diff --git a/bob/bio/base/transformers/algorithm.py b/bob/bio/base/transformers/algorithm.py
index 16bcf1c94111f3158827522d411f0f59e4c092e2..e046842f437dcefd0b02b5f1a9d9466de95e39ae 100644
--- a/bob/bio/base/transformers/algorithm.py
+++ b/bob/bio/base/transformers/algorithm.py
@@ -26,56 +26,56 @@ class AlgorithmTransformer(TransformerMixin, BaseEstimator):
 
     Parameters
     ----------
-      callable: ``collections.callable``
+      instance: ``collections.callable``
          Callable function that instantiates the bob.bio.base.algorithm.Algorithm
 
     """
 
     def __init__(
-        self, callable, projector_file=None, **kwargs,
+        self, instance, projector_file=None, **kwargs,
     ):
 
-        if not isinstance(callable, Algorithm):
+        if not isinstance(instance, Algorithm):
             raise ValueError(
-                "`callable` should be an instance of `bob.bio.base.extractor.Algorithm`"
+                "`instance` should be an instance of `bob.bio.base.extractor.Algorithm`"
             )
 
-        if callable.requires_projector_training and (
+        if instance.requires_projector_training and (
             projector_file is None or projector_file == ""
         ):
             raise ValueError(
-                f"`projector_file` needs to be set if extractor {callable} requires training"
+                f"`projector_file` needs to be set if extractor {instance} requires training"
             )
 
-        if not is_picklable(callable):
-            raise ValueError(f"{callable} needs to be picklable")
+        if not is_picklable(instance):
+            raise ValueError(f"{instance} needs to be picklable")
 
-        self.callable = callable
+        self.instance = instance
         self.projector_file = projector_file
         super().__init__(**kwargs)
 
     def fit(self, X, y=None):
-        if not self.callable.requires_projector_training:
+        if not self.instance.requires_projector_training:
             return self
         training_data = X
-        if self.callable.split_training_features_by_client:
+        if self.instance.split_training_features_by_client:
             training_data = split_X_by_y(X, y)
 
         os.makedirs(os.path.dirname(self.projector_file), exist_ok=True)
-        self.callable.train_projector(training_data, self.projector_file)
+        self.instance.train_projector(training_data, self.projector_file)
         return self
 
     def transform(self, X, metadata=None):
         if metadata is None:
-            return [self.callable.project(data) for data in X]
+            return [self.instance.project(data) for data in X]
         else:
             return [
-                self.callable.project(data, metadata)
+                self.instance.project(data, metadata)
                 for data, metadata in zip(X, metadata)
             ]
 
     def _more_tags(self):
         return {
-            "stateless": not self.callable.requires_projector_training,
-            "requires_fit": self.callable.requires_projector_training,
+            "stateless": not self.instance.requires_projector_training,
+            "requires_fit": self.instance.requires_projector_training,
         }
diff --git a/bob/bio/base/transformers/extractor.py b/bob/bio/base/transformers/extractor.py
index ab28508f228c40c35297f1f2713ca30b4cfd4335..303859543fc8cadaaa735169c964941e2ccc3c82 100644
--- a/bob/bio/base/transformers/extractor.py
+++ b/bob/bio/base/transformers/extractor.py
@@ -13,7 +13,7 @@ class ExtractorTransformer(TransformerMixin, BaseEstimator):
     Parameters
     ----------
 
-      callable: ``collections.Callable``
+      instance: ``collections.callable``
          Instance of `bob.bio.base.extractor.Extractor`
 
       model_path: ``str``
@@ -22,44 +22,44 @@ class ExtractorTransformer(TransformerMixin, BaseEstimator):
     """
 
     def __init__(
-        self, callable, model_path=None, **kwargs,
+        self, instance, model_path=None, **kwargs,
     ):
 
-        if not isinstance(callable, Extractor):
+        if not isinstance(instance, Extractor):
             raise ValueError(
-                "`callable` should be an instance of `bob.bio.base.extractor.Extractor`"
+                "`instance` should be an instance of `bob.bio.base.extractor.Extractor`"
             )
 
-        if callable.requires_training and (model_path is None or model_path == ""):
+        if instance.requires_training and (model_path is None or model_path == ""):
             raise ValueError(
-                f"`model_path` needs to be set if extractor {callable} requires training"
+                f"`model_path` needs to be set if extractor {instance} requires training"
             )
 
-        self.callable = callable
+        self.instance = instance
         self.model_path = model_path
         super().__init__(**kwargs)
 
     def fit(self, X, y=None):
-        if not self.callable.requires_training:
+        if not self.instance.requires_training:
             return self
 
         training_data = X
-        if self.callable.split_training_data_by_client:
+        if self.instance.split_training_data_by_client:
             training_data = split_X_by_y(X, y)
 
-        self.callable.train(training_data, self.model_path)
+        self.instance.train(training_data, self.model_path)
         return self
 
     def transform(self, X, metadata=None):
         if metadata is None:
-            return [self.callable(data) for data in X]
+            return [self.instance(data) for data in X]
         else:
             return [
-                self.callable(data, metadata) for data, metadata in zip(X, metadata)
+                self.instance(data, metadata) for data, metadata in zip(X, metadata)
             ]
 
     def _more_tags(self):
         return {
-            "stateless": not self.callable.requires_training,
-            "requires_fit": self.callable.requires_training,
+            "stateless": not self.instance.requires_training,
+            "requires_fit": self.instance.requires_training,
         }
diff --git a/bob/bio/base/transformers/preprocessor.py b/bob/bio/base/transformers/preprocessor.py
index 1cddda6713117cceb5cb0035b77dde624c0145db..acb7824d888643c5acbb084619307bceb10ba494 100644
--- a/bob/bio/base/transformers/preprocessor.py
+++ b/bob/bio/base/transformers/preprocessor.py
@@ -11,7 +11,7 @@ class PreprocessorTransformer(TransformerMixin, BaseEstimator):
     Parameters
     ----------
 
-      callable: ``collections.Callable``
+      instance: ``collections.callable``
          Instance of `bob.bio.base.preprocessor.Preprocessor`
 
 
@@ -19,21 +19,21 @@ class PreprocessorTransformer(TransformerMixin, BaseEstimator):
 
     def __init__(
         self,
-        callable,
+        instance,
         **kwargs,
     ):
 
-        if not isinstance(callable, Preprocessor):
-            raise ValueError("`callable` should be an instance of `bob.bio.base.preprocessor.Preprocessor`")
+        if not isinstance(instance, Preprocessor):
+            raise ValueError("`instance` should be an instance of `bob.bio.base.preprocessor.Preprocessor`")
 
-        self.callable = callable
+        self.instance = instance
         super().__init__(**kwargs)
 
     def transform(self, X, annotations=None):
         if annotations is None:
-            return [self.callable(data) for data in X]
+            return [self.instance(data) for data in X]
         else:
-            return [self.callable(data, annot) for data, annot in zip(X, annotations)]
+            return [self.instance(data, annot) for data, annot in zip(X, annotations)]
 
     def _more_tags(self):
         return {"stateless": True, "requires_fit": False}