diff --git a/bob/bio/base/algorithm/Algorithm.py b/bob/bio/base/algorithm/Algorithm.py index 38834b8fa45d6484f1c9927d250f2cd5e654bb78..c15cc9e0fd80af78842e6c4b4a655ec32d2588d9 100644 --- a/bob/bio/base/algorithm/Algorithm.py +++ b/bob/bio/base/algorithm/Algorithm.py @@ -172,7 +172,8 @@ class Algorithm (object): probe : object The probe object to compare the model with. - The ``probe`` was read using the :py:meth:`read_probe` function. + The ``probe`` was read using the :py:meth:`read_feature` function + (or the :py:meth:`bob.bio.base.extractor.Extractor.read_feature` function, if this algorithm does not perform projection. **Returns:** @@ -330,29 +331,6 @@ class Algorithm (object): return utils.load(model_file) - def read_probe(self, probe_file): - """read_probe(probe_file) -> probe - - Reads the probe feature from file. - By default, the probe feature is identical to the projected feature. - Hence, this base class implementation simply calls :py:meth:`read_feature`. - - If your algorithm requires different behavior, please overwrite this function. - - **Parameters:** - - probe_file : str or :py:class:`bob.io.base.HDF5File` - The file open for reading, or the file name to read from. - - **Returns:** - - probe : object - The probe that was read from file. - """ - return self.read_feature(probe_file) - - - def train_projector(self, training_features, projector_file): """This function can be overwritten to train the feature projector. If you do this, please also register the function by calling this base class constructor diff --git a/bob/bio/base/algorithm/BIC.py b/bob/bio/base/algorithm/BIC.py index c15b5e58c04ec064db1c14886e4e1febc8799326..42aa785c53af8fd36898f6f4818567b2bb633782 100644 --- a/bob/bio/base/algorithm/BIC.py +++ b/bob/bio/base/algorithm/BIC.py @@ -230,25 +230,6 @@ class BIC(Algorithm): i += 1 return model - def read_probe(self, probe_file): - """read_probe(probe_file) -> probe - - Reads the probe feature from the given HDF5 file. - - To read the feature, the ``read_function`` specified in the constructor is employed. - - **Parameters:** - - probe_file : str or :py:class:`bob.io.base.HDF5File` - The file (open for reading) or the name of an existing file to read from. - - **Returns:** - - probe : object - The read probe, which is a feature. - """ - return self.read_function(bob.io.base.HDF5File(probe_file)) - def score(self, model, probe): """score(model, probe) -> float diff --git a/bob/bio/base/algorithm/Distance.py b/bob/bio/base/algorithm/Distance.py index f902dcd25c559204b8ab331eb05a0f0e97f9a17d..c6a235960d97f7691a2c01631125261ed2bf782e 100644 --- a/bob/bio/base/algorithm/Distance.py +++ b/bob/bio/base/algorithm/Distance.py @@ -73,24 +73,6 @@ class Distance (Algorithm): return numpy.vstack([f.flatten() for f in enroll_features]) - def read_probe(self, probe_file): - """read_probe(probe_file) -> probe - - Reads the probe feature from the given HDF5 file. - - **Parameters:** - - probe_file : str or :py:class:`bob.io.base.HDF5File` - The file (open for reading) or the name of an existing file to read from. - - **Returns:** - - probe : object - The probe. - """ - return utils.load(probe_file) - - def score(self, model, probe): """score(model, probe) -> float diff --git a/bob/bio/base/algorithm/PLDA.py b/bob/bio/base/algorithm/PLDA.py index e2350d6b2bb4e2dc4c68f7adebbbd3bccc1f0aa1..712b9d0f352be4e90c4399ab1285718de7847e77 100644 --- a/bob/bio/base/algorithm/PLDA.py +++ b/bob/bio/base/algorithm/PLDA.py @@ -168,10 +168,6 @@ class PLDA (Algorithm): plda_machine = bob.learn.em.PLDAMachine(bob.io.base.HDF5File(model_file), self.plda_base) return plda_machine - def read_probe(self, probe_file): - """Reads the probe using :py:func:`bob.bio.base.load`.""" - return bob.bio.base.load(probe_file) - def score(self, model, probe): """Computes the PLDA score for the given model and probe""" diff --git a/bob/bio/base/script/score.py b/bob/bio/base/script/score.py index 224df9d237af0ffead6c0eba2eeb92ca2f8e36d0..3432ffa74862d96ddfe52663dd0ca583e59d47f1 100644 --- a/bob/bio/base/script/score.py +++ b/bob/bio/base/script/score.py @@ -17,9 +17,9 @@ def command_line_arguments(command_line_parameters): parser = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('-a', '--algorithm', metavar = 'x', nargs = '+', required = True, help = 'Biometric recognition; registered algorithms are: %s' % bob.bio.base.resource_keys('algorithm')) + parser.add_argument('-e', '--extractor', metavar = 'x', nargs = '+', required = True, help = 'Feature extraction; registered feature extractors are: %s' % bob.bio.base.resource_keys('extractor')) parser.add_argument('-P', '--projector-file', metavar = 'FILE', help = 'The pre-trained projector file, if the algorithm performs projection') parser.add_argument('-E', '--enroller-file' , metavar = 'FILE', help = 'The pre-trained enroller file, if the extractor requires enroller training') - parser.add_argument('-e', '--extractor', metavar = 'x', nargs = '+', help = 'Feature extraction -- required when algorithm performs projection; registered feature extractors are: %s' % bob.bio.base.resource_keys('extractor')) parser.add_argument('-m', '--model-files', metavar = 'MODEL', nargs='+', required = True, help = "A list of enrolled model files") parser.add_argument('-p', '--probe-files', metavar = 'PROBE', nargs='+', required = True, help = "A list of extracted feature files used as probes") @@ -37,6 +37,8 @@ def main(command_line_parameters=None): """Preprocesses the given image with the given preprocessor.""" args = command_line_arguments(command_line_parameters) + logger.debug("Loading extractor") + extractor = bob.bio.base.load_resource(' '.join(args.extractor), "extractor") logger.debug("Loading algorithm") algorithm = bob.bio.base.load_resource(' '.join(args.algorithm), "algorithm") if algorithm.requires_projector_training: @@ -52,18 +54,11 @@ def main(command_line_parameters=None): models, probes = {}, {} logger.debug("Loading %d models", len(args.model_files)) for m in args.model_files: models[m] = algorithm.read_model(m) + logger.debug("Loading %d probes", len(args.probe_files)) + for p in args.probe_files: probes[p] = extractor.read_feature(p) if algorithm.performs_projection: - if args.extractor is None: - raise ValueError("The --extractor is required when the algorithm requires projection") - logger.debug("Loading extractor") - extractor = bob.bio.base.load_resource(' '.join(args.extractor), "extractor") - logger.debug("Loading %d probes", len(args.probe_files)) - for p in args.probe_files: probes[p] = extractor.read_feature(p) logger.debug("Projecting %d probes", len(args.probe_files)) for p in probes: probes[p] = algorithm.project(probes[p]) - else: - logger.debug("Loading %d probes", len(args.probe_files)) - for p in args.probe_files: probes[p] = algorithm.read_probe(p) logger.info("Computing scores") for p in args.probe_files: diff --git a/bob/bio/base/script/verify.py b/bob/bio/base/script/verify.py index f26bf699ddeb68d18a3dcf26849bb111c6143b0e..eb67f3ead971d6debc75a311362fb93efc526f9a 100644 --- a/bob/bio/base/script/verify.py +++ b/bob/bio/base/script/verify.py @@ -336,6 +336,7 @@ def execute(args): if args.score_type in ['A', 'B']: tools.compute_scores( args.algorithm, + args.extractor, args.zt_norm, indices = tools.indices(fs.model_ids(args.group), None if args.grid is None else args.grid.number_of_scoring_jobs), groups = [args.group], @@ -347,6 +348,7 @@ def execute(args): elif args.score_type in ['C', 'D']: tools.compute_scores( args.algorithm, + args.extractor, args.zt_norm, indices = tools.indices(fs.t_model_ids(args.group), None if args.grid is None else args.grid.number_of_scoring_jobs), groups = [args.group], diff --git a/bob/bio/base/test/test_algorithms.py b/bob/bio/base/test/test_algorithms.py index 08e117dc4657d53b8db4793636059dc6523c527e..8b03c5e32599244677fe5e2ed5db437680f7a3b7 100644 --- a/bob/bio/base/test/test_algorithms.py +++ b/bob/bio/base/test/test_algorithms.py @@ -109,7 +109,7 @@ def test_pca(): _compare(model, pkg_resources.resource_filename('bob.bio.base.test', 'data/pca_model.hdf5'), pca1.write_model, pca1.read_model) # compare model with probe - probe = pca1.read_probe(pkg_resources.resource_filename('bob.bio.base.test', 'data/pca_projected.hdf5')) + probe = pca1.read_feature(pkg_resources.resource_filename('bob.bio.base.test', 'data/pca_projected.hdf5')) reference_score = -251.53563107 assert abs(pca1.score(model, probe) - reference_score) < 1e-5, "The scores differ: %3.8f, %3.8f" % (pca1.score(model, probe), reference_score) assert abs(pca1.score_for_multiple_probes(model, [probe, probe]) - reference_score) < 