evaluate.py 22.5 KB
Newer Older
Manuel Günther's avatar
Manuel Günther committed
1
2
3
4
#!/usr/bin/env python
# vim: set fileencoding=utf-8 :

"""This script evaluates the given score files and computes EER, HTER.
5
6
7
It also is able to plot CMC and ROC curves.
You can set the environment variable BOB_NO_STYLE_CHANGES to any value to avoid
this script from changing the matplotlib style values. """
Manuel Günther's avatar
Manuel Günther committed
8

9
from __future__ import print_function
Manuel Günther's avatar
Manuel Günther committed
10
11
12
import bob.measure

import argparse
13
14
import numpy
import math
Manuel Günther's avatar
Manuel Günther committed
15
16
17
import os

# matplotlib stuff
18
19
import matplotlib
matplotlib.use('pdf')  # avoids TkInter threaded start
Manuel Günther's avatar
Manuel Günther committed
20
21
22
from matplotlib import pyplot
from matplotlib.backends.backend_pdf import PdfPages

23
if not os.environ.get('BOB_NO_STYLE_CHANGES'):
24
25
  # make the fig size smaller so that everything becomes bigger
  matplotlib.rc('figure', figsize=(4, 3))
26
27


Manuel Günther's avatar
Manuel Günther committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import bob.core
logger = bob.core.log.setup("bob.bio.base")


def command_line_arguments(command_line_parameters):
  """Parse the program options"""

  # set up command line parser
  parser = argparse.ArgumentParser(description=__doc__,
      formatter_class=argparse.ArgumentDefaultsHelpFormatter)

  parser.add_argument('-d', '--dev-files', required=True, nargs='+', help = "A list of score files of the development set.")
  parser.add_argument('-e', '--eval-files', nargs='+', help = "A list of score files of the evaluation set; if given it must be the same number of files as the --dev-files.")

  parser.add_argument('-s', '--directory', default = '.', help = "A directory, where to find the --dev-files and the --eval-files")

Manuel Günther's avatar
Manuel Günther committed
44
  parser.add_argument('-c', '--criterion', choices = ('EER', 'HTER', 'FAR'), help = "If given, the threshold of the development set will be computed with this criterion.")
45
  parser.add_argument('-f', '--far-value', type=float, default=0.001, help = "The FAR value for which to evaluate (only for --criterion FAR)")
Manuel Günther's avatar
Manuel Günther committed
46
47
48
49
  parser.add_argument('-x', '--cllr', action = 'store_true', help = "If given, Cllr and minCllr will be computed.")
  parser.add_argument('-m', '--mindcf', action = 'store_true', help = "If given, minDCF will be computed.")
  parser.add_argument('--cost', default=0.99,  help='Cost for FAR in minDCF')
  parser.add_argument('-r', '--rr', action = 'store_true', help = "If given, the Recognition Rate will be computed.")
Manuel Günther's avatar
Manuel Günther committed
50
  parser.add_argument('-o', '--rank', type=int, default=1, help = "The rank for which to plot the DIR curve")
51
  parser.add_argument('-t', '--thresholds', type=float, nargs='+', help = "If given, the Recognition Rate will incorporate an Open Set handling, rejecting all scores that are below the given threshold; when multiple thresholds are given, they are applied in the same order as the --dev-files.")
Manuel Günther's avatar
Manuel Günther committed
52
  parser.add_argument('-l', '--legends', nargs='+', help = "A list of legend strings used for ROC, CMC and DET plots; if given, must be the same number than --dev-files.")
53
  parser.add_argument('-F', '--legend-font-size', type=int, default=10, help = "Set the font size of the legends.")
Manuel Günther's avatar
Manuel Günther committed
54
  parser.add_argument('-P', '--legend-position', type=int, help = "Set the font size of the legends.")
Manuel Günther's avatar
Manuel Günther committed
55
  parser.add_argument('-T', '--title', nargs = '+', help = "Overwrite the default title of the plot for development (and evaluation) set")
Manuel Günther's avatar
Manuel Günther committed
56
57
58
  parser.add_argument('-R', '--roc', help = "If given, ROC curves will be plotted into the given pdf file.")
  parser.add_argument('-D', '--det', help = "If given, DET curves will be plotted into the given pdf file.")
  parser.add_argument('-C', '--cmc', help = "If given, CMC curves will be plotted into the given pdf file.")
Manuel Günther's avatar
Manuel Günther committed
59
  parser.add_argument('-O', '--dir', help = "If given, DIR curves will be plotted into the given pdf file; This is an open-set measure, which cannot be applied to closed set score files.")
André Anjos's avatar
André Anjos committed
60
  parser.add_argument('-E', '--epc', help = "If given, EPC curves will be plotted into the given pdf file. For this plot --eval-files is mandatory.")
61
  parser.add_argument('-M', '--min-far-value', type=float, default=1e-4, help = "Select the minimum FAR value used in ROC plots; should be a power of 10.")
62
  parser.add_argument('-L', '--far-line-at', type=float, help = "If given, draw a veritcal line at this FAR value in the ROC plots.")
Manuel Günther's avatar
Manuel Günther committed
63
64
65
66
67
68
69
70
71
72
73

