evaluate.py 16.2 KB
Newer Older
Manuel Günther's avatar
Manuel Günther committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
#!/usr/bin/env python
# vim: set fileencoding=utf-8 :
# Manuel Guenther <manuel.guenther@idiap.ch>
# Tue Jul 2 14:52:49 CEST 2013
#
# Copyright (C) 2011-2013 Idiap Research Institute, Martigny, Switzerland
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, version 3 of the License.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the ipyplotied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

from __future__ import print_function

"""This script evaluates the given score files and computes EER, HTER.
It also is able to plot CMC and ROC curves."""

import bob.measure

import argparse
import numpy, math
import os

# matplotlib stuff
32
import matplotlib; matplotlib.use('pdf') #avoids TkInter threaded start
Manuel Günther's avatar
Manuel Günther committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
from matplotlib import pyplot
from matplotlib.backends.backend_pdf import PdfPages

# enable LaTeX interpreter
matplotlib.rc('text', usetex=True)
matplotlib.rc('font', family='serif')
matplotlib.rc('lines', linewidth = 4)
# increase the default font size
matplotlib.rc('font', size=18)

import bob.core
logger = bob.core.log.setup("bob.bio.base")


def command_line_arguments(command_line_parameters):
  """Parse the program options"""

  # set up command line parser
  parser = argparse.ArgumentParser(description=__doc__,
      formatter_class=argparse.ArgumentDefaultsHelpFormatter)

  parser.add_argument('-d', '--dev-files', required=True, nargs='+', help = "A list of score files of the development set.")
  parser.add_argument('-e', '--eval-files', nargs='+', help = "A list of score files of the evaluation set; if given it must be the same number of files as the --dev-files.")

  parser.add_argument('-s', '--directory', default = '.', help = "A directory, where to find the --dev-files and the --eval-files")

  parser.add_argument('-c', '--criterion', choices = ('EER', 'HTER'), help = "If given, the threshold of the development set will be computed with this criterion.")
  parser.add_argument('-x', '--cllr', action = 'store_true', help = "If given, Cllr and minCllr will be computed.")
  parser.add_argument('-m', '--mindcf', action = 'store_true', help = "If given, minDCF will be computed.")
  parser.add_argument('--cost', default=0.99,  help='Cost for FAR in minDCF')
  parser.add_argument('-r', '--rr', action = 'store_true', help = "If given, the Recognition Rate will be computed.")
  parser.add_argument('-l', '--legends', nargs='+', help = "A list of legend strings used for ROC, CMC and DET plots; if given, must be the same number than --dev-files.")
  parser.add_argument('-F', '--legend-font-size', type=int, default=18, help = "Set the font size of the legends.")
  parser.add_argument('-P', '--legend-position', type=int, help = "Set the font size of the legends.")
  parser.add_argument('-R', '--roc', help = "If given, ROC curves will be plotted into the given pdf file.")
  parser.add_argument('-D', '--det', help = "If given, DET curves will be plotted into the given pdf file.")
  parser.add_argument('-C', '--cmc', help = "If given, CMC curves will be plotted into the given pdf file.")
70
  parser.add_argument('-E', '--epc', help = "If given, EPC curves will be plotted into the given pdf file. For this plot --eval-files is mandatory.")  
71
  parser.add_argument('--parser', default = '4column', choices = ('4column', '5column'), help="The style of the resulting score files. The default fits to the usual output of score files.")
Manuel Günther's avatar
Manuel Günther committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

  # add verbose option
  bob.core.log.add_command_line_option(parser)

  # parse arguments
  args = parser.parse_args(command_line_parameters)

  # set verbosity level
  bob.core.log.set_verbosity_level(logger, args.verbose)


  # some sanity checks:
  if args.eval_files is not None and len(args.dev_files) != len(args.eval_files):
    logger.error("The number of --dev-files (%d) and --eval-files (%d) are not identical", len(args.dev_files), len(args.eval_files))

  # update legends when they are not specified on command line
  if args.legends is None:
    args.legends = [f.replace('_', '-') for f in args.dev_files]
    logger.warn("Legends are not specified; using legends estimated from --dev-files: %s", args.legends)

  # check that the legends have the same length as the dev-files
  if len(args.dev_files) != len(args.legends):
    logger.error("The number of --dev-files (%d) and --legends (%d) are not identical", len(args.dev_files), len(args.legends))

  return args


def _plot_roc(frrs, colors, labels, title, fontsize=18, position=None):
  if position is None: position = 4
  figure = pyplot.figure()
  # plot FAR and CAR for each algorithm
  for i in range(len(frrs)):
    pyplot.semilogx([100.0*f for f in frrs[i][0]], [100. - 100.0*f for f in frrs[i][1]], color=colors[i], lw=2, ms=10, mew=1.5, label=labels[i])

  # finalize plot
  pyplot.plot([0.1,0.1],[0,100], "--", color=(0.3,0.3,0.3))
  pyplot.axis([frrs[0][0][0]*100,100,0,100])
  pyplot.xticks((0.01, 0.1, 1, 10, 100), ('0.01', '0.1', '1', '10', '100'))
  pyplot.xlabel('FAR (\%)')
  pyplot.ylabel('CAR (\%)')
  pyplot.grid(True, color=(0.6,0.6,0.6))
  pyplot.legend(loc=position, prop = {'size':fontsize})
  pyplot.title(title)

  return figure


def _plot_det(dets, colors, labels, title, fontsize=18, position=None):
  if position is None: position = 1
  # open new page for current plot
  figure = pyplot.figure(figsize=(8.2,8))

  # plot the DET curves
  for i in range(len(dets)):
    pyplot.plot(dets[i][0], dets[i][1], color=colors[i], lw=2, ms=10, mew=1.5, label=labels[i])

  # change axes accordingly
  det_list = [0.0002, 0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 0.7, 0.9, 0.95]
  ticks = [bob.measure.ppndf(d) for d in det_list]
  labels = [("%.5f" % (d*100)).rstrip('0').rstrip('.') for d in det_list]
  pyplot.xticks(ticks, labels)
  pyplot.yticks(ticks, labels)
  pyplot.axis((ticks[0], ticks[-1], ticks[0], ticks[-1]))

  pyplot.xlabel('FAR (\%)')
  pyplot.ylabel('FRR (\%)')
  pyplot.legend(loc=position, prop = {'size':fontsize})
  pyplot.title(title)

  return figure

def _plot_cmc(cmcs, colors, labels, title, fontsize=18, position=None):
  if position is None: position = 4
  # open new page for current plot
  figure = pyplot.figure()

  max_x = 0
  # plot the DET curves
  for i in range(len(cmcs)):
    x = bob.measure.plot.cmc(cmcs[i], figure=figure, color=colors[i], lw=2, ms=10, mew=1.5, label=labels[i])
    max_x = max(x, max_x)

  # change axes accordingly
  ticks = [int(t) for t in pyplot.xticks()[0]]
  pyplot.xlabel('Rank')
  pyplot.ylabel('Probability (\%)')
  pyplot.xticks(ticks, [str(t) for t in ticks])
  pyplot.axis([0, max_x, 0, 100])
  pyplot.legend(loc=position, prop = {'size':fontsize})
  pyplot.title(title)

  return figure
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
  
  
  
def _plot_epc(scores_dev, scores_eval, colors, labels, title, fontsize=18, position=None):
  if position is None: position = 4
  # open new page for current plot
  figure = pyplot.figure()

  # plot the DET curves
  for i in range(len(scores_dev)):
    bob.measure.plot.epc(scores_dev[i][0], scores_dev[i][1], scores_eval[i][0], scores_eval[i][1], 100, label=labels[i], lw=2)

  # change axes accordingly
  pyplot.xlabel('alpha')
  pyplot.ylabel('HTER (\\%)')
  pyplot.title(title)
  pyplot.grid(True)
  pyplot.legend(loc=position, prop = {'size':fontsize})
  pyplot.title(title)

  return figure  

Manuel Günther's avatar
Manuel Günther committed
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292


def main(command_line_parameters=None):
  """Reads score files, computes error measures and plots curves."""

  args = command_line_arguments(command_line_parameters)

  # get some colors for plotting
  cmap = pyplot.cm.get_cmap(name='hsv')
  colors = [cmap(i) for i in numpy.linspace(0, 1.0, len(args.dev_files)+1)]

  if args.criterion or args.roc or args.det or args.cllr or args.mindcf:
    score_parser = {'4column' : bob.measure.load.split_four_column, '5column' : bob.measure.load.split_five_column}[args.parser]

    # First, read the score files
    logger.info("Loading %d score files of the development set", len(args.dev_files))
    scores_dev = [score_parser(os.path.join(args.directory, f)) for f in args.dev_files]

    if args.eval_files:
      logger.info("Loading %d score files of the evaluation set", len(args.eval_files))
      scores_eval = [score_parser(os.path.join(args.directory, f)) for f in args.eval_files]


    if args.criterion:
      logger.info("Computing %s on the development " % args.criterion + ("and HTER on the evaluation set" if args.eval_files else "set"))
      for i in range(len(scores_dev)):
        # compute threshold on development set
        threshold = {'EER': bob.measure.eer_threshold, 'HTER' : bob.measure.min_hter_threshold} [args.criterion](scores_dev[i][0], scores_dev[i][1])
        # apply threshold to development set
        far, frr = bob.measure.farfrr(scores_dev[i][0], scores_dev[i][1], threshold)
        print("The %s of the development set of '%s' is %2.3f%%" % (args.criterion, args.legends[i], (far + frr) * 50.)) # / 2 * 100%
        if args.eval_files:
          # apply threshold to evaluation set
          far, frr = bob.measure.farfrr(scores_eval[i][0], scores_eval[i][1], threshold)
          print("The HTER of the evaluation set of '%s' is %2.3f%%" % (args.legends[i], (far + frr) * 50.)) # / 2 * 100%


    if args.mindcf:
      logger.info("Computing minDCF on the development " + ("and on the evaluation set" if args.eval_files else "set"))
      for i in range(len(scores_dev)):
        # compute threshold on development set
        threshold = bob.measure.min_weighted_error_rate_threshold(scores_dev[i][0], scores_dev[i][1], args.cost)
        # apply threshold to development set
        far, frr = bob.measure.farfrr(scores_dev[i][0], scores_dev[i][1], threshold)
        print("The minDCF of the development set of '%s' is %2.3f%%" % (args.legends[i], (args.cost * far + (1-args.cost) * frr) * 100. ))
        if args.eval_files:
          # compute threshold on evaluation set
          threshold = bob.measure.min_weighted_error_rate_threshold(scores_eval[i][0], scores_eval[i][1], args.cost)
          # apply threshold to evaluation set
          far, frr = bob.measure.farfrr(scores_eval[i][0], scores_eval[i][1], threshold)
          print("The minDCF of the evaluation set of '%s' is %2.3f%%" % (args.legends[i], (args.cost * far + (1-args.cost) * frr) * 100. ))


    if args.cllr:
      logger.info("Computing Cllr and minCllr on the development " + ("and on the evaluation set" if args.eval_files else "set"))
      for i in range(len(scores_dev)):
        cllr = bob.measure.calibration.cllr(scores_dev[i][0], scores_dev[i][1])
        min_cllr = bob.measure.calibration.min_cllr(scores_dev[i][0], scores_dev[i][1])
        print("Calibration performance on development set of '%s' is Cllr %1.5f and minCllr %1.5f " % (args.legends[i], cllr, min_cllr))
        if args.eval_files:
          cllr = bob.measure.calibration.cllr(scores_eval[i][0], scores_eval[i][1])
          min_cllr = bob.measure.calibration.min_cllr(scores_eval[i][0], scores_eval[i][1])
          print("Calibration performance on evaluation set of '%s' is Cllr %1.5f and minCllr %1.5f" % (args.legends[i], cllr, min_cllr))


    if args.roc:
      logger.info("Computing CAR curves on the development " + ("and on the evaluation set" if args.eval_files else "set"))
      fars = [math.pow(10., i * 0.25) for i in range(-16,0)] + [1.]
      frrs_dev = [bob.measure.roc_for_far(scores[0], scores[1], fars) for scores in scores_dev]
      if args.eval_files:
        frrs_eval = [bob.measure.roc_for_far(scores[0], scores[1], fars) for scores in scores_eval]

      logger.info("Plotting ROC curves to file '%s'", args.roc)
      try:
        # create a multi-page PDF for the ROC curve
        pdf = PdfPages(args.roc)
        # create a separate figure for dev and eval
        pdf.savefig(_plot_roc(frrs_dev, colors, args.legends, "ROC curve for development set", args.legend_font_size, args.legend_position))
        del frrs_dev
        if args.eval_files:
          pdf.savefig(_plot_roc(frrs_eval, colors, args.legends, "ROC curve for evaluation set", args.legend_font_size, args.legend_position))
          del frrs_eval
        pdf.close()
      except RuntimeError as e:
        raise RuntimeError("During plotting of ROC curves, the following exception occured:\n%s\nUsually this happens when the label contains characters that LaTeX cannot parse." % e)

    if args.det:
      logger.info("Computing DET curves on the development " + ("and on the evaluation set" if args.eval_files else "set"))
      dets_dev = [bob.measure.det(scores[0], scores[1], 1000) for scores in scores_dev]
      if args.eval_files:
        dets_eval = [bob.measure.det(scores[0], scores[1], 1000) for scores in scores_eval]

      logger.info("Plotting DET curves to file '%s'", args.det)
      try:
        # create a multi-page PDF for the ROC curve
        pdf = PdfPages(args.det)
        # create a separate figure for dev and eval
        pdf.savefig(_plot_det(dets_dev, colors, args.legends, "DET plot for development set", args.legend_font_size, args.legend_position))
        del dets_dev
        if args.eval_files:
          pdf.savefig(_plot_det(dets_eval, colors, args.legends, "DET plot for evaluation set", args.legend_font_size, args.legend_position))
          del dets_eval
        pdf.close()
      except RuntimeError as e:
        raise RuntimeError("During plotting of ROC curves, the following exception occured:\n%s\nUsually this happens when the label contains characters that LaTeX cannot parse." % e)


293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
    if args.epc:
      logger.info("Plotting EPC curves ")
      
      if not args.eval_files:
        raise ValueError("To plot the EPC curve the evaluation scores are necessary. Please, set it with the --eval-files option.")
      
      try:
        # create a multi-page PDF for the ROC curve
        pdf = PdfPages(args.epc)
        pdf.savefig(_plot_epc(scores_dev, scores_eval, colors, args.legends, "EPC Curves" , args.legend_font_size, args.legend_position))
        pdf.close()
      except RuntimeError as e:
        raise RuntimeError("During plotting of EPC curves, the following exception occured:\n%s\nUsually this happens when the label contains characters that LaTeX cannot parse." % e)




Manuel Günther's avatar
Manuel Günther committed
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
  if args.cmc or args.rr:
    logger.info("Loading CMC data on the development " + ("and on the evaluation set" if args.eval_files else "set"))
    cmc_parser = {'4column' : bob.measure.load.cmc_four_column, '5column' : bob.measure.load.cmc_five_column}[args.parser]
    cmcs_dev = [cmc_parser(os.path.join(args.directory, f)) for f in args.dev_files]
    if args.eval_files:
      cmcs_eval = [cmc_parser(os.path.join(args.directory, f)) for f in args.eval_files]

  if args.cmc:
    logger.info("Plotting CMC curves to file '%s'", args.cmc)
    try:
      # create a multi-page PDF for the ROC curve
      pdf = PdfPages(args.cmc)
      # create a separate figure for dev and eval
      pdf.savefig(_plot_cmc(cmcs_dev, colors, args.legends, "CMC curve for development set", args.legend_font_size, args.legend_position))
      if args.eval_files:
        pdf.savefig(_plot_cmc(cmcs_eval, colors, args.legends, "CMC curve for evaluation set", args.legend_font_size, args.legend_position))
      pdf.close()
    except RuntimeError as e:
      raise RuntimeError("During plotting of ROC curves, the following exception occured:\n%s\nUsually this happens when the label contains characters that LaTeX cannot parse." % e)

  if args.rr:
    logger.info("Computing recognition rate on the development " + ("and on the evaluation set" if args.eval_files else "set"))
    for i in range(len(cmcs_dev)):
      rr = bob.measure.recognition_rate(cmcs_dev[i])
      print("The Recognition Rate of the development set of '%s' is %2.3f%%" % (args.legends[i], rr * 100.))
      if args.eval_files:
        rr = bob.measure.recognition_rate(cmcs_eval[i])
        print("The Recognition Rate of the development set of '%s' is %2.3f%%" % (args.legends[i], rr * 100.))