1e-5 @@ -183,7 +183,7 @@ def test_lda(): _compare(model, pkg_resources.resource_filename('bob.bio.base.test', 'data/lda_model.hdf5'), lda1.write_model, lda1.read_model) # compare model with probe - probe = lda1.read_probe(pkg_resources.resource_filename('bob.bio.base.test', 'data/lda_projected.hdf5')) + probe = lda1.read_feature(pkg_resources.resource_filename('bob.bio.base.test', 'data/lda_projected.hdf5')) reference_score = -233.30450012 assert abs(lda1.score(model, probe) - reference_score) < 1e-5, "The scores differ: %3.8f, %3.8f" % (lda1.score(model, probe), reference_score) assert abs(lda1.score_for_multiple_probes(model, [probe, probe]) - reference_score) < 1e-5 @@ -226,7 +226,7 @@ def test_distance(): # compare model with probe enroll = utils.random_training_set(5, 5, 0., 255., seed=21); model = numpy.mean(distance.enroll(enroll),axis=0) - probe = distance.read_probe(pkg_resources.resource_filename('bob.bio.base.test', 'data/lda_projected.hdf5')) + probe = bob.io.base.load(pkg_resources.resource_filename('bob.bio.base.test', 'data/lda_projected.hdf5')) reference_score = -0.1873371 assert abs(distance.score(model, probe) - reference_score) < 1e-5, "The scores differ: %3.8f, %3.8f" % (distance.score(model, probe), reference_score) @@ -358,7 +358,7 @@ def test_plda(): reference_score = 0. assert abs(plda1.score(model, feature) - reference_score) < 1e-5, "The scores differ: %3.8f, %3.8f" % (plda1.score(model, feature), reference_score) assert abs(plda1.score_for_multiple_probes(model, [feature, feature]) - reference_score) < 1e-5 - + def test_plda_nopca(): temp_file = bob.io.base.test_utils.temporary_filename() plda_ref = bob.bio.base.load_resource("plda", "algorithm", preferred_package = 'bob.bio.base') @@ -373,7 +373,7 @@ def test_plda_nopca(): # train the projector try: # train projector - plda.train_enroller(train_set, temp_file) + plda.train_enroller(train_set, temp_file) assert os.path.exists(temp_file) if regenerate_refs: shutil.copy(temp_file, reference_file) @@ -396,4 +396,3 @@ def test_plda_nopca(): reference = plda.read_model(reference) assert model.is_similar_to(reference) - diff --git a/bob/bio/base/test/test_scripts.py b/bob/bio/base/test/test_scripts.py index e028cb1e8eeb792f504b66983ba9cf9dc37a8cef..67d0a8d51d50a460e0835d1a1615d0bb0f2e6bb3 100644 --- a/bob/bio/base/test/test_scripts.py +++ b/bob/bio/base/test/test_scripts.py @@ -337,12 +337,60 @@ def test_internal_raises(): '--imports', 'bob.bio.base.test.dummy' ] - from bob.bio.base.script.verify import main - for option, value in (("--group", "dev"), ("--model-type", "N"), ("--score-type", "A")): - internal = parameters + [option, value] + try: + from bob.bio.base.script.verify import main + for option, value in (("--group", "dev"), ("--model-type", "N"), ("--score-type", "A")): + internal = parameters + [option, value] + + nose.tools.assert_raises(ValueError, main, internal) + finally: + shutil.rmtree(test_dir) + + +def test_verify_generate_config(): + # tests the config file generation + test_dir = tempfile.mkdtemp(prefix='bobtest_') + config_file = os.path.join(test_dir, 'config.py') + # define dummy parameters + parameters = [ + '-H', config_file + ] + try: + from bob.bio.base.script.verify import main + nose.tools.assert_raises(SystemExit, main, parameters) + assert os.path.exists(config_file) + from bob.bio.base.tools.command_line import _required_list, _common_list, _optional_list + assert all(a in _required_list for a in ['database', 'preprocessor', 'extractor', 'algorithm', 'sub_directory']) + assert all(a in _common_list for a in ['protocol', 'grid', 'parallel', 'verbose', 'groups', 'temp_directory', 'result_directory', 'zt_norm', 'allow_missing_files', 'dry_run', 'force']) + assert all(a in _optional_list for a in ['preprocessed_directory', 'extracted_directory', 'projected_directory', 'model_directories', 'extractor_file', 'projector_file', 'enroller_file']) + # todo: this list is actually much longer... + _rare_list = ['imports', 'experiment_info_file', 'write_compressed_score_files', 'skip_preprocessing', 'skip_calibration', 'execute_only'] + + lines = open(config_file).readlines() + + # split into four lists (required, common, optional, rare) + last_lines = None + split_lines = [] + for line in lines: + if