  # add verbose option
  bob.core.log.add_command_line_option(parser)

  # parse arguments
  args = parser.parse_args(command_line_parameters)

  # set verbosity level
  bob.core.log.set_verbosity_level(logger, args.verbose)

  # some sanity checks:
Manuel Günther's avatar
Manuel Günther committed
74
75
76
77
  for f in args.dev_files + (args.eval_files or []):
    if not os.path.exists(f):
      raise ValueError("The provided score file '%s' does not exist", f)

Manuel Günther's avatar
Manuel Günther committed
78
79
80
81
82
83
84
85
86
87
88
89
  if args.eval_files is not None and len(args.dev_files) != len(args.eval_files):
    logger.error("The number of --dev-files (%d) and --eval-files (%d) are not identical", len(args.dev_files), len(args.eval_files))

  # update legends when they are not specified on command line
  if args.legends is None:
    args.legends = [f.replace('_', '-') for f in args.dev_files]
    logger.warn("Legends are not specified; using legends estimated from --dev-files: %s", args.legends)

  # check that the legends have the same length as the dev-files
  if len(args.dev_files) != len(args.legends):
    logger.error("The number of --dev-files (%d) and --legends (%d) are not identical", len(args.dev_files), len(args.legends))

90
91
92
93
94
95
96
97
  if args.thresholds is not None:
    if len(args.thresholds) == 1:
      args.thresholds = args.thresholds * len(args.dev_files)
    elif len(args.thresholds) != len(args.dev_files):
      logger.error("If given, the number of --thresholds imust be either 1, or the same as --dev-files (%d), but it is %d", len(args.dev_files), len(args.thresholds))
  else:
    args.thresholds = [None] * len(args.dev_files)

Manuel Günther's avatar
Manuel Günther committed
98
99
100
101
102
103
  if args.title is not None:
    if args.eval_files is None and len(args.title) != 1:
      logger.warning("Ignoring the title for the evaluation set, as no evaluation set is given")
    if args.eval_files is not None and len(args.title) < 2:
      logger.error("The title for the evaluation set is not specified")

Manuel Günther's avatar
Manuel Günther committed
104
105
  return args

Manuel Günther's avatar
Manuel Günther committed
106
107
108
109
110
111
112
113
def _add_far_labels(min_far):
  # compute and apply tick marks
  ticks = [min_far]
  while ticks[-1] < 1.: ticks.append(ticks[-1] * 10.)
  pyplot.xticks(ticks)
  pyplot.axis([min_far, 1., -0.01, 1.01])


Manuel Günther's avatar
Manuel Günther committed
114

115
def _plot_roc(frrs, colors, labels, title, fontsize=10, position=None, farfrrs=None):
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
116
  if position is None: position = 'lower right'
Manuel Günther's avatar
Manuel Günther committed
117
  figure = pyplot.figure()
118

Manuel Günther's avatar
Manuel Günther committed
119
120
  # plot FAR and CAR for each algorithm
  for i in range(len(frrs)):
121
    pyplot.semilogx([f for f in frrs[i][0]], [1. - f for f in frrs[i][1]], color=colors[i], label=labels[i])
122
    if isinstance(farfrrs, list):
123
      pyplot.plot(farfrrs[i][0], (1.-farfrrs[i][1]), 'o', color=colors[i], markeredgecolor=colors[i])
124

