diff --git a/bob/bio/base/extractor/stacks.py b/bob/bio/base/extractor/stacks.py index 6bc3cb5f452e03bb879ebcf2453c7aefb78c92c5..0021d4ad4b78d108a3cbe437d5bcec8e7b1523e6 100644 --- a/bob/bio/base/extractor/stacks.py +++ b/bob/bio/base/extractor/stacks.py @@ -7,14 +7,15 @@ class MultipleExtractor(Extractor): """Base class for SequentialExtractor and ParallelExtractor. This class is not meant to be used directly.""" - def get_attributes(self, processors): + @staticmethod + def get_attributes(processors): requires_training = any(p.requires_training for p in processors) split_training_data_by_client = any(p.split_training_data_by_client for p in processors) min_extractor_file_size = min(p.min_extractor_file_size for p in processors) - min_feature_file_size = min( - p.min_feature_file_size for p in processors) + min_feature_file_size = min(p.min_feature_file_size for p in + processors) return (requires_training, split_training_data_by_client, min_extractor_file_size, min_feature_file_size) @@ -23,38 +24,54 @@ class MultipleExtractor(Extractor): return groups def train_one(self, e, training_data, extractor_file, apply=False): + """Trains one extractor and optionally applies the extractor on the + training data after training. + + Parameters + ---------- + e : :any:`Extractor` + The extractor to train. The extractor should be able to save itself + in an opened hdf5 file. + training_data : [object] or [[object]] + The data to be used for training. + extractor_file : :any:`bob.io.base.HDF5File` + The opened hdf5 file to save the trained extractor inside. + apply : :obj:`bool`, optional + If ``True``, the extractor is applied to the training data after it + is trained and the data is returned. + + Returns + ------- + None or [object] or [[object]] + Returns ``None`` if ``apply`` is ``False``. Otherwise, returns the + transformed ``training_data``. + """ if not e.requires_training: - if not apply: - return - if self.split_training_data_by_client: - training_data = [[e(d) for d in datalist] - for datalist in training_data] - else: - training_data = [e(d) for d in training_data] + # do nothing since e does not require training! + pass # if any of the extractors require splitting the data, the # split_training_data_by_client is True. elif e.split_training_data_by_client: e.train(training_data, extractor_file) - if not apply: - return - training_data = [[e(d) for d in datalist] - for datalist in training_data] # when no extractor needs splitting elif not self.split_training_data_by_client: e.train(training_data, extractor_file) - if not apply: - return - training_data = [e(d) for d in training_data] # when e here wants it flat but the data is split else: # make training_data flat - aligned_training_data = [d for datalist in training_data for d in - datalist] - e.train(aligned_training_data, extractor_file) - if not apply: - return + flat_training_data = [d for datalist in training_data for d in + datalist] + e.train(flat_training_data, extractor_file) + + if not apply: + return + + # prepare the training data for the next extractor + if self.split_training_data_by_client: training_data = [[e(d) for d in datalist] for datalist in training_data] + else: + training_data = [e(d) for d in training_data] return training_data def load(self, extractor_file): @@ -62,8 +79,7 @@ class MultipleExtractor(Extractor): groups = self.get_extractor_groups() for e, group in zip(self.processors, groups): f.cd(group) - if e.requires_training: - e.load(f) + e.load(f) f.cd('..') @@ -112,10 +128,7 @@ class SequentialExtractor(SequentialProcessor, MultipleExtractor): with HDF5File(extractor_file, 'w') as f: groups = self.get_extractor_groups() for i, (e, group) in enumerate(zip(self.processors, groups)): - if i == len(self.processors) - 1: - apply = False - else: - apply = True + apply = i != len(self.processors) - 1 f.create_group(group) f.cd(group) training_data = self.train_one(e, training_data, f,