evaluate.py 20 KB
Newer Older
Manuel Günther's avatar
Manuel Günther committed
1
2
3
4
#!/usr/bin/env python
# vim: set fileencoding=utf-8 :

"""This script evaluates the given score files and computes EER, HTER.
5
6
7
It also is able to plot CMC and ROC curves.
You can set the environment variable BOB_NO_STYLE_CHANGES to any value to avoid
this script from changing the matplotlib style values. """
Manuel Günther's avatar
Manuel Günther committed
8

9
from __future__ import print_function
Manuel Günther's avatar
Manuel Günther committed
10
11
12
import bob.measure

import argparse
13
14
import numpy
import math
Manuel Günther's avatar
Manuel Günther committed
15
16
17
import os

# matplotlib stuff
18
19
import matplotlib
matplotlib.use('pdf')  # avoids TkInter threaded start
Manuel Günther's avatar
Manuel Günther committed
20
21
22
from matplotlib import pyplot
from matplotlib.backends.backend_pdf import PdfPages

23
24
25
26
27
28
if not os.environ.get('BOB_NO_STYLE_CHANGES'):
  # increase the default line width and font size
  matplotlib.rc('lines', linewidth=4)
  matplotlib.rc('font', size=18)


Manuel Günther's avatar
Manuel Günther committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import bob.core
logger = bob.core.log.setup("bob.bio.base")


def command_line_arguments(command_line_parameters):
  """Parse the program options"""

  # set up command line parser
  parser = argparse.ArgumentParser(description=__doc__,
      formatter_class=argparse.ArgumentDefaultsHelpFormatter)

  parser.add_argument('-d', '--dev-files', required=True, nargs='+', help = "A list of score files of the development set.")
  parser.add_argument('-e', '--eval-files', nargs='+', help = "A list of score files of the evaluation set; if given it must be the same number of files as the --dev-files.")

  parser.add_argument('-s', '--directory', default = '.', help = "A directory, where to find the --dev-files and the --eval-files")

Manuel Günther's avatar
Manuel Günther committed
45
46
  parser.add_argument('-c', '--criterion', choices = ('EER', 'HTER', 'FAR'), help = "If given, the threshold of the development set will be computed with this criterion.")
  parser.add_argument('-f', '--far-value', type=float, default=0.1, help = "The FAR value in %% for which to evaluate (only for --criterion FAR)")
Manuel Günther's avatar
Manuel Günther committed
47
48
49
50
  parser.add_argument('-x', '--cllr', action = 'store_true', help = "If given, Cllr and minCllr will be computed.")
  parser.add_argument('-m', '--mindcf', action = 'store_true', help = "If given, minDCF will be computed.")
  parser.add_argument('--cost', default=0.99,  help='Cost for FAR in minDCF')
  parser.add_argument('-r', '--rr', action = 'store_true', help = "If given, the Recognition Rate will be computed.")
51
  parser.add_argument('-t', '--thresholds', type=float, nargs='+', help = "If given, the Recognition Rate will incorporate an Open Set handling, rejecting all scores that are below the given threshold; when multiple thresholds are given, they are applied in the same order as the --dev-files.")
Manuel Günther's avatar
Manuel Günther committed
52
53
54
  parser.add_argument('-l', '--legends', nargs='+', help = "A list of legend strings used for ROC, CMC and DET plots; if given, must be the same number than --dev-files.")
  parser.add_argument('-F', '--legend-font-size', type=int, default=18, help = "Set the font size of the legends.")
  parser.add_argument('-P', '--legend-position', type=int, help = "Set the font size of the legends.")
Manuel Günther's avatar
Manuel Günther committed
55
  parser.add_argument('-T', '--title', nargs = '+', help = "Overwrite the default title of the plot for development (and evaluation) set")
Manuel Günther's avatar
Manuel Günther committed
56
57
58
  parser.add_argument('-R', '--roc', help = "If given, ROC curves will be plotted into the given pdf file.")
  parser.add_argument('-D', '--det', help = "If given, DET curves will be plotted into the given pdf file.")
  parser.add_argument('-C', '--cmc', help = "If given, CMC curves will be plotted into the given pdf file.")
André Anjos's avatar
André Anjos committed
59
  parser.add_argument('-E', '--epc', help = "If given, EPC curves will be plotted into the given pdf file. For this plot --eval-files is mandatory.")
60
  parser.add_argument('-M', '--min-far-value', type=float, default=1e-4, help = "Select the minimum FAR value used in ROC plots; should be a power of 10.")
61
  parser.add_argument('--parser', default = '4column', choices = ('4column', '5column'), help="The style of the resulting score files. The default fits to the usual output of score files.")
Manuel Günther's avatar
Manuel Günther committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