125
  # plot vertical bar, if desired
126
  if farfrrs is not None:
127
128
129
    if isinstance(farfrrs, float):
      pyplot.plot([farfrrs,farfrrs],[0.,1.], "--", color='black')
    else:
130
      pyplot.plot([x[0] for x in farfrrs], [(1.-x[1]) for x in farfrrs], '--', color='black')
Manuel Günther's avatar
Manuel Günther committed
131

Manuel Günther's avatar
Manuel Günther committed
132
  _add_far_labels(frrs[0][0][0])
133
134
135
136

  # set label, legend and title
  pyplot.xlabel('FMR')
  pyplot.ylabel('1 - FNMR')
Manuel Günther's avatar
Manuel Günther committed
137
138
139
140
141
142
143
  pyplot.grid(True, color=(0.6,0.6,0.6))
  pyplot.legend(loc=position, prop = {'size':fontsize})
  pyplot.title(title)

  return figure


144
def _plot_det(dets, colors, labels, title, fontsize=10, position=None):
145
  if position is None: position = 'upper right'
Manuel Günther's avatar
Manuel Günther committed
146
  # open new page for current plot
147
148
149
  figure = pyplot.figure(figsize=(matplotlib.rcParams['figure.figsize'][0],
                                  matplotlib.rcParams['figure.figsize'][0] * 0.975))
  pyplot.grid(True)
Manuel Günther's avatar
Manuel Günther committed
150
151
152

  # plot the DET curves
  for i in range(len(dets)):
153
    pyplot.plot(dets[i][0], dets[i][1], color=colors[i], label=labels[i])
Manuel Günther's avatar
Manuel Günther committed
154
155
156
157

  # change axes accordingly
  det_list = [0.0002, 0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 0.7, 0.9, 0.95]
  ticks = [bob.measure.ppndf(d) for d in det_list]
158
  labels = [("%.5f" % d).rstrip('0').rstrip('.') for d in det_list]
159
  pyplot.xticks(ticks, [l if i % 2 else "" for i,l in enumerate(labels)])
Manuel Günther's avatar
Manuel Günther committed
160
161
162
  pyplot.yticks(ticks, labels)
  pyplot.axis((ticks[0], ticks[-1], ticks[0], ticks[-1]))

163
164
  pyplot.xlabel('FMR')
  pyplot.ylabel('FNMR')
Manuel Günther's avatar
Manuel Günther committed
165
166
167
168
169
  pyplot.legend(loc=position, prop = {'size':fontsize})
  pyplot.title(title)

  return figure

170

171
def _plot_cmc(cmcs, colors, labels, title, fontsize=10, position=None):
172
  if position is None: position = 'lower right'
Manuel Günther's avatar
Manuel Günther committed
173
174
175
  # open new page for current plot
  figure = pyplot.figure()

176
177
  max_R = 0
  # plot the CMC curves
Manuel Günther's avatar
Manuel Günther committed
178
  for i in range(len(cmcs)):
179
180
    probs = bob.measure.cmc(cmcs[i])
    R = len(probs)
181
    pyplot.semilogx(range(1, R+1), probs, figure=figure, color=colors[i], label=labels[i])
182
    max_R = max(R, max_R)
Manuel Günther's avatar
Manuel Günther committed
183
184
185
186

  # change axes accordingly
  ticks = [int(t) for t in pyplot.xticks()[0]]
  pyplot.xlabel('Rank')
187
  pyplot.ylabel('Probability')
Manuel Günther's avatar
Manuel Günther committed
188
  pyplot.xticks(ticks, [str(t) for t in ticks])
189
  pyplot.axis([0, max_R, -0.01, 1.01])
Manuel Günther's avatar
Manuel Günther committed
190
191
192
193
  pyplot.legend(loc=position, prop = {'size':fontsize})
  pyplot.title(title)

  return figure
André Anjos's avatar
André Anjos committed
194
195


196
def _plot_dir(cmc_scores, far_values, rank, colors, labels, title, fontsize=10, position=None):
Manuel Günther's avatar
Manuel Günther committed
197
198
199
200
201
202
203
204
205
206
207
208
  if position is None: position = 'lower right'
  # open new page for current plot
  figure = pyplot.figure()