line.startswith("#####"): + if last_lines: + split_lines.append(last_lines) + last_lines = [] + else: + if last_lines is not None: + last_lines.append(line) + split_lines.append(last_lines) + assert len(split_lines) == 4 + + for _list, lines in zip((_required_list, _common_list, _optional_list, _rare_list), split_lines): + for a in _list: + assert any(l.startswith("#%s =" %a) for l in lines), a + finally: + shutil.rmtree(test_dir) + + + - nose.tools.assert_raises(ValueError, main, internal) - shutil.rmtree(test_dir) def test_fusion(): diff --git a/bob/bio/base/tools/scoring.py b/bob/bio/base/tools/scoring.py index 3700a58da8020dcf6bcc81195f4e3fad1f67966c..bc90d5b2b85d99eb30b0e0309a65ec2f931d9a45 100644 --- a/bob/bio/base/tools/scoring.py +++ b/bob/bio/base/tools/scoring.py @@ -13,7 +13,7 @@ from .FileSelector import FileSelector from .extractor import read_features from .. import utils -def _scores(algorithm, model, probes, allow_missing_files): +def _scores(algorithm, reader, model, probes, allow_missing_files): """Compute scores for the given model and a list of probes. """ # the file selector object @@ -36,7 +36,7 @@ def _scores(algorithm, model, probes, allow_missing_files): # we keep the NaN score continue # read probe from probe_set - probe = [algorithm.read_probe(probe_file) for probe_file in probe_element] + probe = [reader.read_feature(probe_file) for probe_file in probe_element] # compute score scores[0,i] = algorithm.score_for_multiple_probes(model, probe) else: @@ -44,7 +44,7 @@ def _scores(algorithm, model, probes, allow_missing_files): # we keep the NaN score continue # read probe - probe = algorithm.read_probe(probe_element) + probe = reader.read_feature(probe_element) # compute score scores[0,i] = algorithm.score(model, probe) # Returns the scores @@ -111,7 +111,7 @@ def _save_scores(score_file, scores, probe_objects, client_id, write_compressed) _close_written(score_file, f, write_compressed) -def _scores_a(algorithm, model_ids, group, compute_zt_norm, force, write_compressed, allow_missing_files): +def _scores_a(algorithm, reader, model_ids, group, compute_zt_norm, force, write_compressed, allow_missing_files): """Computes A scores for the models with the given model_ids. If ``compute_zt_norm = False``, these are the only scores that are actually computed.""" # the file selector object fs = FileSelector.instance() @@ -138,7 +138,7 @@ def _scores_a(algorithm, model_ids, group, compute_zt_norm, force, write_compres # get the probe files current_probe_files = fs.get_paths(current_probe_objects, 'projected' if algorithm.performs_projection else 'extracted') # compute scores - a = _scores(algorithm, model, current_probe_files, allow_missing_files) + a = _scores(algorithm, reader, model, current_probe_files, allow_missing_files) if compute_zt_norm: # write A matrix only when you want to compute zt norm afterwards @@ -148,7 +148,7 @@ def _scores_a(algorithm, model_ids, group, compute_zt_norm, force, write_compres _save_scores(fs.no_norm_file(model_id, group), a, current_probe_objects, fs.client_id(model_id, group), write_compressed) -def _scores_b(algorithm, model_ids, group, force, allow_missing_files): +def _scores_b(algorithm, reader, model_ids, group, force, allow_missing_files): """Computes B scores for the given model ids.""" # the file selector object fs = FileSelector.instance() @@ -171,10 +171,10 @@ def _scores_b(algorithm, model_ids, group, force, allow_missing_files): model = None else: model = algorithm.read_model(model_file) - b = _scores(algorithm, model, z_probe_files, allow_missing_files) + b = _scores(algorithm, reader, model, z_probe_files, allow_missing_files) bob.io.base.save(b, score_file, True) -def _scores_c(algorithm, t_model_ids, group, force, allow_missing_files): +def _scores_c(algorithm, reader, t_model_ids, group, force, allow_missing_files): """Computes C scores for the given t-norm model ids.""" # the file selector object fs = FileSelector.instance() @@ -197,10 +197,10 @@ def _scores_c(algorithm, t_model_ids, group, force, allow_missing_files): t_model = None else: t_model = algorithm.read_model(t_model_file) - c = _scores(algorithm, t_model, probe_files, allow_missing_files) + c = _scores(algorithm, reader, t_model, probe_files, allow_missing_files) bob.io.base.save(c, score_file, True) -def _scores_d(algorithm, t_model_ids, group, force, allow_missing_files): +def _scores_d(algorithm, reader, t_model_ids, group, force, allow_missing_files): """Computes D scores for the given t-norm model ids. Both the D matrix and the D-samevalue matrix are written.""" # the file selector object fs = FileSelector.instance() @@ -227,7 +227,7 @@ def _scores_d(algorithm, t_model_ids, group, force, allow_missing_files): t_model = None else: t_model = algorithm.read_model(t_model_file) - d = _scores(algorithm, t_model, z_probe_files, allow_missing_files) + d = _scores(algorithm, reader, t_model, z_probe_files, allow_missing_files) bob.io.base.save(d, score_file, True) t_client_id = [fs.client_id(t_model_id, group, True)] @@ -235,7 +235,7 @@ def _scores_d(algorithm, t_model_ids, group, force, allow_missing_files): bob.io.base.save(d_same_value_tm, same_score_file, True) -def compute_scores(algorithm, compute_zt_norm, indices = None, groups = ['dev', 'eval'], types = ['A', 'B', 'C', 'D'], write_compressed = False, allow_missing_files = False, force = False): +def compute_scores(algorithm, extractor, compute_zt_norm, indices = None, groups = ['dev', 'eval'], types = ['A', 'B', 'C', 'D'], write_compressed = False, allow_missing_files = False, force = False): """Computes the scores for the given groups. This function computes all scores for the experiment, and writes them to files, one per model. @@ -247,6 +247,10 @@ def compute_scores(algorithm, compute_zt_norm, indices = None, groups = ['dev', algorithm : py:class:`bob.bio.base.algorithm.Algorithm` or derived The algorithm, used for enrolling model and writing them to file. + extractor : py:class:`bob.bio.base.extractor.Extractor` or derived + The extractor, used for extracting the features. + The extractor is only used to read features, if the algorithm does not perform projection. + compute_zt_norm : bool If set to ``True``, also ZT-norm scores are computed. @@ -280,6 +284,14 @@ def compute_scores(algorithm, compute_zt_norm, indices = None, groups = ['dev', algorithm.load_projector(fs.projector_file) algorithm.load_enroller(fs.enroller_file) + # which tool to use to read the probes + if algorithm.performs_projection: + reader = algorithm + else: + reader = extractor + # make sure that the extractor is loaded + extractor.load(fs.extractor_file) + for group in groups: # get model ids model_ids = fs.model_ids(group) @@ -293,20 +305,20 @@ def compute_scores(algorithm, compute_zt_norm, indices = None, groups = ['dev', # compute A scores if 'A' in types: - _scores_a(algorithm, model_ids, group, compute_zt_norm, force, write_compressed, allow_missing_files) + _scores_a(algorithm, reader, model_ids, group, compute_zt_norm, force, write_compressed, allow_missing_files) if compute_zt_norm: # compute B scores if 'B' in types: - _scores_b(algorithm, model_ids, group, force, allow_missing_files) + _scores_b(algorithm, reader, model_ids, group, force, allow_missing_files) # compute C scores if 'C' in types: - _scores_c(algorithm, t_model_ids, group, force, allow_missing_files) + _scores_c(algorithm, reader, t_model_ids, group, force, allow_missing_files) # compute D scores if 'D' in types: - _scores_d(algorithm, t_model_ids, group, force, allow_missing_files) + _scores_d(algorithm, reader, t_model_ids, group, force, allow_missing_files) diff --git a/doc/implementation.rst b/doc/implementation.rst index 142cd551de228bcb4c734691af7b8e2f33854fbb..4d9221fc5160b9b8a0f1f8cabeb7473f84065f94 100644 --- a/doc/implementation.rst +++ b/doc/implementation.rst @@ -173,10 +173,6 @@ If the ``score`` function expects models and probe features to be of a different * ``write_model(self, model, model_file)``: writes the model (as returned by the ``enroll`` function). * ``read_model(self, model_file) -> model``: reads the model (as written by the ``write_model`` function) from file. -* ``read_probe(self, probe_file) -> feature``: reads the probe feature from file. - - .. note:: - In many cases, the ``read_feature`` and ``read_probe`` functions are identical (if both are present). Finally, the :py:class:`bob.bio.base.algorithm.Algorithm` class provides default implementations for the case that models store several features, or that several probe features should be combined into one score. These two functions are: