evaluate.py 19.3 KB
Newer Older
Manuel Günther's avatar
Manuel Günther committed
1
2
3
4
#!/usr/bin/env python
# vim: set fileencoding=utf-8 :

"""This script evaluates the given score files and computes EER, HTER.
5
6
7
It also is able to plot CMC and ROC curves.
You can set the environment variable BOB_NO_STYLE_CHANGES to any value to avoid
this script from changing the matplotlib style values. """
Manuel Günther's avatar
Manuel Günther committed
8

9
from __future__ import print_function
Manuel Günther's avatar
Manuel Günther committed
10
11
12
import bob.measure

import argparse
13
14
import numpy
import math
Manuel Günther's avatar
Manuel Günther committed
15
16
17
import os

# matplotlib stuff
18
19
import matplotlib
matplotlib.use('pdf')  # avoids TkInter threaded start
Manuel Günther's avatar
Manuel Günther committed
20
21
22
from matplotlib import pyplot
from matplotlib.backends.backend_pdf import PdfPages

23
24
25
26
27
28
if not os.environ.get('BOB_NO_STYLE_CHANGES'):
  # increase the default line width and font size
  matplotlib.rc('lines', linewidth=4)
  matplotlib.rc('font', size=18)


Manuel Günther's avatar
Manuel Günther committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import bob.core
logger = bob.core.log.setup("bob.bio.base")


def command_line_arguments(command_line_parameters):
  """Parse the program options"""

  # set up command line parser
  parser = argparse.ArgumentParser(description=__doc__,
      formatter_class=argparse.ArgumentDefaultsHelpFormatter)

  parser.add_argument('-d', '--dev-files', required=True, nargs='+', help = "A list of score files of the development set.")
  parser.add_argument('-e', '--eval-files', nargs='+', help = "A list of score files of the evaluation set; if given it must be the same number of files as the --dev-files.")

  parser.add_argument('-s', '--directory', default = '.', help = "A directory, where to find the --dev-files and the --eval-files")

Manuel Günther's avatar
Manuel Günther committed
45
46
  parser.add_argument('-c', '--criterion', choices = ('EER', 'HTER', 'FAR'), help = "If given, the threshold of the development set will be computed with this criterion.")
  parser.add_argument('-f', '--far-value', type=float, default=0.1, help = "The FAR value in %% for which to evaluate (only for --criterion FAR)")
Manuel Günther's avatar
Manuel Günther committed
47
48
49
50
  parser.add_argument('-x', '--cllr', action = 'store_true', help = "If given, Cllr and minCllr will be computed.")
  parser.add_argument('-m', '--mindcf', action = 'store_true', help = "If given, minDCF will be computed.")
  parser.add_argument('--cost', default=0.99,  help='Cost for FAR in minDCF')
  parser.add_argument('-r', '--rr', action = 'store_true', help = "If given, the Recognition Rate will be computed.")
51
  parser.add_argument('-t', '--thresholds', type=float, nargs='+', help = "If given, the Recognition Rate will incorporate an Open Set handling, rejecting all scores that are below the given threshold; when multiple thresholds are given, they are applied in the same order as the --dev-files.")
Manuel Günther's avatar
Manuel Günther committed
52
53
54
  parser.add_argument('-l', '--legends', nargs='+', help = "A list of legend strings used for ROC, CMC and DET plots; if given, must be the same number than --dev-files.")
  parser.add_argument('-F', '--legend-font-size', type=int, default=18, help = "Set the font size of the legends.")
  parser.add_argument('-P', '--legend-position', type=int, help = "Set the font size of the legends.")
Manuel Günther's avatar
Manuel Günther committed
55
  parser.add_argument('-T', '--title', nargs = '+', help = "Overwrite the default title of the plot for development (and evaluation) set")
Manuel Günther's avatar
Manuel Günther committed
56
57
58
  parser.add_argument('-R', '--roc', help = "If given, ROC curves will be plotted into the given pdf file.")
  parser.add_argument('-D', '--det', help = "If given, DET curves will be plotted into the given pdf file.")
  parser.add_argument('-C', '--cmc', help = "If given, CMC curves will be plotted into the given pdf file.")
André Anjos's avatar
André Anjos committed
59
  parser.add_argument('-E', '--epc', help = "If given, EPC curves will be plotted into the given pdf file. For this plot --eval-files is mandatory.")
Manuel Günther's avatar
Manuel Günther committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

  # add verbose option
  bob.core.log.add_command_line_option(parser)

  # parse arguments
  args = parser.parse_args(command_line_parameters)

  # set verbosity level
  bob.core.log.set_verbosity_level(logger, args.verbose)


  # some sanity checks:
  if args.eval_files is not None and len(args.dev_files) != len(args.eval_files):
    logger.error("The number of --dev-files (%d) and --eval-files (%d) are not identical", len(args.dev_files), len(args.eval_files))

  # update legends when they are not specified on command line
  if args.legends is None:
    args.legends = [f.replace('_', '-') for f in args.dev_files]
    logger.warn("Legends are not specified; using legends estimated from --dev-files: %s", args.legends)

  # check that the legends have the same length as the dev-files
  if len(args.dev_files) != len(args.legends):
    logger.error("The number of --dev-files (%d) and --legends (%d) are not identical", len(args.dev_files), len(args.legends))

84
85
86
87
88
89
90
91
  if args.thresholds is not None:
    if len(args.thresholds) == 1:
      args.thresholds = args.thresholds * len(args.dev_files)
    elif len(args.thresholds) != len(args.dev_files):
      logger.error("If given, the number of --thresholds imust be either 1, or the same as --dev-files (%d), but it is %d", len(args.dev_files), len(args.thresholds))
  else:
    args.thresholds = [None] * len(args.dev_files)

Manuel Günther's avatar
Manuel Günther committed
92
93
94
95
96
97
  if args.title is not None:
    if args.eval_files is None and len(args.title) != 1:
      logger.warning("Ignoring the title for the evaluation set, as no evaluation set is given")
    if args.eval_files is not None and len(args.title) < 2:
      logger.error("The title for the evaluation set is not specified")

Manuel Günther's avatar
Manuel Günther committed
98
99
100
  return args


101
def _plot_roc(frrs, colors, labels, title, fontsize=18, position=None, farfrrs=None):
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
102
  if position is None: position = 'lower right'
Manuel Günther's avatar
Manuel Günther committed
103
104
105
106
  figure = pyplot.figure()
  # plot FAR and CAR for each algorithm
  for i in range(len(frrs)):
    pyplot.semilogx([100.0*f for f in frrs[i][0]], [100. - 100.0*f for f in frrs[i][1]], color=colors[i], lw=2, ms=10, mew=1.5, label=labels[i])
107
108
109
110
111
    if farfrrs is not None:
      pyplot.plot(farfrrs[i][0]*100, (1-farfrrs[i][1])*100, 'o', color=colors[i], markeredgecolor='black')

  if farfrrs is not None:
    pyplot.plot([x[0]*100 for x in farfrrs], [(1-x[1])*100 for x in farfrrs], '--', color='black', linewidth=1.5)
Manuel Günther's avatar
Manuel Günther committed
112
113

  # finalize plot
114
115
  if farfrrs is None:
    pyplot.plot([0.1,0.1],[0,100], "--", color='black')
Manuel Günther's avatar
Manuel Günther committed
116
117
  pyplot.axis([frrs[0][0][0]*100,100,0,100])
  pyplot.xticks((0.01, 0.1, 1, 10, 100), ('0.01', '0.1', '1', '10', '100'))
118
119
  pyplot.xlabel('FMR (%)')
  pyplot.ylabel('1 - FNMR (%)')
Manuel Günther's avatar
Manuel Günther committed
120
121
122
  pyplot.grid(True, color=(0.6,0.6,0.6))
  pyplot.legend(loc=position, prop = {'size':fontsize})
  pyplot.title(title)
123
  figure.set_tight_layout(True)
Manuel Günther's avatar
Manuel Günther committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

  return figure


def _plot_det(dets, colors, labels, title, fontsize=18, position=None):
  if position is None: position = 1
  # open new page for current plot
  figure = pyplot.figure(figsize=(8.2,8))

  # plot the DET curves
  for i in range(len(dets)):
    pyplot.plot(dets[i][0], dets[i][1], color=colors[i], lw=2, ms=10, mew=1.5, label=labels[i])

  # change axes accordingly
  det_list = [0.0002, 0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 0.7, 0.9, 0.95]
  ticks = [bob.measure.ppndf(d) for d in det_list]
  labels = [("%.5f" % (d*100)).rstrip('0').rstrip('.') for d in det_list]
  pyplot.xticks(ticks, labels)
  pyplot.yticks(ticks, labels)
  pyplot.axis((ticks[0], ticks[-1], ticks[0], ticks[-1]))