  # for each probe, for which no positives exists, get the highest negative
  # score; and sort them to compute the FAR thresholds
  for i, cmcs in enumerate(cmc_scores):
    negatives = sorted(max(neg) for neg, pos in cmcs if (pos is None or not numpy.array(pos).size) and neg is not None)
    if not negatives:
      raise ValueError("There need to be at least one pair with only negative scores")

    # compute thresholds based on FAR values
209
    thresholds = [bob.measure.far_threshold(negatives, [], v, True) for v in far_values]
Manuel Günther's avatar
Manuel Günther committed
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

    # compute detection and identification rate based on the thresholds for
    # the given rank
    rates = [bob.measure.detection_identification_rate(cmcs, t, rank) for t in thresholds]

    # plot DIR curve
    pyplot.semilogx(far_values, rates, figure=figure, color=colors[i], label=labels[i])

  # finalize plot
  _add_far_labels(far_values[0])

  pyplot.xlabel('FAR')
  pyplot.ylabel('DIR')
  pyplot.legend(loc=position, prop = {'size':fontsize})
  pyplot.title(title)

226
  return figure
Manuel Günther's avatar
Manuel Günther committed
227
228


229
def _plot_epc(scores_dev, scores_eval, colors, labels, title, fontsize=10, position=None):
230
  if position is None: position = 'upper center'
231
232
233
234
235
  # open new page for current plot
  figure = pyplot.figure()

  # plot the DET curves
  for i in range(len(scores_dev)):
236
    x,y = bob.measure.epc(scores_dev[i][0], scores_dev[i][1], scores_eval[i][0], scores_eval[i][1], 100)
237
    pyplot.plot(x, y, color=colors[i], label=labels[i])
238
239
240

  # change axes accordingly
  pyplot.xlabel('alpha')
241
  pyplot.ylabel('HTER')
242
  pyplot.title(title)
243
  pyplot.axis([-0.01, 1.01, -0.01, 0.51])
244
245
246
247
  pyplot.grid(True)
  pyplot.legend(loc=position, prop = {'size':fontsize})
  pyplot.title(title)

André Anjos's avatar
André Anjos committed
248
  return figure
249

Manuel Günther's avatar
Manuel Günther committed
250

251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
def remove_nan(scores):
    """removes the NaNs from the scores"""
    nans = numpy.isnan(scores)
    sum_nans = sum(nans)
    total = len(scores)
    return scores[numpy.where(~nans)], sum_nans, total


def get_fta(scores):
    """calculates the Failure To Acquire (FtA) rate"""
    fta_sum, fta_total = 0, 0
    neg, sum_nans, total = remove_nan(scores[0])
    fta_sum += sum_nans
    fta_total += total
    pos, sum_nans, total = remove_nan(scores[1])
    fta_sum += sum_nans
    fta_total += total
    return (neg, pos, fta_sum * 100 / float(fta_total))

Manuel Günther's avatar
Manuel Günther committed
270
271
272
273
274
275
276

def main(command_line_parameters=None):
  """Reads score files, computes error measures and plots curves."""

  args = command_line_arguments(command_line_parameters)

  # get some colors for plotting
277
278
279
280
281
282
  if len(args.dev_files) > 10:
    cmap = pyplot.cm.get_cmap(name='magma')
    colors = [cmap(i) for i in numpy.linspace(0, 1.0, len(args.dev_files) + 1)]
  else:
    # matplotlib 2.0 default color cycler list: Vega category10 palette
    colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728',
283
284
              '#9467bd', '#8c564b', '#e377c2', '#7f7f7f',
              '#bcbd22', '#17becf']
Manuel Günther's avatar
Manuel Günther committed
285

Manuel Günther's avatar
Manuel Günther committed
286
  if args.criterion or args.roc or args.det or args.epc or args.cllr or args.mindcf:
Manuel Günther's avatar
Manuel Günther committed
287
288
289

