diff --git a/bob/bio/base/algorithm/Algorithm.py b/bob/bio/base/algorithm/Algorithm.py
index 38834b8fa45d6484f1c9927d250f2cd5e654bb78..c15cc9e0fd80af78842e6c4b4a655ec32d2588d9 100644
--- a/bob/bio/base/algorithm/Algorithm.py
+++ b/bob/bio/base/algorithm/Algorithm.py
@@ -172,7 +172,8 @@ class Algorithm (object):
 
     probe : object
       The probe object to compare the model with.
-      The ``probe`` was read using the :py:meth:`read_probe` function.
+      The ``probe`` was read using the :py:meth:`read_feature` function
+      (or the :py:meth:`bob.bio.base.extractor.Extractor.read_feature` function, if this algorithm does not perform projection.
 
     **Returns:**
 
@@ -330,29 +331,6 @@ class Algorithm (object):
     return utils.load(model_file)
 
 
-  def read_probe(self, probe_file):
-    """read_probe(probe_file) -> probe
-
-    Reads the probe feature from file.
-    By default, the probe feature is identical to the projected feature.
-    Hence, this base class implementation simply calls :py:meth:`read_feature`.
-
-    If your algorithm requires different behavior, please overwrite this function.
-
-    **Parameters:**
-
-    probe_file : str or :py:class:`bob.io.base.HDF5File`
-      The file open for reading, or the file name to read from.
-
-    **Returns:**
-
-    probe : object
-      The probe that was read from file.
-    """
-    return self.read_feature(probe_file)
-
-
-
   def train_projector(self, training_features, projector_file):
     """This function can be overwritten to train the feature projector.
     If you do this, please also register the function by calling this base class constructor
diff --git a/bob/bio/base/algorithm/BIC.py b/bob/bio/base/algorithm/BIC.py
index c15b5e58c04ec064db1c14886e4e1febc8799326..42aa785c53af8fd36898f6f4818567b2bb633782 100644
--- a/bob/bio/base/algorithm/BIC.py
+++ b/bob/bio/base/algorithm/BIC.py
@@ -230,25 +230,6 @@ class BIC(Algorithm):
             i += 1
         return model
 
-    def read_probe(self, probe_file):
-        """read_probe(probe_file) -> probe
-
-        Reads the probe feature from the given HDF5 file.
-
-        To read the feature, the ``read_function`` specified in the constructor is employed.
-
-        **Parameters:**
-
-        probe_file : str or :py:class:`bob.io.base.HDF5File`
-          The file (open for reading) or the name of an existing file to read from.
-
-        **Returns:**
-
-        probe : object
-          The read probe, which is a feature.
-        """
-        return self.read_function(bob.io.base.HDF5File(probe_file))
-
     def score(self, model, probe):
         """score(model, probe) -> float
 
diff --git a/bob/bio/base/algorithm/Distance.py b/bob/bio/base/algorithm/Distance.py
index f902dcd25c559204b8ab331eb05a0f0e97f9a17d..c6a235960d97f7691a2c01631125261ed2bf782e 100644
--- a/bob/bio/base/algorithm/Distance.py
+++ b/bob/bio/base/algorithm/Distance.py
@@ -73,24 +73,6 @@ class Distance (Algorithm):
     return numpy.vstack([f.flatten() for f in enroll_features])
 
 
-  def read_probe(self, probe_file):
-    """read_probe(probe_file) -> probe
-
-    Reads the probe feature from the given HDF5 file.
-
-    **Parameters:**
-
-    probe_file : str or :py:class:`bob.io.base.HDF5File`
-      The file (open for reading) or the name of an existing file to read from.
-
-    **Returns:**
-
-    probe : object
-      The probe.
-    """
-    return utils.load(probe_file)
-
-
   def score(self, model, probe):
     """score(model, probe) -> float
 
diff --git a/bob/bio/base/algorithm/PLDA.py b/bob/bio/base/algorithm/PLDA.py
index e2350d6b2bb4e2dc4c68f7adebbbd3bccc1f0aa1..712b9d0f352be4e90c4399ab1285718de7847e77 100644
--- a/bob/bio/base/algorithm/PLDA.py
+++ b/bob/bio/base/algorithm/PLDA.py
@@ -168,10 +168,6 @@ class PLDA (Algorithm):
     plda_machine = bob.learn.em.PLDAMachine(bob.io.base.HDF5File(model_file), self.plda_base)
     return plda_machine
 
