025 x f_1016 x -0.080032
+f_1025 x f_1016 x -0.046169
+f_1025 x f_1025 x 0.040995
+f_1025 x f_1025 x 0.015184
+f_1025 x f_1025 x -0.038587
+f_1025 x f_1025 x 0.115313
+f_1025 x f_1025 x -0.025057
+f_1026 x f_1017 x -0.134662
+f_1026 x f_1017 x -0.173454
+f_1026 x f_1017 x -0.107414
+f_1026 x f_1017 x -0.072375
+f_1026 x f_1017 x -0.096127
+f_1026 x f_1026 x -0.027845
+f_1026 x f_1026 x -0.109461
+f_1026 x f_1026 x 0.14858
+f_1026 x f_1026 x -0.049125
+f_1026 x f_1026 x 0.001497
+m_1040 x m_1040 x 0.221399
+m_1040 x m_1040 x 0.279534
+m_1040 x m_1040 x 0.199229
+m_1040 x m_1040 x 0.133006
+m_1040 x m_1040 x 0.082303
+m_1040 x m_1044 x -0.049536
+m_1040 x m_1044 x -0.113089
+m_1040 x m_1044 x -0.149159
+m_1040 x m_1044 x -0.116671
+m_1040 x m_1044 x -0.111438
+m_1041 x m_1041 x 0.051518
+m_1041 x m_1041 x 0.08079
+m_1041 x m_1041 x 0.071167
+m_1041 x m_1041 x 0.077873
+m_1041 x m_1041 x 0.120539
+m_1041 x m_1045 x -0.109798
+m_1041 x m_1045 x -0.019602
+m_1041 x m_1045 x -0.018571
+m_1041 x m_1045 x -0.097454
+m_1041 x m_1045 x -0.14162
+m_1042 x m_1042 x 0.239908
+m_1042 x m_1042 x 0.394366
+m_1042 x m_1042 x 0.424995
+m_1042 x m_1042 x 0.362606
+m_1042 x m_1042 x 0.083466
+m_1042 x m_1046 x -0.082171
+m_1042 x m_1046 x -0.082347
+m_1042 x m_1046 x 0.019412
+m_1042 x m_1046 x -0.132104
+m_1042 x m_1046 x -0.10197
+m_1043 x m_1043 x 0.141103
+m_1043 x m_1043 x 0.151438
+m_1043 x m_1043 x 0.123697
+m_1043 x m_1043 x 0.187986
+m_1043 x m_1043 x 0.112817
+m_1043 x m_1047 x -0.077024
+m_1043 x m_1047 x -0.042302
+m_1043 x m_1047 x -0.026802
+m_1043 x m_1047 x -0.083944
+m_1043 x m_1047 x -0.155431
+m_1044 x m_1044 x -0.028161
+m_1044 x m_1044 x 0.054529
+m_1044 x m_1044 x 0.13168
+m_1044 x m_1044 x 0.038872
+m_1044 x m_1044 x 0.077572
+m_1044 x m_1048 x -0.213132
+m_1044 x m_1048 x -0.193029
+m_1044 x m_1048 x -0.200924
+m_1044 x m_1048 x -0.16708
+m_1044 x m_1048 x -0.204056
+m_1045 x m_1045 x 0.153144
+m_1045 x m_1045 x 0.093438
+m_1045 x m_1045 x 0.087949
+m_1045 x m_1045 x 0.160263
+m_1045 x m_1045 x 0.084367
+m_1045 x m_1049 x -0.045984
+m_1045 x m_1049 x -0.118589
+m_1045 x m_1049 x -0.018129
+m_1045 x m_1049 x -0.108371
+m_1045 x m_1049 x -0.158667
+m_1046 x m_1046 x -0.106347
+m_1046 x m_1046 x 0.159463
+m_1046 x m_1046 x 0.269966
+m_1046 x m_1046 x 0.168759
+m_1046 x m_1046 x 0.289834
+m_1046 x m_1050 x -0.101596
+m_1046 x m_1050 x -0.128711
+m_1046 x m_1050 x -0.059498
+m_1046 x m_1050 x -0.173279
+m_1046 x m_1050 x -0.110372
+m_1047 x m_1047 x 0.071048
+m_1047 x m_1047 x 0.20056
+m_1047 x m_1047 x 0.176091
+m_1047 x m_1047 x 0.098561
+m_1047 x m_1047 x 0.164626
+m_1047 x m_1051 x -0.093315
+m_1047 x m_1051 x -0.018984
+m_1047 x m_1051 x -0.103095
+m_1047 x m_1051 x -0.077934
+m_1047 x m_1051 x -0.118351
+m_1048 x m_1048 x 0.377338
+m_1048 x m_1048 x 0.424671
+m_1048 x m_1048 x 0.297769
+m_1048 x m_1048 x -0.005302
+m_1048 x m_1048 x 0.196666
+m_1048 x m_1052 x -0.069208
+m_1048 x m_1052 x -0.177879
+m_1048 x m_1052 x -0.10231
+m_1048 x m_1052 x -0.122667
+m_1048 x m_1052 x -0.068862
+m_1049 x m_1040 x -0.153227
+m_1049 x m_1040 x -0.184595
+m_1049 x m_1040 x -0.136615
+m_1049 x m_1040 x -0.077627
+m_1049 x m_1040 x -0.106458
+m_1049 x m_1049 x 0.111003
+m_1049 x m_1049 x 0.101531
+m_1049 x m_1049 x 0.123256
+m_1049 x m_1049 x 0.12464
+m_1049 x m_1049 x 0.051604
+m_1050 x m_1041 x -0.054181
+m_1050 x m_1041 x -0.140659
+m_1050 x m_1041 x -0.129502
+m_1050 x m_1041 x -0.108929
+m_1050 x m_1041 x -0.032078
+m_1050 x m_1050 x 0.126906
+m_1050 x m_1050 x 0.13685
+m_1050 x m_1050 x 0.033093
+m_1050 x m_1050 x 0.047939
+m_1050 x m_1050 x -0.013868
+m_1051 x m_1042 x -0.153977
+m_1051 x m_1042 x -0.113284
+m_1051 x m_1042 x -0.23003
+m_1051 x m_1042 x -0.186212
+m_1051 x m_1042 x -0.145767
+m_1051 x m_1051 x 0.235478
+m_1051 x m_1051 x 0.207846
+m_1051 x m_1051 x 0.278796
+m_1051 x m_1051 x 0.142962
+m_1051 x m_1051 x 0.180351
+m_1052 x m_1043 x -0.178691
+m_1052 x m_1043 x -0.197601
+m_1052 x m_1043 x -0.129918
+m_1052 x m_1043 x -0.167795
+m_1052 x m_1043 x -0.175029
+m_1052 x m_1052 x 0.082763
+m_1052 x m_1052 x 0.112163
+m_1052 x m_1052 x 0.188003
+m_1052 x m_1052 x 0.044418
+m_1052 x m_1052 x 0.127454
+f_1014 x f_1015 x 0.014841
+f_1014 x f_1015 x -0.026769
+f_1014 x f_1015 x -0.080662
+f_1014 x f_1015 x -0.085209
+f_1014 x f_1015 x -0.072679
+f_1015 x f_1016 x -0.164857
+f_1015 x f_1016 x -0.178725
+f_1015 x f_1016 x -0.128464
+f_1015 x f_1016 x -0.214679
+f_1015 x f_1016 x -0.134944
+f_1016 x f_1017 x -0.014597
+f_1016 x f_1017 x -0.071501
+f_1016 x f_1017 x -0.128072
+f_1016 x f_1017 x -0.123337
+f_1016 x f_1017 x -0.116541
+f_1017 x f_1018 x -0.141496
+f_1017 x f_1018 x -0.196624
+f_1017 x f_1018 x -0.173068
+f_1017 x f_1018 x -0.230658
+f_1017 x f_1018 x -0.205358
+f_1018 x f_1019 x -0.048368
+f_1018 x f_1019 x -0.043071
+f_1018 x f_1019 x -0.049429
+f_1018 x f_1019 x -0.014632
+f_1018 x f_1019 x -0.093057
+f_1019 x f_1020 x -0.124173
+f_1019 x f_1020 x -0.122335
+f_1019 x f_1020 x -0.078392
+f_1019 x f_1020 x -0.211568
+f_1019 x f_1020 x -0.221264
+f_1020 x f_1021 x -0.190812
+f_1020 x f_1021 x -0.130903
+f_1020 x f_1021 x -0.148297
+f_1020 x f_1021 x -0.218195
+f_1020 x f_1021 x -0.130123
+f_1021 x f_1022 x -0.020938
+f_1021 x f_1022 x 0.032565
+f_1021 x f_1022 x 0.029753
+f_1021 x f_1022 x 0.008387
+f_1021 x f_1022 x -0.029518
+f_1022 x f_1023 x -0.065429
+f_1022 x f_1023 x -0.0499
+f_1022 x f_1023 x -0.092752
+f_1022 x f_1023 x -0.115253
+f_1022 x f_1023 x -0.043749
+f_1023 x f_1024 x -0.160373
+f_1023 x f_1024 x -0.073335
+f_1023 x f_1024 x -0.05861
+f_1023 x f_1024 x -0.094012
+f_1023 x f_1024 x -0.056688
+f_1024 x f_1025 x -0.328486
+f_1024 x f_1025 x -0.308301
+f_1024 x f_1025 x -0.220186
+f_1024 x f_1025 x -0.365362
+f_1024 x f_1025 x -0.178491
+f_1025 x f_1026 x -0.098447
+f_1025 x f_1026 x -0.079008
+f_1025 x f_1026 x -0.120396
+f_1025 x f_1026 x -0.092791
+f_1025 x f_1026 x -0.052482
+f_1026 x f_1014 x -0.066869
+f_1026 x f_1014 x -0.139432
+f_1026 x f_1014 x -0.037634
+f_1026 x f_1014 x -0.20375
+f_1026 x f_1014 x -0.132627
+m_1040 x m_1041 x -0.045661
+m_1040 x m_1041 x -0.025406
+m_1040 x m_1041 x -0.075282
+m_1040 x m_1041 x -0.05577
+m_1040 x m_1041 x -0.070087
+m_1041 x m_1042 x -0.205976
+m_1041 x m_1042 x -0.130663
+m_1041 x m_1042 x -0.081094
+m_1041 x m_1042 x -0.097618
+m_1041 x m_1042 x -0.021077
+m_1042 x m_1043 x -0.037937
+m_1042 x m_1043 x -0.002371
+m_1042 x m_1043 x 0.012176
+m_1042 x m_1043 x -0.093591
+m_1042 x m_1043 x -0.038423
+m_1043 x m_1044 x -0.101432
+m_1043 x m_1044 x -0.039491
+m_1043 x m_1044 x -0.11965
+m_1043 x m_1044 x -0.109702
+m_1043 x m_1044 x -0.156936
+m_1044 x m_1045 x -0.085479
+m_1044 x m_1045 x -0.13362
+m_1044 x m_1045 x -0.12149
+m_1044 x m_1045 x -0.075713
+m_1044 x m_1045 x -0.08801
+m_1045 x m_1046 x -0.106102
+m_1045 x m_1046 x -0.141614
+m_1045 x m_1046 x -0.150365
+m_1045 x m_1046 x -0.123084
+m_1045 x m_1046 x -0.201897
+m_1046 x m_1047 x -0.125069
+m_1046 x m_1047 x -0.168533
+m_1046 x m_1047 x -0.112757
+m_1046 x m_1047 x -0.1736
+m_1046 x m_1047 x -0.172724
+m_1047 x m_1048 x -0.166386
+m_1047 x m_1048 x -0.170671
+m_1047 x m_1048 x -0.058329
+m_1047 x m_1048 x -0.109204
+m_1047 x m_1048 x -0.122232
+m_1048 x m_1049 x -0.204613
+m_1048 x m_1049 x -0.219919
+m_1048 x m_1049 x -0.146424
+m_1048 x m_1049 x -0.16871
+m_1048 x m_1049 x -0.142253
+m_1049 x m_1050 x -0.051034
+m_1049 x m_1050 x -0.103298
+m_1049 x m_1050 x -0.035702
+m_1049 x m_1050 x -0.100288
+m_1049 x m_1050 x -0.00913
+m_1050 x m_1051 x -0.073954
+m_1050 x m_1051 x -0.099813
+m_1050 x m_1051 x -0.044652
+m_1050 x m_1051 x -0.043802
+m_1050 x m_1051 x -0.139938
+m_1051 x m_1052 x -0.109771
+m_1051 x m_1052 x -0.121056
+m_1051 x m_1052 x -0.102811
+m_1051 x m_1052 x -0.097827
+m_1051 x m_1052 x -0.106235
+m_1052 x m_1040 x -0.129523
+m_1052 x m_1040 x -0.167863
+m_1052 x m_1040 x -0.179332
+m_1052 x m_1040 x -0.169263
+m_1052 x m_1040 x -0.188729
diff --git a/bob/bio/base/test/test_io.py b/bob/bio/base/test/test_io.py
new file mode 100644
index 0000000000000000000000000000000000000000..fa908d46bf2b6c49c56edbc159ac0efc898cf6da
--- /dev/null
+++ b/bob/bio/base/test/test_io.py
@@ -0,0 +1,326 @@
+#!/usr/bin/env python
+# vim: set fileencoding=utf-8 :
+# Andre Anjos <andre.anjos@idiap.ch>
+# Wed 11 Dec 15:14:08 2013 CET
+#
+# Copyright (C) 2011-2013 Idiap Research Institute, Martigny, Switzerland
+
+"""Tests the IO functionality of bob.bio.base.score."""
+
+import numpy
+import tempfile
+import os
+import shutil
+import pkg_resources
+
+from .. import score
+
+
+def test_load_scores():
+  # This function tests the IO functionality of loading score files in