    # First, read the score files
    logger.info("Loading %d score files of the development set", len(args.dev_files))
290
    scores_dev = [bob.measure.load.split(os.path.join(args.directory, f)) for f in args.dev_files]
291
292
    # remove nans
    scores_dev = [get_fta(s) for s in scores_dev]
Manuel Günther's avatar
Manuel Günther committed
293
294
295

    if args.eval_files:
      logger.info("Loading %d score files of the evaluation set", len(args.eval_files))
296
      scores_eval = [bob.measure.load.split(os.path.join(args.directory, f)) for f in args.eval_files]
297
298
      # remove nans
      scores_eval = [get_fta(s) for s in scores_eval]
Manuel Günther's avatar
Manuel Günther committed
299
300
301
302
303
304


    if args.criterion:
      logger.info("Computing %s on the development " % args.criterion + ("and HTER on the evaluation set" if args.eval_files else "set"))
      for i in range(len(scores_dev)):
        # compute threshold on development set
Manuel Günther's avatar
Manuel Günther committed
305
306
307
308
        if args.criterion == 'FAR':
          threshold = bob.measure.far_threshold(scores_dev[i][0], scores_dev[i][1], args.far_value/100.)
        else:
          threshold = {'EER': bob.measure.eer_threshold, 'HTER' : bob.measure.min_hter_threshold} [args.criterion](scores_dev[i][0], scores_dev[i][1])
Manuel Günther's avatar
Manuel Günther committed
309
310
        # apply threshold to development set
        far, frr = bob.measure.farfrr(scores_dev[i][0], scores_dev[i][1], threshold)
Manuel Günther's avatar
Manuel Günther committed
311
        if args.criterion == 'FAR':
312
          print("The FRR at FAR=%.1E of the development set of '%s' is %2.3f%% (CAR: %2.3f%%)" % (args.far_value, args.legends[i], frr * 100., 100.*(1-frr)))
André Anjos's avatar
André Anjos committed
313
        else:
Manuel Günther's avatar
Manuel Günther committed
314
          print("The %s of the development set of '%s' is %2.3f%%" % (args.criterion, args.legends[i], (far + frr) * 50.)) # / 2 * 100%
Manuel Günther's avatar
Manuel Günther committed
315
316
317
        if args.eval_files:
          # apply threshold to evaluation set
          far, frr = bob.measure.farfrr(scores_eval[i][0], scores_eval[i][1], threshold)
Manuel Günther's avatar
Manuel Günther committed
318
319
          if args.criterion == 'FAR':
            print("The FRR of the evaluation set of '%s' is %2.3f%% (CAR: %2.3f%%)" % (args.legends[i], frr * 100., 100.*(1-frr))) # / 2 * 100%
André Anjos's avatar
André Anjos committed
320
          else:
Manuel Günther's avatar
Manuel Günther committed
321
            print("The HTER of the evaluation set of '%s' is %2.3f%%" % (args.legends[i], (far + frr) * 50.)) # / 2 * 100%
Manuel Günther's avatar
Manuel Günther committed
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353


    if args.mindcf:
      logger.info("Computing minDCF on the development " + ("and on the evaluation set" if args.eval_files else "set"))
      for i in range(len(scores_dev)):
        # compute threshold on development set
        threshold = bob.measure.min_weighted_error_rate_threshold(scores_dev[i][0], scores_dev[i][1], args.cost)
        # apply threshold to development set
        far, frr = bob.measure.farfrr(scores_dev[i][0], scores_dev[i][1], threshold)
        print("The minDCF of the development set of '%s' is %2.3f%%" % (args.legends[i], (args.cost * far + (1-args.cost) * frr) * 100. ))
        if args.eval_files:
          # compute threshold on evaluation set
          threshold = bob.measure.min_weighted_error_rate_threshold(scores_eval[i][0], scores_eval[i][1], args.cost)
          # apply threshold to evaluation set
          far, frr = bob.measure.farfrr(scores_eval[i][0], scores_eval[i][1], threshold)
          print("The minDCF of the evaluation set of '%s' is %2.3f%%" % (args.legends[i], (args.cost * far + (1-args.cost) * frr) * 100. ))


    if args.cllr:
      logger.info("Computing Cllr and minCllr on the development " + ("and on the evaluation set" if args.eval_files else "set"))
      for i in range(len(scores_dev)):
        cllr = bob.measure.calibration.cllr(scores_dev[i][0], scores_dev[i][1])
        min_cllr = bob.measure.calibration.min_cllr(scores_dev[i][0], scores_dev[i][1])
        print("Calibration performance on development set of '%s' is Cllr %1.5f and minCllr %1.5f " % (args.legends[i], cllr, min_cllr))
        if args.eval_files:
          cllr = bob.measure.calibration.cllr(scores_eval[i][0], scores_eval[i][1])
          min_cllr = bob.measure.calibration.min_cllr(scores_eval[i][0], scores_eval[i][1])
          print("Calibration performance on evaluation set of '%s' is Cllr %1.5f and minCllr %1.5f" % (args.legends[i], cllr, min_cllr))


    if args.roc:
      logger.info("Computing CAR curves on the development " + ("and on the evaluation set" if args.eval_files else "set"))
354
      min_far = int(math.floor(math.log(args.min_far_value, 10)))
355
      fars = [math.pow(10., i * 0.25) for i in range(min_far * 4, 0)] + [1.]
Manuel Günther's avatar
Manuel Günther committed
356
357
358
359
360
361
362
363
364
      frrs_dev = [bob.measure.roc_for_far(scores[0], scores[1], fars) for scores in scores_dev]
      if args.eval_files:
        frrs_eval = [bob.measure.roc_for_far(scores[0], scores[1], fars) for scores in scores_eval]

      logger.info("Plotting ROC curves to file '%s'", args.roc)
      try:
        # create a multi-page PDF for the ROC curve
        pdf = PdfPages(args.roc)
        # create a separate figure for dev and eval
365
        pdf.savefig(_plot_roc(frrs_dev, colors, args.legends, args.title[0] if args.title is not None else "ROC for development set", args.legend_font_size, args.legend_position, args.far_line_at), bbox_inches='tight')
Manuel Günther's avatar
Manuel Günther committed
366
367
        del frrs_dev
        if args.eval_files:
368
369
370
371
372
373
374
          if args.far_line_at is not None:
            farfrrs = []
            for i in range(len(scores_dev)):
              threshold = bob.measure.far_threshold(scores_dev[i][0], scores_dev[i][1], args.far_line_at)
              farfrrs.append(bob.measure.farfrr(scores_eval[i][0], scores_eval[i][1], threshold))
          else:
            farfrrs = None
375
          pdf.savefig(_plot_roc(frrs_eval, colors, args.legends, args.title[1] if args.title is not None else "ROC for evaluation set", args.legend_font_size, args.legend_position, farfrrs), bbox_inches='tight')
Manuel Günther's avatar
Manuel Günther committed
376
377
378
          del frrs_eval
        pdf.close()
      except RuntimeError as e:
379
        raise RuntimeError("During plotting of ROC curves, the following exception occured:\n%s" % e)
Manuel Günther's avatar
Manuel Günther committed
380
381
382
383
384
385
386
387
388

    if args.det:
      logger.info("Computing DET curves on the development " + ("and on the evaluation set" if args.eval_files else "set"))
      dets_dev = [bob.measure.det(scores[0], scores[1], 1000) for scores in scores_dev]
      if args.eval_files:
        dets_eval = [bob.measure.det(scores[0], scores[1], 1000) for scores in scores_eval]

      logger.info("Plotting DET curves to file '%s'", args.det)
      try:
389
        # create a multi-page PDF for the DET curve
Manuel Günther's avatar
Manuel Günther committed
390
391
        pdf = PdfPages(args.det)
        # create a separate figure for dev and eval
392
        pdf.savefig(_plot_det(dets_dev, colors, args.legends, args.title[0] if args.title is not None else "DET for development set", args.legend_font_size, args.legend_position), bbox_inches='tight')
Manuel Günther's avatar
Manuel Günther committed
393
394
        del dets_dev
        if args.eval_files:
395
          pdf.savefig(_plot_det(dets_eval, colors, args.legends, args.title[1] if args.title is not None else "DET for evaluation set", args.legend_font_size, args.legend_position), bbox_inches='tight')
Manuel Günther's avatar
Manuel Günther committed
396
397
398
          del dets_eval
        pdf.close()
      except RuntimeError as e:
399
        raise RuntimeError("During plotting of DET curves, the following exception occured:\n%s" % e)
Manuel Günther's avatar
Manuel Günther committed
400
401


402
    if args.epc:
Manuel Günther's avatar
Manuel Günther committed
403
      logger.info("Plotting EPC curves to file '%s'", args.epc)
André Anjos's avatar
André Anjos committed
404

405
406
      if not args.eval_files:
        raise ValueError("To plot the EPC curve the evaluation scores are necessary. Please, set it with the --eval-files option.")
André Anjos's avatar
André Anjos committed
407

408
      try:
409
        # create a multi-page PDF for the EPC curve
410
        pdf = PdfPages(args.epc)
Manuel Günther's avatar
Manuel Günther committed
411
        pdf.savefig(_plot_epc(scores_dev, scores_eval, colors, args.legends, args.title[0] if args.title is not None else "" , args.legend_font_size, args.legend_position), bbox_inches='tight')
412
413
        pdf.close()
      except RuntimeError as e:
414
        raise RuntimeError("During plotting of EPC curves, the following exception occured:\n%s" % e)
415
416
417



Manuel Günther's avatar
Manuel Günther committed
418
  if args.cmc or args.rr or args.dir:
Manuel Günther's avatar
Manuel Günther committed
419
    logger.info("Loading CMC data on the development " + ("and on the evaluation set" if args.eval_files else "set"))
420
    cmcs_dev = [bob.measure.load.cmc(os.path.join(args.directory, f)) for f in args.dev_files]
Manuel Günther's avatar
Manuel Günther committed
421
    if args.eval_files:
422
      cmcs_eval = [bob.measure.load.cmc(os.path.join(args.directory, f)) for f in args.eval_files]
Manuel Günther's avatar
Manuel Günther committed
423

424
425
426
    if args.cmc:
      logger.info("Plotting CMC curves to file '%s'", args.cmc)
      try:
Manuel Günther's avatar
Manuel Günther committed
427
        # create a multi-page PDF for the CMC curve
428
429
        pdf = PdfPages(args.cmc)
        # create a separate figure for dev and eval
430
        pdf.savefig(_plot_cmc(cmcs_dev, colors, args.legends, args.title[0] if args.title is not None else "CMC curve for development set", args.legend_font_size, args.legend_position), bbox_inches='tight')
431
        if args.eval_files:
432
          pdf.savefig(_plot_cmc(cmcs_eval, colors, args.legends, args.title[1] if args.title is not None else "CMC curve for evaluation set", args.legend_font_size, args.legend_position), bbox_inches='tight')
433
434
        pdf.close()
      except RuntimeError as e:
Manuel Günther's avatar
Manuel Günther committed
435
        raise RuntimeError("During plotting of CMC curves, the following exception occured:\n%s\nUsually this happens when the label contains characters that LaTeX cannot parse." % e)
436
437
438
439
440

    if args.rr:
      logger.info("Computing recognition rate on the development " + ("and on the evaluation set" if args.eval_files else "set"))
      for i in range(len(cmcs_dev)):
        rr = bob.measure.recognition_rate(cmcs_dev[i], args.thresholds[i])
Manuel Günther's avatar
Manuel Günther committed
441
        print("The Recognition Rate of the development set of '%s' is %2.3f%%" % (args.legends[i], rr * 100.))
442
443
444
        if args.eval_files:
          rr = bob.measure.recognition_rate(cmcs_eval[i], args.thresholds[i])
          print("The Recognition Rate of the development set of '%s' is %2.3f%%" % (args.legends[i], rr * 100.))
Manuel Günther's avatar
Manuel Günther committed
445
446
447
448
449
450
451
452
453
454

    if args.dir:
      # compute false alarm values to evaluate
      min_far = int(math.floor(math.log(args.min_far_value, 10)))
      fars = [math.pow(10., i * 0.25) for i in range(min_far * 4, 0)] + [1.]
      logger.info("Plotting DIR curves to file '%s'", args.dir)
      try:
        # create a multi-page PDF for the DIR curve
        pdf = PdfPages(args.dir)
        # create a separate figure for dev and eval
455
        pdf.savefig(_plot_dir(cmcs_dev, fars, args.rank, colors, args.legends, args.title[0] if args.title is not None else "DIR curve for development set", args.legend_font_size, args.legend_position), bbox_inches='tight')
Manuel Günther's avatar
Manuel Günther committed
456
        if args.eval_files:
457
          pdf.savefig(_plot_dir(cmcs_eval, fars, args.rank, colors, args.legends, args.title[1] if args.title is not None else "DIR curve for evaluation set", args.legend_font_size, args.legend_position), bbox_inches='tight')
Manuel Günther's avatar
Manuel Günther committed
458
459
460
        pdf.close()
      except RuntimeError as e:
        raise RuntimeError("During plotting of DIR curves, the following exception occured:\n%s")