  # add verbose option
  bob.core.log.add_command_line_option(parser)

  # parse arguments
  args = parser.parse_args(command_line_parameters)

  # set verbosity level
  bob.core.log.set_verbosity_level(logger, args.verbose)


  # some sanity checks:
  if args.eval_files is not None and len(args.dev_files) != len(args.eval_files):
    logger.error("The number of --dev-files (%d) and --eval-files (%d) are not identical", len(args.dev_files), len(args.eval_files))

  # update legends when they are not specified on command line
  if args.legends is None:
    args.legends = [f.replace('_', '-') for f in args.dev_files]
    logger.warn("Legends are not specified; using legends estimated from --dev-files: %s", args.legends)

  # check that the legends have the same length as the dev-files
  if len(args.dev_files) != len(args.legends):
    logger.error("The number of --dev-files (%d) and --legends (%d) are not identical", len(args.dev_files), len(args.legends))

86
87
88
89
90
91
92
93
  if args.thresholds is not None:
    if len(args.thresholds) == 1:
      args.thresholds = args.thresholds * len(args.dev_files)
    elif len(args.thresholds) != len(args.dev_files):
      logger.error("If given, the number of --thresholds imust be either 1, or the same as --dev-files (%d), but it is %d", len(args.dev_files), len(args.thresholds))
  else:
    args.thresholds = [None] * len(args.dev_files)

Manuel Günther's avatar
Manuel Günther committed
94
95
96
97
98
99
  if args.title is not None:
    if args.eval_files is None and len(args.title) != 1:
      logger.warning("Ignoring the title for the evaluation set, as no evaluation set is given")
    if args.eval_files is not None and len(args.title) < 2:
      logger.error("The title for the evaluation set is not specified")

Manuel Günther's avatar
Manuel Günther committed
100
101
102
  return args


103
def _plot_roc(frrs, colors, labels, title, fontsize=18, position=None, farfrrs=None):
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
104
  if position is None: position = 'lower right'
Manuel Günther's avatar
Manuel Günther committed
105
  figure = pyplot.figure()
106

Manuel Günther's avatar
Manuel Günther committed
107
108
  # plot FAR and CAR for each algorithm
  for i in range(len(frrs)):
109
    pyplot.semilogx([f for f in frrs[i][0]], [1. - f for f in frrs[i][1]], color=colors[i], lw=2, ms=10, mew=1.5, label=labels[i])
110
111
112
113
114
    if farfrrs is not None:
      pyplot.plot(farfrrs[i][0]*100, (1-farfrrs[i][1])*100, 'o', color=colors[i], markeredgecolor='black')

  if farfrrs is not None:
    pyplot.plot([x[0]*100 for x in farfrrs], [(1-x[1])*100 for x in farfrrs], '--', color='black', linewidth=1.5)
Manuel Günther's avatar
Manuel Günther committed
115
116

  # finalize plot
117
118
  if farfrrs is None:
    pyplot.plot([0.1,0.1],[0,100], "--", color='black')
119
120
121
122
123
  min_far = frrs[0][0][0]
  ticks = [min_far]
  while ticks[-1] < 1: ticks.append(ticks[-1] * 10)
  pyplot.axis([min_far,1,0,1])
  pyplot.xticks(ticks)
124
125
  pyplot.xlabel('FMR (%)')
  pyplot.ylabel('1 - FNMR (%)')
Manuel Günther's avatar
Manuel Günther committed
126
127
128
  pyplot.grid(True, color=(0.6,0.6,0.6))
  pyplot.legend(loc=position, prop = {'size':fontsize})
  pyplot.title(title)
129
  figure.set_tight_layout(True)
Manuel Günther's avatar
Manuel Günther committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

  return figure


def _plot_det(dets, colors, labels, title, fontsize=18, position=None):
  if position is None: position = 1
  # open new page for current plot
  figure = pyplot.figure(figsize=(8.2,8))