+  # different ways
+
+  load_functions = {'4col': score.four_column,
+                    '5col': score.five_column}
+  cols = {'4col': 4, '5col': 5}
+
+  for variant in cols:
+    normal_score_file = pkg_resources.resource_filename(
+        'bob.bio.base.test', 'data/dev-%s.txt' % variant)
+    normal_scores = list(load_functions[variant](normal_score_file))
+
+    assert len(normal_scores) == 910
+    assert all(len(s) == cols[variant] for s in normal_scores)
+
+    # read the compressed score file
+    compressed_score_file = pkg_resources.resource_filename(
+        'bob.bio.base.test', 'data/dev-%s.tar.gz' % variant)
+    compressed_scores = list(load_functions[variant](compressed_score_file))
+
+    assert len(compressed_scores) == len(normal_scores)
+    assert all(len(c) == cols[variant] for c in compressed_scores)
+    assert all(c[i] == s[i] for c, s in zip(compressed_scores,
+                                            normal_scores) for i in range(cols[variant]))
+
+    # Use auto-estimated score file contents
+    # read score file in normal way
+    normal_scores = list(score.scores(normal_score_file))
+
+    assert len(normal_scores) == 910
+    assert all(len(s) == cols[variant] for s in normal_scores)
+
+    # read the compressed score file
+    compressed_scores = list(score.scores(compressed_score_file))
+
+    assert len(compressed_scores) == len(normal_scores)
+    assert all(len(c) == cols[variant] for c in compressed_scores)
+    assert all(c[i] == s[i] for c, s in zip(compressed_scores,
+                                            normal_scores) for i in range(cols[variant]))
+
+
+def test_split_scores():
+  # This function tests the IO functionality of loading score files in
+  # different ways
+
+  split_functions = {'4col': score.split_four_column,
+                     '5col': score.split_five_column}
+  cols = {'4col': 4, '5col': 5}
+
+  for variant in cols:
+    # read score file in normal way
+    normal_score_file = pkg_resources.resource_filename(
+        'bob.bio.base.test', 'data/dev-%s.txt' % variant)
+    negatives, positives = split_functions[variant](normal_score_file)
+
+    assert len(negatives) == 520, len(negatives)
+    assert len(positives) == 390, len(positives)
+
+    # read the compressed score file
+    compressed_score_file = pkg_resources.resource_filename(
+        'bob.bio.base.test', 'data/dev-%s.tar.gz' % variant)
+    negatives, positives = split_functions[variant](compressed_score_file)
+
+    assert len(negatives) == 520, len(negatives)
+    assert len(positives) == 390, len(positives)
+
+    # Use auto-estimated score file contents
+    # read score file in normal way
+    negatives, positives = score.split(normal_score_file)
+
+    assert len(negatives) == 520, len(negatives)
+    assert len(positives) == 390, len(positives)
+
+    # read the compressed score file
+    negatives, positives = score.split(compressed_score_file)
+
+    assert len(negatives) == 520, len(negatives)
+    assert len(positives) == 390, len(positives)
+
+
+def test_load_score():
+  # This function tests the IO functionality of loading score files in
+  # different ways
+
+  scores = []
+  cols = {'4col': 4, '5col': 5}
+
+  for variant in cols:
+    compressed_score_file = pkg_resources.resource_filename(
+        'bob.bio.base.test', 'data/dev-%s.tar.gz' % variant)
+    normal_score_file = pkg_resources.resource_filename(
+        'bob.bio.base.test', 'data/dev-%s.txt' % variant)
+    normal_scores = score.load_score(
+        normal_score_file, cols[variant])
+
+    assert len(normal_scores) == 910
+    assert len(normal_scores.dtype) == cols[variant]
+
+    # read the compressed score file
+    compressed_score_file = pkg_resources.resource_filename(
+        'bob.bio.base.test', 'data/dev-%s.tar.gz' % variant)
+    compressed_scores = score.load_score(
+        compressed_score_file, cols[variant])
+
+    assert len(compressed_scores) == len(normal_scores)
+    assert len(compressed_scores.dtype) == cols[variant]
+    for name in normal_scores.dtype.names:
+      assert all(normal_scores[name] == compressed_scores[name])
+
+    # test minimal loading
+    minimal_scores = score.load_score(
+        normal_score_file, minimal=True)
+    assert len(minimal_scores) == 910