-  def read_probe(self, probe_file):
-    """Reads the probe using :py:func:`bob.bio.base.load`."""
-    return bob.bio.base.load(probe_file)
-
 
   def score(self, model, probe):
     """Computes the PLDA score for the given model and probe"""
diff --git a/bob/bio/base/script/score.py b/bob/bio/base/script/score.py
index 224df9d237af0ffead6c0eba2eeb92ca2f8e36d0..3432ffa74862d96ddfe52663dd0ca583e59d47f1 100644
--- a/bob/bio/base/script/score.py
+++ b/bob/bio/base/script/score.py
@@ -17,9 +17,9 @@ def command_line_arguments(command_line_parameters):
   parser = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter)
 
   parser.add_argument('-a', '--algorithm', metavar = 'x', nargs = '+', required = True, help = 'Biometric recognition; registered algorithms are: %s' % bob.bio.base.resource_keys('algorithm'))
+  parser.add_argument('-e', '--extractor', metavar = 'x', nargs = '+', required = True, help = 'Feature extraction; registered feature extractors are: %s' % bob.bio.base.resource_keys('extractor'))
   parser.add_argument('-P', '--projector-file', metavar = 'FILE', help = 'The pre-trained projector file, if the algorithm performs projection')
   parser.add_argument('-E', '--enroller-file' , metavar = 'FILE', help = 'The pre-trained enroller file, if the extractor requires enroller training')
-  parser.add_argument('-e', '--extractor', metavar = 'x', nargs = '+', help = 'Feature extraction -- required when algorithm performs projection; registered feature extractors are: %s' % bob.bio.base.resource_keys('extractor'))
   parser.add_argument('-m', '--model-files', metavar = 'MODEL', nargs='+', required = True, help = "A list of enrolled model files")
   parser.add_argument('-p', '--probe-files', metavar = 'PROBE', nargs='+', required = True, help = "A list of extracted feature files used as probes")
 
@@ -37,6 +37,8 @@ def main(command_line_parameters=None):
   """Preprocesses the given image with the given preprocessor."""
   args = command_line_arguments(command_line_parameters)
 
+  logger.debug("Loading extractor")
+  extractor = bob.bio.base.load_resource(' '.join(args.extractor), "extractor")
   logger.debug("Loading algorithm")
   algorithm = bob.bio.base.load_resource(' '.join(args.algorithm), "algorithm")
   if algorithm.requires_projector_training:
@@ -52,18 +54,11 @@ def main(command_line_parameters=None):
   models, probes = {}, {}
   logger.debug("Loading %d models", len(args.model_files))
   for m in args.model_files: models[m] = algorithm.read_model(m)
+  logger.debug("Loading %d probes", len(args.probe_files))
+  for p in args.probe_files: probes[p] = extractor.read_feature(p)
   if algorithm.performs_projection:
-    if args.extractor is None:
-      raise ValueError("The --extractor is required when the algorithm requires projection")
-    logger.debug("Loading extractor")
-    extractor = bob.bio.base.load_resource(' '.join(args.extractor), "extractor")
-    logger.debug("Loading %d probes", len(args.probe_files))
-    for p in args.probe_files: probes[p] = extractor.read_feature(p)
     logger.debug("Projecting %d probes", len(args.probe_files))
     for p in probes: probes[p] = algorithm.project(probes[p])
-  else:
-    logger.debug("Loading %d probes", len(args.probe_files))
-    for p in args.probe_files: probes[p] = algorithm.read_probe(p)
 