  # plot the DET curves
  for i in range(len(dets)):
    pyplot.plot(dets[i][0], dets[i][1], color=colors[i], lw=2, ms=10, mew=1.5, label=labels[i])

  # change axes accordingly
  det_list = [0.0002, 0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 0.7, 0.9, 0.95]
  ticks = [bob.measure.ppndf(d) for d in det_list]
146
  labels = [("%.5f" % d).rstrip('0').rstrip('.') for d in det_list]
Manuel Günther's avatar
Manuel Günther committed
147
148
149
150
  pyplot.xticks(ticks, labels)
  pyplot.yticks(ticks, labels)
  pyplot.axis((ticks[0], ticks[-1], ticks[0], ticks[-1]))

151
152
  pyplot.xlabel('FMR (%)')
  pyplot.ylabel('FNMR (%)')
Manuel Günther's avatar
Manuel Günther committed
153
154
  pyplot.legend(loc=position, prop = {'size':fontsize})
  pyplot.title(title)
155
  figure.set_tight_layout(True)
Manuel Günther's avatar
Manuel Günther committed
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

  return figure

def _plot_cmc(cmcs, colors, labels, title, fontsize=18, position=None):
  if position is None: position = 4
  # open new page for current plot
  figure = pyplot.figure()

  max_x = 0
  # plot the DET curves
  for i in range(len(cmcs)):
    x = bob.measure.plot.cmc(cmcs[i], figure=figure, color=colors[i], lw=2, ms=10, mew=1.5, label=labels[i])
    max_x = max(x, max_x)

  # change axes accordingly
  ticks = [int(t) for t in pyplot.xticks()[0]]
  pyplot.xlabel('Rank')
Manuel Günther's avatar
Manuel Günther committed
173
  pyplot.ylabel('Probability (%)')
Manuel Günther's avatar
Manuel Günther committed
174
175
176
177
  pyplot.xticks(ticks, [str(t) for t in ticks])
  pyplot.axis([0, max_x, 0, 100])
  pyplot.legend(loc=position, prop = {'size':fontsize})
  pyplot.title(title)
Manuel Günther's avatar
Manuel Günther committed
178
  figure.set_tight_layout(True)
Manuel Günther's avatar
Manuel Günther committed
179
180

  return figure
André Anjos's avatar
André Anjos committed
181
182
183



184
def _plot_epc(scores_dev, scores_eval, colors, labels, title, fontsize=18, position=None):
185
  if position is None: position = 'upper center'
186
187
188
189
190
  # open new page for current plot
  figure = pyplot.figure()

  # plot the DET curves
  for i in range(len(scores_dev)):
Manuel Günther's avatar
Manuel Günther committed
191
    bob.measure.plot.epc(scores_dev[i][0], scores_dev[i][1], scores_eval[i][0], scores_eval[i][1], 100, color=colors[i], label=labels[i], lw=2)
192
193
194

  # change axes accordingly
  pyplot.xlabel('alpha')
Manuel Günther's avatar
Manuel Günther committed
195
  pyplot.ylabel('HTER (%)')
196
197
198
199
  pyplot.title(title)
  pyplot.grid(True)
  pyplot.legend(loc=position, prop = {'size':fontsize})
  pyplot.title(title)
200
201
  pyplot.xlim([-0.01, 1.01])
  pyplot.ylim([0, 51])
202
  figure.set_tight_layout(True)
203

André Anjos's avatar
André Anjos committed
204
  return figure
205

Manuel Günther's avatar
Manuel Günther committed
206

207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
def remove_nan(scores):
    """removes the NaNs from the scores"""
    nans = numpy.isnan(scores)
    sum_nans = sum(nans)
    total = len(scores)
    return scores[numpy.where(~nans)], sum_nans, total


def get_fta(scores):
    """calculates the Failure To Acquire (FtA) rate"""
    fta_sum, fta_total = 0, 0
    neg, sum_nans, total = remove_nan(scores[0])
    fta_sum += sum_nans
    fta_total += total
    pos, sum_nans, total = remove_nan(scores[1])
    fta_sum += sum_nans
    fta_total += total
    return (neg, pos, fta_sum * 100 / float(fta_total))

Manuel Günther's avatar
Manuel Günther committed
226
227
228
229
230
231
232

def main(command_line_parameters=None):
  """Reads score files, computes error measures and plots curves."""

  args = command_line_arguments(command_line_parameters)

  # get some colors for plotting
233
234
235
236
237
238
  if len(args.dev_files) > 10:
    cmap = pyplot.cm.get_cmap(name='magma')
    colors = [cmap(i) for i in numpy.linspace(0, 1.0, len(args.dev_files) + 1)]
  else:
    # matplotlib 2.0 default color cycler list: Vega category10 palette
    colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728',
239
240
              '#9467bd', '#8c564b', '#e377c2', '#7f7f7f',
              '#bcbd22', '#17becf']
Manuel Günther's avatar
Manuel Günther committed
241

Manuel Günther's avatar
Manuel Günther committed
242
  if args.criterion or args.roc or args.det or args.epc or args.cllr or args.mindcf:
Manuel Günther's avatar
Manuel Günther committed
243
244
245
246
247
    score_parser = {'4column' : bob.measure.load.split_four_column, '5column' : bob.measure.load.split_five_column}[args.parser]

    # First, read the score files
    logger.info("Loading %d score files of the development set", len(args.dev_files))
    scores_dev = [score_parser(os.path.join(args.directory, f)) for f in args.dev_files]
248
249
    # remove nans
    scores_dev = [get_fta(s) for s in scores_dev]
Manuel Günther's avatar
Manuel Günther committed
250
251
252
253

    if args.eval_files:
      logger.info("Loading %d score files of the evaluation set", len(args.eval_files))
      scores_eval = [score_parser(os.path.join(args.directory, f)) for f in args.eval_files]
254
255
      # remove nans
      scores_eval = [get_fta(s) for s in scores_eval]
Manuel Günther's avatar
Manuel Günther committed
256
257
258
259
260
261


    if args.criterion:
      logger.info("Computing %s on the development " % args.criterion + ("and HTER on the evaluation set" if args.eval_files else "set"))
      for i in range(len(scores_dev)):
        # compute threshold on development set
Manuel Günther's avatar
Manuel Günther committed
262
263
264
265
        if args.criterion == 'FAR':
          threshold = bob.measure.far_threshold(scores_dev[i][0], scores_dev[i][1], args.far_value/100.)
        else:
          threshold = {'EER': bob.measure.eer_threshold, 'HTER' : bob.measure.min_hter_threshold} [args.criterion](scores_dev[i][0], scores_dev[i][1])
Manuel Günther's avatar
Manuel Günther committed
266
267
        # apply threshold to development set
        far, frr = bob.measure.farfrr(scores_dev[i][0], scores_dev[i][1], threshold)
Manuel Günther's avatar
Manuel Günther committed
268
        if args.criterion == 'FAR':
André Anjos's avatar
André Anjos committed
269
270
          print("The FRR at FAR=%2.3f%% of the development set of '%s' is %2.3f%% (CAR: %2.3f%%)" % (args.far_value, args.legends[i], frr * 100., 100.*(1-frr)))
        else:
Manuel Günther's avatar
Manuel Günther committed
271
          print("The %s of the development set of '%s' is %2.3f%%" % (args.criterion, args.legends[i], (far + frr) * 50.)) # / 2 * 100%
Manuel Günther's avatar
Manuel Günther committed
272
273
274
        if args.eval_files:
          # apply threshold to evaluation set
          far, frr = bob.measure.farfrr(scores_eval[i][0], scores_eval[i][1], threshold)
Manuel Günther's avatar
Manuel Günther committed
275
276
          if args.criterion == 'FAR':
            print("The FRR of the evaluation set of '%s' is %2.3f%% (CAR: %2.3f%%)" % (args.legends[i], frr * 100., 100.*(1-frr))) # / 2 * 100%
André Anjos's avatar
André Anjos committed
277
          else:
Manuel Günther's avatar
Manuel Günther committed
278
            print("The HTER of the evaluation set of '%s' is %2.3f%%" % (args.legends[i], (far + frr) * 50.)) # / 2 * 100%
Manuel Günther's avatar
Manuel Günther committed
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310


    if args.mindcf:
      logger.info("Computing minDCF on the development " + ("and on the evaluation set" if args.eval_files else "set"))
      for i in range(len(scores_dev)):
        # compute threshold on development set
        threshold = bob.measure.min_weighted_error_rate_threshold(scores_dev[i][0], scores_dev[i][1], args.cost)
        # apply threshold to development set
        far, frr = bob.measure.farfrr(scores_dev[i][0], scores_dev[i][1], threshold)
        print("The minDCF of the development set of '%s' is %2.3f%%" % (args.legends[i], (args.cost * far + (1-args.cost) * frr) * 100. ))
        if args.eval_files:
          # compute threshold on evaluation set
          threshold = bob.measure.min_weighted_error_rate_threshold(scores_eval[i][0], scores_eval[i][1], args.cost)
          # apply threshold to evaluation set
          far, frr = bob.measure.farfrr(scores_eval[i][0], scores_eval[i][1], threshold)
          print("The minDCF of the evaluation set of '%s' is %2.3f%%" % (args.legends[i], (args.cost * far + (1-args.cost) * frr) * 100. ))


    if args.cllr:
      logger.info("Computing Cllr and minCllr on the development " + ("and on the evaluation set" if args.eval_files else "set"))
      for i in range(len(scores_dev)):
        cllr = bob.measure.calibration.cllr(scores_dev[i][0], scores_dev[i][1])
        min_cllr = bob.measure.calibration.min_cllr(scores_dev[i][0], scores_dev[i][1])
        print("Calibration performance on development set of '%s' is Cllr %1.5f and minCllr %1.5f " % (args.legends[i], cllr, min_cllr))
        if args.eval_files:
          cllr = bob.measure.calibration.cllr(scores_eval[i][0], scores_eval[i][1])
          min_cllr = bob.measure.calibration.min_cllr(scores_eval[i][0], scores_eval[i][1])
          print("Calibration performance on evaluation set of '%s' is Cllr %1.5f and minCllr %1.5f" % (args.legends[i], cllr, min_cllr))


    if args.roc:
      logger.info("Computing CAR curves on the development " + ("and on the evaluation set" if args.eval_files else "set"))
311
312
      min_far = int(math.floor(math.log(args.min_far_value, 10)))
      fars = bob.measure.plot.log_values(min_far)
Manuel Günther's avatar
Manuel Günther committed
313
314
315
316
317
318
319
320
321
      frrs_dev = [bob.measure.roc_for_far(scores[0], scores[1], fars) for scores in scores_dev]
      if args.eval_files:
        frrs_eval = [bob.measure.roc_for_far(scores[0], scores[1], fars) for scores in scores_eval]

      logger.info("Plotting ROC curves to file '%s'", args.roc)
      try:
        # create a multi-page PDF for the ROC curve
        pdf = PdfPages(args.roc)
        # create a separate figure for dev and eval
322
        pdf.savefig(_plot_roc(frrs_dev, colors, args.legends, args.title[0] if args.title is not None else "ROC for development set", args.legend_font_size, args.legend_position), bbox_inches='tight')
Manuel Günther's avatar
Manuel Günther committed
323
324
        del frrs_dev
        if args.eval_files:
325
326
327
328
329
          farfrrs = []
          for i, scores in enumerate(scores_eval):
            threshold = bob.measure.far_threshold(scores_dev[i][0], scores_dev[i][1], float(args.far_value) / 100)
            farfrrs.append(bob.measure.farfrr(scores_eval[i][0], scores_eval[i][1], threshold))
          pdf.savefig(_plot_roc(frrs_eval, colors, args.legends, args.title[1] if args.title is not None else "ROC for evaluation set", args.legend_font_size, args.legend_position, farfrrs), bbox_inches='tight')
Manuel Günther's avatar
Manuel Günther committed
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
          del frrs_eval
        pdf.close()
      except RuntimeError as e:
        raise RuntimeError("During plotting of ROC curves, the following exception occured:\n%s\nUsually this happens when the label contains characters that LaTeX cannot parse." % e)

    if args.det:
      logger.info("Computing DET curves on the development " + ("and on the evaluation set" if args.eval_files else "set"))
      dets_dev = [bob.measure.det(scores[0], scores[1], 1000) for scores in scores_dev]
      if args.eval_files:
        dets_eval = [bob.measure.det(scores[0], scores[1], 1000) for scores in scores_eval]

      logger.info("Plotting DET curves to file '%s'", args.det)
      try:
        # create a multi-page PDF for the ROC curve
        pdf = PdfPages(args.det)
        # create a separate figure for dev and eval
346
        pdf.savefig(_plot_det(dets_dev, colors, args.legends, args.title[0] if args.title is not None else "DET for development set", args.legend_font_size, args.legend_position), bbox_inches='tight')
Manuel Günther's avatar
Manuel Günther committed
347
348
        del dets_dev
        if args.eval_files:
349
          pdf.savefig(_plot_det(dets_eval, colors, args.legends, args.title[1] if args.title is not None else "DET for evaluation set", args.legend_font_size, args.legend_position), bbox_inches='tight')
Manuel Günther's avatar
Manuel Günther committed
350
351
352
353
354
355
          del dets_eval
        pdf.close()
      except RuntimeError as e:
        raise RuntimeError("During plotting of ROC curves, the following exception occured:\n%s\nUsually this happens when the label contains characters that LaTeX cannot parse." % e)


356
    if args.epc:
Manuel Günther's avatar
Manuel Günther committed
357
      logger.info("Plotting EPC curves to file '%s'", args.epc)
André Anjos's avatar
André Anjos committed
358

359
360
      if not args.eval_files:
        raise ValueError("To plot the EPC curve the evaluation scores are necessary. Please, set it with the --eval-files option.")
André Anjos's avatar
André Anjos committed
361

362
363
364
      try:
        # create a multi-page PDF for the ROC curve
        pdf = PdfPages(args.epc)
365
        pdf.savefig(_plot_epc(scores_dev, scores_eval, colors, args.legends, args.title if args.title is not None else "" , args.legend_font_size, args.legend_position), bbox_inches='tight')
366
367
368
369
370
371
372
        pdf.close()
      except RuntimeError as e:
        raise RuntimeError("During plotting of EPC curves, the following exception occured:\n%s\nUsually this happens when the label contains characters that LaTeX cannot parse." % e)




Manuel Günther's avatar
Manuel Günther committed
373
374
375
376
377
378
379
  if args.cmc or args.rr:
    logger.info("Loading CMC data on the development " + ("and on the evaluation set" if args.eval_files else "set"))
    cmc_parser = {'4column' : bob.measure.load.cmc_four_column, '5column' : bob.measure.load.cmc_five_column}[args.parser]
    cmcs_dev = [cmc_parser(os.path.join(args.directory, f)) for f in args.dev_files]
    if args.eval_files:
      cmcs_eval = [cmc_parser(os.path.join(args.directory, f)) for f in args.eval_files]

380
381
382
383
384
385
    if args.cmc:
      logger.info("Plotting CMC curves to file '%s'", args.cmc)
      try:
        # create a multi-page PDF for the ROC curve
        pdf = PdfPages(args.cmc)
        # create a separate figure for dev and eval
Manuel Günther's avatar
Manuel Günther committed
386
        pdf.savefig(_plot_cmc(cmcs_dev, colors, args.legends, args.title[0] if args.title is not None else "CMC curve for development set", args.legend_font_size, args.legend_position))
387
        if args.eval_files:
Manuel Günther's avatar
Manuel Günther committed
388
          pdf.savefig(_plot_cmc(cmcs_eval, colors, args.legends, args.title[1] if args.title is not None else "CMC curve for evaluation set", args.legend_font_size, args.legend_position))
389
390
391
392
393
394
395
396
        pdf.close()
      except RuntimeError as e:
        raise RuntimeError("During plotting of ROC curves, the following exception occured:\n%s\nUsually this happens when the label contains characters that LaTeX cannot parse." % e)

    if args.rr:
      logger.info("Computing recognition rate on the development " + ("and on the evaluation set" if args.eval_files else "set"))
      for i in range(len(cmcs_dev)):
        rr = bob.measure.recognition_rate(cmcs_dev[i], args.thresholds[i])
Manuel Günther's avatar
Manuel Günther committed
397
        print("The Recognition Rate of the development set of '%s' is %2.3f%%" % (args.legends[i], rr * 100.))
398
399
400
        if args.eval_files:
          rr = bob.measure.recognition_rate(cmcs_eval[i], args.thresholds[i])
          print("The Recognition Rate of the development set of '%s' is %2.3f%%" % (args.legends[i], rr * 100.))