+    assert len(minimal_scores.dtype) == 3
+    assert minimal_scores.dtype.names == ('claimed_id', 'real_id', 'score')
+
+
+def test_dump_score():
+  # This function tests the IO functionality of dumping score files
+
+  scores = []
+  cols = {'4col': 4, '5col': 5}
+
+  for variant in cols:
+    # read score file
+    normal_score_file = pkg_resources.resource_filename(
+        'bob.bio.base.test', 'data/dev-%s.txt' % variant)
+    normal_scores = score.load_score(
+        normal_score_file, cols[variant])
+
+    with tempfile.TemporaryFile() as f:
+      score.dump_score(f, normal_scores)
+      f.seek(0)
+      loaded_scores = score.load_score(f, cols[variant])
+
+    for name in normal_scores.dtype.names:
+      assert all(normal_scores[name] == loaded_scores[name])
+
+
+def _check_binary_identical(name1, name2):
+  # see: http://www.peterbe.com/plog/using-md5-to-check-equality-between-files
+  from hashlib import md5
+  # tests if two files are binary identical
+  with open(name1, 'rb') as f1:
+    with open(name2, 'rb') as f2:
+      assert md5(f1.read()).digest() == md5(f2.read()).digest()
+
+
+def test_openbr_verify():
+  # This function tests that the conversion to the OpenBR verify file works
+  # as expected
+  temp_dir = tempfile.mkdtemp(prefix='bob_test')
+
+  # define output files
+  openbr_extensions = ('.mtx', '.mask')
+  matrix_file, mask_file = [os.path.join(
+      temp_dir, "scores%s") % ext for ext in openbr_extensions]
+
+  try:
+    for variant in ('4col', '5col'):
+      # get score file
+      score_file = pkg_resources.resource_filename(
+        'bob.bio.base.test', 'data/scores-cmc-%s.txt' % variant)
+
+      # first round, do not define keyword arguments -- let the file get the
+      # gallery and probe ids automatically
+      kwargs = {}
+      for i in range(2):
+        # get the files by automatically obtaining the identities
+        score.write_matrix(
+            score_file, matrix_file, mask_file, score_file_format="%sumn" % variant, **kwargs)
+
+        assert os.path.isfile(matrix_file) and os.path.isfile(mask_file)
+
+        # check that they are binary identical to the reference files (which
+        # are tested to work and give the same results with OpenBR)
+        matrix_ref, mask_ref = [pkg_resources.resource_filename(
+        'bob.bio.base.test', 'data/scores%s' % ext) for ext in openbr_extensions]
+        _check_binary_identical(matrix_file, matrix_ref)
+        _check_binary_identical(mask_file, mask_ref)
+
+        # define new kwargs for second round, i.e., define model and probe names
+        # these names are identical to what is found in the score file, which
+        # in turn comes from the AT&T database
+        model_type = {"4col": "%d", "5col": "s%d"}[variant]
+        dev_ids = (3, 4, 7, 8, 9, 13, 15, 18, 19, 22, 23,
+                   25, 28, 30, 31, 32, 35, 37, 38, 40)
+        kwargs['model_names'] = [model_type % c for c in dev_ids]
+        kwargs['probe_names'] = ["s%d/%d" %
+                                 (c, i) for c in dev_ids for i in (1, 3, 6, 8, 10)]
+
+  finally:
+    shutil.rmtree(temp_dir)
+
+
+def test_openbr_search():
+  # This function tests that the conversion to the OpenBR search file works
+  # as expected
+  temp_dir = tempfile.mkdtemp(prefix='bob_test')
+
+  # define output files
+  openbr_extensions = ('.mtx', '.mask')
+  matrix_file, mask_file = [os.path.join(
+      temp_dir, "search%s") % ext for ext in openbr_extensions]
+
+  try:
+    for variant in ('4col', '5col'):
+      # get score file
+      score_file = pkg_resources.resource_filename(
+        'bob.bio.base.test', 'data/scores-cmc-%s.txt' % variant)
+
+      # first round, do not define keyword arguments -- let the file get the
+      # gallery and probe ids automatically
+      kwargs = {}
+      for i in range(2):
+        # get the files by automatically obtaining the identities
+        score.write_matrix(
+            score_file, matrix_file, mask_file, score_file_format="%sumn" % variant, search=50, **kwargs)
+
+        assert os.path.isfile(matrix_file) and os.path.isfile(mask_file)
+
+        # check that they are binary identical to the reference files (which
+        # are tested to work and give the same results with OpenBR)
+        matrix_ref, mask_ref = [pkg_resources.resource_filename(
+        'bob.bio.base.test', 'data/search%s' % ext) for ext in openbr_extensions]
+        _check_binary_identical(matrix_file, matrix_ref)
+        _check_binary_identical(mask_file, mask_ref)
+
+        # define new kwargs for second round, i.e., define model and probe names
+        # these names are identical to what is found in the score file, which
+        # in turn comes from the AT&T database
+        model_type = {"4col": "%d", "5col": "s%d"}[variant]
+        dev_ids = (3, 4, 7, 8, 9, 13, 15, 18, 19, 22, 23,
+                   25, 28, 30, 31, 32, 35, 37, 38, 40)
+        kwargs['model_names'] = [model_type % c for c in dev_ids]
+        kwargs['probe_names'] = ["s%d/%d" %
+                                 (c, i) for c in dev_ids for i in (1, 3, 6, 8, 10)]
+
+  finally:
+    shutil.rmtree(temp_dir)
+
+
+def test_from_openbr():
+  # This function tests that the conversion from the OpenBR matrices work as
+  # expected
+  temp_dir = tempfile.mkdtemp(prefix='bob_test')
+
+  # define input files
+  openbr_extensions = ('.mtx', '.mask')
+  matrix_file, mask_file = [pkg_resources.resource_filename(
+        'bob.bio.base.test', 'data/scores%s' % ext) for ext in openbr_extensions]
+
+  score_file = os.path.join(temp_dir, "scores")
+  load_functions = {'4col': score.four_column,
+                    '5col': score.five_column}
+
+  try:
+    for variant in load_functions:
+      # first, do not define keyword arguments -- let the file get the model
+      # and probe ids being created automatically
+      score.write_score_file(
+          matrix_file, mask_file, score_file, score_file_format="%sumn" % variant)
+      assert os.path.exists(score_file)
+      # read the score file with bobs functionality
+      columns = list(load_functions[variant](score_file))
+
+      # check the contents
+      assert len(columns) == 2000
+
+      # now, generate model and probe names and ids
+      model_type = {"4col": "%d", "5col": "s%d"}[variant]
+      dev_ids = (3, 4, 7, 8, 9, 13, 15, 18, 19, 22, 23,
+                 25, 28, 30, 31, 32, 35, 37, 38, 40)
+      model_names = ["s%d" % c for c in dev_ids]
+      probe_names = ["s%d/%d" % (c, i)
+                     for c in dev_ids for i in (1, 3, 6, 8, 10)]
+      models_ids = ["%d" % c for c in dev_ids]
+      probes_ids = ["%d" % c for c in dev_ids for i in (1, 3, 6, 8, 10)]
+
+      score.write_score_file(matrix_file, mask_file, score_file, models_ids=models_ids, probes_ids=probes_ids,
+                                          model_names=model_names, probe_names=probe_names, score_file_format="%sumn" % variant)
+
+      # check that we re-generated the bob score file
+      reference_file = pkg_resources.resource_filename(
+        'bob.bio.base.test', 'data/scores-cmc-%s.txt' % variant)
+
+      # assert that we can (almost) reproduce the score file
+      # ... read both files
+      columns = list(load_functions[variant](score_file))
+      reference = list(load_functions[variant](reference_file))
+      assert len(columns) == len(reference)
+      for i in range(len(columns)):
+        for j in range(len(columns[i]) - 1):
+          # check that the model and probe names are fine
+          assert columns[i][j] == reference[i][j], str(
+              columns[i]) + " != " + str(reference[i])
+        # check that the score is close (OpenBR write scores in float32
+        # precision only)
+        assert abs(columns[i][-1] - numpy.float32(reference[i][-1])
+                   ) <= 1e-8, str(columns[i][-1]) + " != " + str(reference[i][-1])
+
+        #assert numpy.isclose(columns[i][-1], reference[i][-1], atol = 1e-3, rtol=1e-8), str(columns[i][-1]) + " != " + str(reference[i][-1])
+        assert numpy.allclose(columns[i][-1], reference[i][-1], atol=1e-3,
+                              rtol=1e-8), str(columns[i][-1]) + " != " + str(reference[i][-1])
+
+  finally:
+    shutil.rmtree(temp_dir)
diff --git a/bob/bio/base/test/test_scripts.py b/bob/bio/base/test/test_scripts.py
index 072a431b03af1eea9afa23d96ddb211a1ec9e183..912dd325fdf635ee1cf1cf957317fbf6d00800ee 100644
--- a/bob/bio/base/test/test_scripts.py
+++ b/bob/bio/base/test/test_scripts.py
@@ -8,6 +8,7 @@ import nose
 import bob.io.image
 import bob.bio.base
 from . import utils
+from .. import score
 