   logger.info("Computing scores")
   for p in args.probe_files:
diff --git a/bob/bio/base/script/verify.py b/bob/bio/base/script/verify.py
index f26bf699ddeb68d18a3dcf26849bb111c6143b0e..eb67f3ead971d6debc75a311362fb93efc526f9a 100644
--- a/bob/bio/base/script/verify.py
+++ b/bob/bio/base/script/verify.py
@@ -336,6 +336,7 @@ def execute(args):
     if args.score_type in ['A', 'B']:
       tools.compute_scores(
           args.algorithm,
+          args.extractor,
           args.zt_norm,
           indices = tools.indices(fs.model_ids(args.group), None if args.grid is None else args.grid.number_of_scoring_jobs),
           groups = [args.group],
@@ -347,6 +348,7 @@ def execute(args):
     elif args.score_type in ['C', 'D']:
       tools.compute_scores(
           args.algorithm,
+          args.extractor,
           args.zt_norm,
           indices = tools.indices(fs.t_model_ids(args.group), None if args.grid is None else args.grid.number_of_scoring_jobs),
           groups = [args.group],
diff --git a/bob/bio/base/test/test_algorithms.py b/bob/bio/base/test/test_algorithms.py
index 08e117dc4657d53b8db4793636059dc6523c527e..8b03c5e32599244677fe5e2ed5db437680f7a3b7 100644
--- a/bob/bio/base/test/test_algorithms.py
+++ b/bob/bio/base/test/test_algorithms.py
@@ -109,7 +109,7 @@ def test_pca():
   _compare(model, pkg_resources.resource_filename('bob.bio.base.test', 'data/pca_model.hdf5'), pca1.write_model, pca1.read_model)
 
   # compare model with probe
-  probe = pca1.read_probe(pkg_resources.resource_filename('bob.bio.base.test', 'data/pca_projected.hdf5'))
+  probe = pca1.read_feature(pkg_resources.resource_filename('bob.bio.base.test', 'data/pca_projected.hdf5'))
   reference_score = -251.53563107
   assert abs(pca1.score(model, probe) - reference_score) < 1e-5, "The scores differ: %3.8f, %3.8f" % (pca1.score(model, probe), reference_score)
   assert abs(pca1.score_for_multiple_probes(model, [probe, probe]) - reference_score) < 1e-5
@@ -183,7 +183,7 @@ def test_lda():
   _compare(model, pkg_resources.resource_filename('bob.bio.base.test', 'data/lda_model.hdf5'), lda1.write_model, lda1.read_model)
 
   # compare model with probe
-  probe = lda1.read_probe(pkg_resources.resource_filename('bob.bio.base.test', 'data/lda_projected.hdf5'))
+  probe = lda1.read_feature(pkg_resources.resource_filename('bob.bio.base.test', 'data/lda_projected.hdf5'))
   reference_score = -233.30450012
   assert abs(lda1.score(model, probe) - reference_score) < 1e-5, "The scores differ: %3.8f, %3.8f" % (lda1.score(model, probe), reference_score)
   assert abs(lda1.score_for_multiple_probes(model, [probe, probe]) - reference_score) < 1e-5
@@ -226,7 +226,7 @@ def test_distance():
   # compare model with probe
   enroll = utils.random_training_set(5, 5, 0., 255., seed=21);
   model = numpy.mean(distance.enroll(enroll),axis=0)
-  probe = distance.read_probe(pkg_resources.resource_filename('bob.bio.base.test', 'data/lda_projected.hdf5'))
+  probe = bob.io.base.load(pkg_resources.resource_filename('bob.bio.base.test', 'data/lda_projected.hdf5'))
 
   reference_score = -0.1873371
   assert abs(distance.score(model, probe) - reference_score) < 1e-5, "The scores differ: %3.8f, %3.8f" % (distance.score(model, probe), reference_score)
@@ -358,7 +358,7 @@ def test_plda():
   reference_score = 0.
   assert abs(plda1.score(model, feature) - reference_score) < 1e-5, "The scores differ: %3.8f, %3.8f" % (plda1.score(model, feature), reference_score)
   assert abs(plda1.score_for_multiple_probes(model, [feature, feature]) - reference_score) < 1e-5
-  
+
 def test_plda_nopca():
   temp_file = bob.io.base.test_utils.temporary_filename()
   plda_ref = bob.bio.base.load_resource("plda", "algorithm", preferred_package = 'bob.bio.base')
@@ -373,7 +373,7 @@ def test_plda_nopca():
   # train the projector
   try:
     # train projector
-    plda.train_enroller(train_set, temp_file)       
+    plda.train_enroller(train_set, temp_file)
     assert os.path.exists(temp_file)
 
     if regenerate_refs: shutil.copy(temp_file, reference_file)
@@ -396,4 +396,3 @@ def test_plda_nopca():
   reference = plda.read_model(reference)
 
   assert model.is_similar_to(reference)
-
diff --git a/bob/bio/base/test/test_scripts.py b/bob/bio/base/test/test_scripts.py
index e028cb1e8eeb792f504b66983ba9cf9dc37a8cef..67d0a8d51d50a460e0835d1a1615d0bb0f2e6bb3 100644
--- a/bob/bio/base/test/test_scripts.py
+++ b/bob/bio/base/test/test_scripts.py
@@ -337,12 +337,60 @@ def test_internal_raises():
       '--imports', 'bob.bio.base.test.dummy'
   ]
 
-  from bob.bio.base.script.verify import main
-  for option, value in (("--group", "dev"), ("--model-type", "N"), ("--score-type", "A")):
-    internal = parameters + [option, value]
+  try:
+    from bob.bio.base.script.verify import main
+    for option, value in (("--group", "dev"), ("--model-type", "N"), ("--score-type", "A")):
+      internal = parameters + [option, value]
+
+      nose.tools.assert_raises(ValueError, main, internal)
+  finally:
+    shutil.rmtree(test_dir)
+
+
+def test_verify_generate_config():
+  # tests the config file generation
+  test_dir = tempfile.mkdtemp(prefix='bobtest_')
+  config_file = os.path.join(test_dir, 'config.py')
+  # define dummy parameters
+  parameters = [
+      '-H', config_file
+  ]
+  try:
+    from bob.bio.base.script.verify import main
+    nose.tools.assert_raises(SystemExit, main, parameters)
+    assert os.path.exists(config_file)
+    from bob.bio.base.tools.command_line import _required_list, _common_list, _optional_list
+    assert all(a in _required_list for a in ['database', 'preprocessor', 'extractor', 'algorithm', 'sub_directory'])
+    assert all(a in _common_list for a in ['protocol', 'grid', 'parallel', 'verbose', 'groups', 'temp_directory', 'result_directory', 'zt_norm', 'allow_missing_files', 'dry_run', 'force'])
+    assert all(a in _optional_list for a in ['preprocessed_directory', 'extracted_directory', 'projected_directory', 'model_directories', 'extractor_file', 'projector_file', 'enroller_file'])
+    # todo: this list is actually much longer...
+    _rare_list = ['imports', 'experiment_info_file', 'write_compressed_score_files', 'skip_preprocessing', 'skip_calibration', 'execute_only']
+
+    lines = open(config_file).readlines()
+
+    # split into four lists (required, common, optional, rare)
+    last_lines = None
+    split_lines = []
+    for line in lines:
+      if line.startswith("#####"):
+        if last_lines:
+          split_lines.append(last_lines)
+        last_lines = []
+      else:
+        if last_lines is not None:
+          last_lines.append(line)
+    split_lines.append(last_lines)
+    assert len(split_lines) == 4
+
+    for _list, lines in zip((_required_list, _common_list, _optional_list, _rare_list), split_lines):
+      for a in _list:
+        assert any(l.startswith("#%s =" %a) for l in lines), a
+  finally:
+    shutil.rmtree(test_dir)
+
+
+
 
-    nose.tools.assert_raises(ValueError, main, internal)
-  shutil.rmtree(test_dir)
 
 
 def test_fusion():
diff --git a/bob/bio/base/tools/scoring.py b/bob/bio/base/tools/scoring.py
index 3700a58da8020dcf6bcc81195f4e3fad1f67966c..bc90d5b2b85d99eb30b0e0309a65ec2f931d9a45 100644
--- a/bob/bio/base/tools/scoring.py
+++ b/bob/bio/base/tools/scoring.py
@@ -13,7 +13,7 @@ from .FileSelector import FileSelector
 from .extractor import read_features
 from .. import utils
 
-def _scores(algorithm, model, probes, allow_missing_files):
+def _scores(algorithm, reader, model, probes, allow_missing_files):
   """Compute scores for the given model and a list of probes.
   """
   # the file selector object
@@ -36,7 +36,7 @@ def _scores(algorithm, model, probes, allow_missing_files):
           # we keep the NaN score
           continue
       # read probe from probe_set
-      probe = [algorithm.read_probe(probe_file) for probe_file in probe_element]
+      probe = [reader.read_feature(probe_file) for probe_file in probe_element]
       # compute score
       scores[0,i] = algorithm.score_for_multiple_probes(model, probe)
     else:
@@ -44,7 +44,7 @@ def _scores(algorithm, model, probes, allow_missing_files):
         # we keep the NaN score
         continue
       # read probe
-      probe = algorithm.read_probe(probe_element)
+      probe = reader.read_feature(probe_element)
       # compute score
       scores[0,i] = algorithm.score(model, probe)
   # Returns the scores
@@ -111,7 +111,7 @@ def _save_scores(score_file, scores, probe_objects, client_id, write_compressed)
   _close_written(score_file, f, write_compressed)
 
 
-def _scores_a(algorithm, model_ids, group, compute_zt_norm, force, write_compressed, allow_missing_files):
+def _scores_a(algorithm, reader, model_ids, group, compute_zt_norm, force, write_compressed, allow_missing_files):
   """Computes A scores for the models with the given model_ids. If ``compute_zt_norm = False``, these are the only scores that are actually computed."""
   # the file selector object
   fs = FileSelector.instance()
@@ -138,7 +138,7 @@ def _scores_a(algorithm, model_ids, group, compute_zt_norm, force, write_compres
       # get the probe files
       current_probe_files = fs.get_paths(current_probe_objects, 'projected' if algorithm.performs_projection else 'extracted')
       # compute scores
-      a = _scores(algorithm, model, current_probe_files, allow_missing_files)
+      a = _scores(algorithm, reader, model, current_probe_files, allow_missing_files)
 
       if compute_zt_norm:
         # write A matrix only when you want to compute zt norm afterwards
@@ -148,7 +148,7 @@ def _scores_a(algorithm, model_ids, group, compute_zt_norm, force, write_compres
       _save_scores(fs.no_norm_file(model_id, group), a, current_probe_objects, fs.client_id(model_id, group), write_compressed)
 
 
-def _scores_b(algorithm, model_ids, group, force, allow_missing_files):
+def _scores_b(algorithm, reader, model_ids, group, force, allow_missing_files):
   """Computes B scores for the given model ids."""
   # the file selector object
   fs = FileSelector.instance()
@@ -171,10 +171,10 @@ def _scores_b(algorithm, model_ids, group, force, allow_missing_files):
         model = None
       else:
         model = algorithm.read_model(model_file)
-      b = _scores(algorithm, model, z_probe_files, allow_missing_files)
+      b = _scores(algorithm, reader, model, z_probe_files, allow_missing_files)
       bob.io.base.save(b, score_file, True)
 
-def _scores_c(algorithm, t_model_ids, group, force, allow_missing_files):
+def _scores_c(algorithm, reader, t_model_ids, group, force, allow_missing_files):
   """Computes C scores for the given t-norm model ids."""
   # the file selector object
   fs = FileSelector.instance()
@@ -197,10 +197,10 @@ def _scores_c(algorithm, t_model_ids, group, force, allow_missing_files):
         t_model = None
       else:
         t_model = algorithm.read_model(t_model_file)
-      c = _scores(algorithm, t_model, probe_files, allow_missing_files)
+      c = _scores(algorithm, reader, t_model, probe_files, allow_missing_files)
       bob.io.base.save(c, score_file, True)
 
-def _scores_d(algorithm, t_model_ids, group, force, allow_missing_files):
+def _scores_d(algorithm, reader, t_model_ids, group, force, allow_missing_files):
   """Computes D scores for the given t-norm model ids. Both the D matrix and the D-samevalue matrix are written."""
   # the file selector object
   fs = FileSelector.instance()
@@ -227,7 +227,7 @@ def _scores_d(algorithm, t_model_ids, group, force, allow_missing_files):
         t_model = None
       else:
         t_model = algorithm.read_model(t_model_file)
-      d = _scores(algorithm, t_model, z_probe_files, allow_missing_files)
+      d = _scores(algorithm, reader, t_model, z_probe_files, allow_missing_files)
       bob.io.base.save(d, score_file, True)
 
       t_client_id = [fs.client_id(t_model_id, group, True)]
@@ -235,7 +235,7 @@ def _scores_d(algorithm, t_model_ids, group, force, allow_missing_files):
       bob.io.base.save(d_same_value_tm, same_score_file, True)
 
 
-def compute_scores(algorithm, compute_zt_norm, indices = None, groups = ['dev', 'eval'], types = ['A', 'B', 'C', 'D'], write_compressed = False, allow_missing_files = False, force = False):
+def compute_scores(algorithm, extractor, compute_zt_norm, indices = None, groups = ['dev', 'eval'], types = ['A', 'B', 'C', 'D'], write_compressed = False, allow_missing_files = False, force = False):
   """Computes the scores for the given groups.
 
   This function computes all scores for the experiment, and writes them to files, one per model.
@@ -247,6 +247,10 @@ def compute_scores(algorithm, compute_zt_norm, indices = None, groups = ['dev',
   algorithm : py:class:`bob.bio.base.algorithm.Algorithm` or derived
     The algorithm, used for enrolling model and writing them to file.
 
+  extractor : py:class:`bob.bio.base.extractor.Extractor` or derived
+    The extractor, used for extracting the features.
+    The extractor is only used to read features, if the algorithm does not perform projection.
+
   compute_zt_norm : bool
     If set to ``True``, also ZT-norm scores are computed.
 
@@ -280,6 +284,14 @@ def compute_scores(algorithm, compute_zt_norm, indices = None, groups = ['dev',
     algorithm.load_projector(fs.projector_file)
   algorithm.load_enroller(fs.enroller_file)
 
+  # which tool to use to read the probes
+  if algorithm.performs_projection:
+    reader = algorithm
+  else:
+    reader = extractor
+    # make sure that the extractor is loaded
+    extractor.load(fs.extractor_file)
+
   for group in groups:
     # get model ids
     model_ids = fs.model_ids(group)
@@ -293,20 +305,20 @@ def compute_scores(algorithm, compute_zt_norm, indices = None, groups = ['dev',
 
     # compute A scores
     if 'A' in types:
-      _scores_a(algorithm, model_ids, group, compute_zt_norm, force, write_compressed, allow_missing_files)
+      _scores_a(algorithm, reader, model_ids, group, compute_zt_norm, force, write_compressed, allow_missing_files)
 
     if compute_zt_norm:
       # compute B scores
       if 'B' in types:
-        _scores_b(algorithm, model_ids, group, force, allow_missing_files)
+        _scores_b(algorithm, reader, model_ids, group, force, allow_missing_files)
 
       # compute C scores
       if 'C' in types:
-        _scores_c(algorithm, t_model_ids, group, force, allow_missing_files)
+        _scores_c(algorithm, reader, t_model_ids, group, force, allow_missing_files)
 
       # compute D scores
       if 'D' in types:
-        _scores_d(algorithm, t_model_ids, group, force, allow_missing_files)
+        _scores_d(algorithm, reader, t_model_ids, group, force, allow_missing_files)
 
 
 
diff --git a/doc/implementation.rst b/doc/implementation.rst
index 142cd551de228bcb4c734691af7b8e2f33854fbb..4d9221fc5160b9b8a0f1f8cabeb7473f84065f94 100644
--- a/doc/implementation.rst
+++ b/doc/implementation.rst
@@ -173,10 +173,6 @@ If the ``score`` function expects models and probe features to be of a different
 
 * ``write_model(self, model, model_file)``: writes the model (as returned by the ``enroll`` function).
 * ``read_model(self, model_file) -> model``: reads the model (as written by the ``write_model`` function) from file.
-* ``read_probe(self, probe_file) -> feature``: reads the probe feature from file.
-
-  .. note::
-     In many cases, the ``read_feature`` and ``read_probe`` functions are identical (if both are present).
 
 Finally, the :py:class:`bob.bio.base.algorithm.Algorithm` class provides default implementations for the case that models store several features, or that several probe features should be combined into one score.
 These two functions are: