diff --git a/bob/bio/base/pipelines/vanilla_biometrics/legacy.py b/bob/bio/base/pipelines/vanilla_biometrics/legacy.py
index 69aa854e0cbf6309e87d005e73058d130d26ffd3..549b0156c228b5f1df9967d124d0e3f7b9449b76 100644
--- a/bob/bio/base/pipelines/vanilla_biometrics/legacy.py
+++ b/bob/bio/base/pipelines/vanilla_biometrics/legacy.py
@@ -352,7 +352,7 @@ class AlgorithmAdaptor:
                 retval.append(Sample(model.enroll(k), parent=k))
         return retval
 
-    def score(self, probes, references, path, *args, **kwargs):
+    def score(self, probes, references, path, checkpoint, *args, **kwargs):
         """Scores a new sample against multiple (potential) references
 
         Parameters
@@ -389,37 +389,63 @@ class AlgorithmAdaptor:
         model.load_projector(path)
 
         score_sample_sets = []
-        n_probes = len(probes)
 
+        # TODO: temporary optimization
+        optimize = True
+        references_stacked = None
+        ###############
+        
         for i,p in enumerate(probes):
             if model.requires_projector_training:
                 data = [model.project(s.data) for s in p.samples]
             else:
                 data = [s.data for s in p.samples]
-
+            
             for subprobe_id, (s, parent) in enumerate(zip(data, p.samples)):
 
                 # each sub-probe in the probe needs to be checked
                 subprobe_scores = []
-                def _compute_score(ref, probe_sample):
-                    return Sample(model.score(ref.data, probe_sample), parent=ref)
-
-                # Parellelizing the scoring
-                subprobe_scores_delayed = []
-                for ref in [r for r in references if r.id in p.references]:
-                    # Delaying the computation of a single score.
-                    subprobe_scores_delayed.append(dask.delayed(_compute_score)(ref, s))
-                    #subprobe_scores.append(Sample(model.score(ref.data, s), parent=ref))
-                #subprobe_scores = [ssd.compute() for ssd in subprobe_scores_delayed]
-                
+
+                # Temporary optimization
+                if optimize:
+                    # TODO: THIS IS JUST FOR CITER PROJECT
+                    # GIVE ME A BREAK AND LOOK SOMEWHERE ELSE
+                    if references_stacked is None:
+                        references_stacked = numpy.vstack([r.data for r in references if r.id in p.references])                    
+                    from scipy.spatial.distance import cdist
+                    scores = -1*cdist(references_stacked, s.reshape(1,-1), 'cosine')
+                    for ref, score in zip([r for r in references if r.id in p.references], scores):
+                        subprobe_scores.append(Sample(score[0], parent=ref))
+                else:
+                    def _compute_score(ref, probe_sample):
+                        return Sample(model.score(ref.data, probe_sample), parent=ref)
+
+                    # Parellelizing the scoring
+                    #subprobe_scores_delayed = []
+                    for ref in [r for r in references if r.id in p.references]:
+                        subprobe_scores.append(_compute_score(ref, s))
+
                 # Delaying the computation of a single score.
-                subprobe_scores = dask.delayed(list)(subprobe_scores_delayed)
                 subprobe = SampleSet(subprobe_scores, parent=parent)
-                #subprobe = SampleSet(subprobe_scores, parent=p)
-                #subprobe = SampleSet(subprobe_scores, parent=None)
+                subprobe.subprobe_id = subprobe_id                
 
-                subprobe.subprobe_id = subprobe_id
-                score_sample_sets.append(subprobe)
+                # Chekpointing if necessary
+                if checkpoint is not None:
+                    candidate = os.path.join(os.path.join(checkpoint, parent.path + ".txt"))
+                    bob.io.base.create_directories_safe(os.path.dirname(candidate))
+                    delayed_samples_subprobe = _save_scores_four_columns(candidate, subprobe)
+                    subprobe.samples = [delayed_samples_subprobe]
 
+                score_sample_sets.append(subprobe)
 
         return score_sample_sets
+
+
+def _save_scores_four_columns(path, probe):
+    
+    with open(path, "w") as f:
+        for biometric_reference in probe.samples:
+            line = "{0} {1} {2} {3}\n".format(biometric_reference.subject, probe.subject, probe.path, biometric_reference.data)
+            f.write(line)
+
+    return DelayedSample(functools.partial(open, path))
\ No newline at end of file
diff --git a/bob/bio/base/pipelines/vanilla_biometrics/pipeline.py b/bob/bio/base/pipelines/vanilla_biometrics/pipeline.py
index 956ce0b723c620c65f8536432253ce13d38ecffc..121608d1d523d23380f9430c5b49d4d8f1e5ec64 100644
--- a/bob/bio/base/pipelines/vanilla_biometrics/pipeline.py
+++ b/bob/bio/base/pipelines/vanilla_biometrics/pipeline.py
@@ -363,7 +363,6 @@ def compute_scores(
     ## the disk, directly.  A second option would be to generate named delays
     ## for each model and then associate them here.
     all_references = dask.delayed(list)(references)
-    return db.map_partitions(algorithm.score, all_references, background_model)
-    #return db.map_partitions(algorithm.score, all_references, background_model)
+    return db.map_partitions(algorithm.score, all_references, background_model, checkpoints.get("probes", {}).get("scores")  )
 
 
diff --git a/bob/bio/base/script/vanilla_biometrics.py b/bob/bio/base/script/vanilla_biometrics.py
index efe5e88b976cfee696a4f10c4196c953286d4ed9..a523d6986ce768509159e29d3d9ed1ae729f2ec3 100644
--- a/bob/bio/base/script/vanilla_biometrics.py
+++ b/bob/bio/base/script/vanilla_biometrics.py
@@ -11,6 +11,7 @@ import functools
 import click
 
 from bob.extension.scripts.click_helper import verbosity_option, ResourceOption, ConfigCommand
+from bob.pipelines.sample.sample import DelayedSample, Sample
 
 import logging
 logger = logging.getLogger(__name__)
@@ -195,7 +196,9 @@ def vanilla_biometrics(
             "probes": {
                 "preprocessor": os.path.join(output, "probes", "preprocessed"),
                 "extractor": os.path.join(output, "probes", "extracted"),
+                "scores": os.path.join(output, "probes", "scores"),
             },
+
         }
 
 
@@ -212,38 +215,33 @@ def vanilla_biometrics(
     for g in group:
 
         with open(os.path.join(output,f"scores-{g}"), "w") as f:
-
-            # Spliting the references in small chunks
-            n_workers = len(dask_client.cluster.workers)
             biometric_references = database.references(group=g)
-            offset = 0
-            step = len(biometric_references)//n_workers
-            biometric_references_chunks = []
-            for i in range(n_workers-1):
-                biometric_references_chunks.append(biometric_references[offset:offset+step])
-                offset += step
-            biometric_references_chunks.append(biometric_references[offset:])
-
-            for biometric_reference in biometric_references_chunks:
-
-                result = biometric_pipeline(
-                    database.background_model_samples(),
-                    biometric_reference,
-                    database.probes(group=g),
-                    loader,
-                    algorithm,
-                    npartitions=len(dask_client.cluster.workers),
-                    checkpoints=checkpoints,
-                )
-
-                # result.visualize(os.path.join(output, "graph.pdf"), rankdir="LR")
-                result = result.compute(scheduler=dask_client)
-                #result = result.compute(scheduler="single-threaded")        
-                for probe in result:
-                    probe.samples = probe.samples.compute(scheduler=dask_client)
-                    for reference in probe.samples:
+
+            result = biometric_pipeline(
+                database.background_model_samples(),
+                biometric_references,
+                database.probes(group=g),
+                loader,
+                algorithm,
+                npartitions=len(dask_client.cluster.workers),
+                checkpoints=checkpoints,
+            )
+            # result.visualize(os.path.join(output, "graph.pdf"), rankdir="LR")
+            result = result.compute(scheduler=dask_client)
+            #result = result.compute(scheduler="single-threaded")
+
+            #import ipdb; ipdb.set_trace()
+            for probe in result:
+                for sample in probe.samples:
+                    
+                    if isinstance(sample, Sample):
                         line = "{0} {1} {2} {3}\n".format(reference.subject, probe.subject, probe.path, reference.data)
                         f.write(line)
+                    elif isinstance(sample, DelayedSample):
+                        lines = sample.load().readlines()
+                        f.writelines(lines)
+                    else:
+                        raise TypeError("The output of the pipeline is not writeble")
 
     dask_client.shutdown()