 from nose.plugins.skip import SkipTest
 
@@ -20,7 +21,6 @@ data_dir = pkg_resources.resource_filename('bob.bio.base', 'test/data')
 
 def _verify(parameters, test_dir, sub_dir, ref_modifier="", score_modifier=('scores',''), counts=3, check_zt=True):
   from bob.bio.base.script.verify import main
-  import bob.measure
   try:
     main(parameters)
 
@@ -42,7 +42,7 @@ def _verify(parameters, test_dir, sub_dir, ref_modifier="", score_modifier=('sco
       d = []
       # read reference and new data
       for score_file in (score_files[i], reference_files[i]):
-        f = bob.measure.load.open_file(score_file)
+        f = score.open_file(score_file)
         d_ = []
         for line in f:
           if isinstance(line, bytes): line = line.decode('utf-8')
@@ -278,7 +278,6 @@ def test_verify_filelist():
   ]
 
   from bob.bio.base.script.verify import main
-  import bob.measure
   try:
     main(parameters)
 
@@ -292,8 +291,8 @@ def test_verify_filelist():
 
     for i in (0,1):
       # load scores
-      a1, b1 = bob.measure.load.split_four_column(score_files[i])
-      a2, b2 = bob.measure.load.split_four_column(reference_files[i])
+      a1, b1 = score.split_four_column(score_files[i])
+      a2, b2 = score.split_four_column(reference_files[i])
       # sort scores
       a1 = sorted(a1); a2 = sorted(a2); b1 = sorted(b1); b2 = sorted(b2)
 
@@ -323,7 +322,6 @@ def test_verify_missing():
   ]
 
   from bob.bio.base.script.verify import main
-  import bob.measure
   try:
     main(parameters)
 
@@ -336,7 +334,7 @@ def test_verify_missing():
 
     for i in (0,1):
       # load scores
-      a, b = bob.measure.load.split_four_column(score_files[i])
+      a, b = score.split_four_column(score_files[i])
 
       assert numpy.all(numpy.isnan(a))
       assert numpy.all(numpy.isnan(b))
@@ -479,15 +477,14 @@ def test_fusion():
 
   # execute the script
   from bob.bio.base.script.fuse_scores import main
-  import bob.measure
   try:
     main(parameters)
 
     # assert that we can read the two files, and that they contain the same number of lines as the original file
     for i in (0,1):
       assert os.path.exists(output_files[i])
-      r = bob.measure.load.four_column(reference_files[i])
-      o = bob.measure.load.four_column(output_files[i])
+      r = score.four_column(reference_files[i])
+      o = score.four_column(output_files[i])
       assert len(list(r)) == len(list(o))
   finally:
     shutil.rmtree(test_dir)
diff --git a/bob/bio/base/tools/scoring.py b/bob/bio/base/tools/scoring.py
index 18aed256117d7c06dcb5dab84b50c25c5305ded0..eb634b96d9f286dffa9a588effa0cd2a204b4719 100644
--- a/bob/bio/base/tools/scoring.py
+++ b/bob/bio/base/tools/scoring.py
@@ -1,7 +1,6 @@
 import bob.io.base
 import bob.learn.em
 import bob.learn.linear
-import bob.measure
 import numpy
 import os, sys
 import tarfile
@@ -12,6 +11,7 @@ logger = logging.getLogger("bob.bio.base")
 
 from .FileSelector import FileSelector
 from .. import utils
+from .. import score
 
 def _scores(algorithm, reader, model, probe_objects, allow_missing_files):
   """Compute scores for the given model and a list of probes.
@@ -62,12 +62,12 @@ def _scores(algorithm, reader, model, probe_objects, allow_missing_files):
 
 
 def _open_to_read(score_file):
-  """Checks for the existence of the normal and the compressed version of the file, and calls :py:func:`bob.measure.load.open_file` for the existing one."""
+  """Checks for the existence of the normal and the compressed version of the file, and calls :py:func:`bob.bio.base.score.open_file` for the existing one."""
   if not os.path.exists(score_file):
     score_file += '.tar.bz2'
     if not os.path.exists(score_file):
       raise IOError("The score file '%s' cannot be found. Aborting!" % score_file)
-  return bob.measure.load.open_file(score_file)
+  return score.open_file(score_file)
 
 
 def _open_to_write(score_file, write_compressed):
@@ -115,7 +115,8 @@ def _delete(score_file, write_compressed):
 
 
 def _save_scores(score_file, scores, probe_objects, client_id, write_compressed):
-  """Saves the scores of one model into a text file that can be interpreted by :py:func:`bob.measure.load.split_four_column`."""
+  """Saves the scores of one model into a text file that can be interpreted by
+  :py:func:`bob.bio.base.score.split_four_column`."""
   assert len(probe_objects) == scores.shape[1]
 
   # open file for writing
@@ -493,7 +494,9 @@ def _concat(score_files, output, write_compressed, model_ids):
 def concatenate(compute_zt_norm, groups = ['dev', 'eval'], write_compressed = False, add_model_id = False):
   """Concatenates all results into one (or two) score files per group.
 
-  Score files, which were generated per model, are concatenated into a single score file, which can be interpreter by :py:func:`bob.measure.load.split_four_column`.
+  Score files, which were generated per model, are concatenated into a single
+  score file, which can be interpreter by
+  :py:func:`bob.bio.base.score.load.split_four_column`.
   The score files are always re-computed, regardless if they exist or not.
 
   **Parameters:**
@@ -563,7 +566,7 @@ def calibrate(compute_zt_norm, groups = ['dev', 'eval'], prior = 0.5, write_comp
     logger.info(" - Calibration: Training calibration for type %s from group %s", norm, groups[0])
     llr_trainer = bob.learn.linear.CGLogRegTrainer(prior, 1e-16, 100000)
 
-    training_scores = list(bob.measure.load.split_four_column(training_score_file))
+    training_scores = list(score.split_four_column(training_score_file))
     for i in (0,1):
       h = numpy.array(training_scores[i])
       # remove NaN's
@@ -582,7 +585,7 @@ def calibrate(compute_zt_norm, groups = ['dev', 'eval'], prior = 0.5, write_comp
       logger.info(" - Calibration: calibrating scores from '%s' to '%s'", score_file, calibrated_file)
 
       # iterate through the score file and calibrate scores
-      scores = bob.measure.load.four_column(_open_to_read(score_file))
+      scores = score.four_column(_open_to_read(score_file))
 
       f = _open_to_write(calibrated_file, write_compressed)
 
diff --git a/doc/index.rst b/doc/index.rst
index 59c610e4569e3f3b516883877b853dbb27acaba6..2b966a5d00794c070ff4578ccbe667253e593a4f 100644
--- a/doc/index.rst
+++ b/doc/index.rst
@@ -78,6 +78,7 @@ Users Guide
    filelist-guide
    more
    annotations
+   openbr
 
 
 Reference Manual
diff --git a/doc/openbr.rst b/doc/openbr.rst
new file mode 100644
index 0000000000000000000000000000000000000000..348d3b77d861a7c0c29eb4aa65887d86a5b6e3c9
--- /dev/null
+++ b/doc/openbr.rst
@@ -0,0 +1,105 @@
+
+.. _bob.bio.base.openbr:
+
+=====================
+Score file conversion
+=====================
+Sometimes, it is required to export the score files generated by Bob to a
+different format, e.g., to be able to generate a plot comparing Bob's systems
+with other systems.  In this package, we provide source code to convert between
+different types of score files.
+
+Bob to OpenBR
+-------------
+One of the supported formats is the matrix format that the National Institute
+of Standards and Technology (NIST) uses, and which is supported by OpenBR_.
+The scores are stored in two binary matrices, where the first matrix (usually
+with a ``.mtx`` filename extension) contains the raw scores, while a second
+mask matrix (extension ``.mask``) contains information, which scores are
+positives, and which are negatives.
+To convert from Bob's four column or five column score file to a pair of these
+matrices, you can use the :py:func:`bob.bio.base.score.openbr.write_matrix` function.
+In the simplest way, this function takes a score file
+``'five-column-sore-file'`` and writes the pair ``'openbr.mtx', 'openbr.mask'``
+of OpenBR_ compatible files:
+
+.. code-block:: py
+
+    >>> bob.bio.base.score.openbr.write_matrix('five-column-sore-file', 'openbr.mtx', 'openbr.mask', score_file_format = '5column')
+
+In this way, the score file will be parsed and the matrices will be written in
+the same order that is obtained from the score file.
+For most of the applications, this should be sufficient, but as the identity
+information is lost in the matrix files, no deeper analysis is possible anymore
+when just using the matrices.  To enforce an order of the models and probes
+inside the matrices, you can use the ``model_names`` and ``probe_names``
+parameters of :py:func:`bob.bio.base.score.openbr.write_matrix`:
+
+* The ``probe_names`` parameter lists the ``path`` elements stored in the score
+  files, which are the fourth column in a ``5column`` file, and the third
+  column in a ``4column`` file, see :py:func:`bob.bio.base.score.load.five_column` and
+  :py:func:`bob.bio.base.score.load.four_column`.
+
+* The ``model_names`` parameter is a bit more complicated.  In a ``5column``
+  format score file, the model names are defined by the second column of that
+  file, see :py:func:`bob.bio.base.score.load.five_column`.  In a ``4column`` format
+  score file, the model information is not contained, but only the client
+  information of the model.  Hence, for the ``4column`` format, the
+  ``model_names`` actually lists the client ids found in the first column, see
+  :py:func:`bob.bio.base.score.load.four_column`.
+
+.. warning::
+
+  The model information is lost, but required to write the matrix files.  In
+  the ``4column`` format, we use client ids instead of the model
+  information.  Hence, when several models exist per client, this function
+  will not work as expected.
+
+Additionally, there are fields in the matrix files, which define the gallery
+and probe list files that were used to generate the matrix.  These file names
+can be selected with the ``gallery_file_name`` and ``probe_file_name`` keyword
+parameters of :py:func:`bob.bio.base.score.openbr.write_matrix`.
+Finally, OpenBR defines a specific ``'search'`` score file format, which is
+designed to be used to compute CMC curves.  The score matrix contains
+descendingly sorted and possibly truncated list of scores, i.e., for each
+probe, a sorted list of all scores for the models is generated.  To generate
+these special score file format, you can specify the ``search`` parameter.  It
+specifies the number of highest scores per probe that should be kept.  If the
+``search`` parameter is set to a negative value, all scores will be kept.  If
+the ``search`` parameter is higher as the actual number of models, ``NaN``
+scores will be appended, and the according mask values will be set to ``0``
+(i.e., to be ignored).
+OpenBR to Bob
+-------------
+On the other hand, you might also want to generate a Bob-compatible (four or
+five column) score file based on a pair of OpenBR matrix and mask files.  This
+is possible by using the :py:func:`bob.bio.base.score.openbr.write_score_file`
+function.  At the basic, it takes the given pair of matrix and mask files, as
+well as the desired output score file:
+
+.. code-block:: py
+
+    >>> bob.bio.base.score.openbr.write_score_file('openbr.mtx', 'openbr.mask', 'four-column-sore-file')
+
+This score file is sufficient to compute a CMC curve (see `bob.measure`), however it
+does not contain relevant client ids or paths for models and probes.
+Particularly, it assumes that each client has exactly one associated model.
+To add/correct these information, you can use additional parameters to
+:py:func:`bob.bio.base.score.openbr.write_score_file`.  Client ids of models and
+probes can be added using the ``models_ids`` and ``probes_ids`` keyword
+arguments.  The length of these lists must be identical to the number of models
+and probes as given in the matrix files, **and they must be in the same order
+as used to compute the OpenBR matrix**.  This includes that the same
+same-client and different-client pairs as indicated by the OpenBR mask will be
+generated, which will be checked inside the function.
+To add model and probe path information, the ``model_names`` and
+``probe_names`` parameters, which need to have the same size and order as the
+``models_ids`` and ``probes_ids``.  These information are simply stored in the
+score file, and no further check is applied.
+
+.. note:: The ``model_names`` parameter is used only when writing score files in ``score_file_format='5column'``, in the ``'4column'`` format, this parameter is ignored.
+
+
+.. Place youre references here:
+.. _openbr: http://openbiometrics.org
+
diff --git a/doc/py_api.rst b/doc/py_api.rst
index c9841b2bcc2bd386e1cdf21b04a4e7a30a1dd806..4d52687cbea4d63cf1e3855f9095f9f975cec249 100644
--- a/doc/py_api.rst
+++ b/doc/py_api.rst
@@ -94,6 +94,26 @@ Scoring
    bob.bio.base.tools.concatenate
    bob.bio.base.tools.calibrate
 
+Loading data
+------------
+.. autosummary::
+   bob.bio.base.score.load.open_file
+   bob.bio.base.score.load.scores
+   bob.bio.base.score.load.split
+   bob.bio.base.score.load.cmc
+   bob.bio.base.score.load.four_column
+   bob.bio.base.score.load.split_four_column
+   bob.bio.base.score.load.cmc_four_column
+   bob.bio.base.score.load.five_column
+   bob.bio.base.score.load.split_five_column
+   bob.bio.base.score.load.cmc_five_column
+
+OpenBR conversions
+------------------
+.. autosummary::
+   bob.bio.base.score.openbr.write_matrix
+   bob.bio.base.score.openbr.write_score_file
+
 Details
 -------
 
@@ -108,5 +128,6 @@ Details
 
    .. autoclass:: FileSelector
 
-
+.. automodule:: bob.bio.base.score.load
+.. automodule:: bob.bio.base.score.openbr
 .. include:: links.rst