145
146
  pyplot.xlabel('FMR (%)')
  pyplot.ylabel('FNMR (%)')
Manuel Günther's avatar
Manuel Günther committed
147
148
  pyplot.legend(loc=position, prop = {'size':fontsize})
  pyplot.title(title)
149
  figure.set_tight_layout(True)
Manuel Günther's avatar
Manuel Günther committed
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

  return figure

def _plot_cmc(cmcs, colors, labels, title, fontsize=18, position=None):
  if position is None: position = 4
  # open new page for current plot
  figure = pyplot.figure()

  max_x = 0
  # plot the DET curves
  for i in range(len(cmcs)):
    x = bob.measure.plot.cmc(cmcs[i], figure=figure, color=colors[i], lw=2, ms=10, mew=1.5, label=labels[i])
    max_x = max(x, max_x)

  # change axes accordingly
  ticks = [int(t) for t in pyplot.xticks()[0]]
  pyplot.xlabel('Rank')
Manuel Günther's avatar
Manuel Günther committed
167
  pyplot.ylabel('Probability (%)')
Manuel Günther's avatar
Manuel Günther committed
168
169
170
171
  pyplot.xticks(ticks, [str(t) for t in ticks])
  pyplot.axis([0, max_x, 0, 100])
  pyplot.legend(loc=position, prop = {'size':fontsize})
  pyplot.title(title)
Manuel Günther's avatar
Manuel Günther committed
172
  figure.set_tight_layout(True)
Manuel Günther's avatar
Manuel Günther committed
173
174

  return figure
André Anjos's avatar
André Anjos committed
175
176
177



178
def _plot_epc(scores_dev, scores_eval, colors, labels, title, fontsize=18, position=None):
179
  if position is None: position = 'upper center'
180
181
182
183
184
  # open new page for current plot
  figure = pyplot.figure()

  # plot the DET curves
  for i in range(len(scores_dev)):
Manuel Günther's avatar
Manuel Günther committed
185
    bob.measure.plot.epc(scores_dev[i][0], scores_dev[i][1], scores_eval[i][0], scores_eval[i][1], 100, color=colors[i], label=labels[i], lw=2)
186
187
188

  # change axes accordingly
  pyplot.xlabel('alpha')
Manuel Günther's avatar
Manuel Günther committed
189
  pyplot.ylabel('HTER (%)')
190
191
192
193
  pyplot.title(title)
  pyplot.grid(True)
  pyplot.legend(loc=position, prop = {'size':fontsize})
  pyplot.title(title)
194
195
  pyplot.xlim([-0.01, 1.01])
  pyplot.ylim([0, 51])
196
  figure.set_tight_layout(True)
197

André Anjos's avatar
André Anjos committed
198
  return figure
199

Manuel Günther's avatar
Manuel Günther committed
200

201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
def remove_nan(scores):
    """removes the NaNs from the scores"""
    nans = numpy.isnan(scores)
    sum_nans = sum(nans)
    total = len(scores)
    return scores[numpy.where(~nans)], sum_nans, total


def get_fta(scores):
    """calculates the Failure To Acquire (FtA) rate"""
    fta_sum, fta_total = 0, 0
    neg, sum_nans, total = remove_nan(scores[0])
    fta_sum += sum_nans
    fta_total += total
    pos, sum_nans, total = remove_nan(scores[1])
    fta_sum += sum_nans
    fta_total += total
    return (neg, pos, fta_sum * 100 / float(fta_total))

Manuel Günther's avatar
Manuel Günther committed
220
221
222
223
224
225
226

def main(command_line_parameters=None):
  """Reads score files, computes error measures and plots curves."""

  args = command_line_arguments(command_line_parameters)

  # get some colors for plotting
227
228
229
230
231
232
  if len(args.dev_files) > 10:
    cmap = pyplot.cm.get_cmap(name='magma')
    colors = [cmap(i) for i in numpy.linspace(0, 1.0, len(args.dev_files) + 1)]
  else:
    # matplotlib 2.0 default color cycler list: Vega category10 palette
    colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728',
233
234
              '#9467bd', '#8c564b', '#e377c2', '#7f7f7f',
              '#bcbd22', '#17becf']
Manuel Günther's avatar
Manuel Günther committed
235

Manuel Günther's avatar
Manuel Günther committed
236
  if args.criterion or args.roc or args.det or args.epc or args.cllr or args.mindcf:
Manuel Günther's avatar
Manuel Günther committed
237
238
239

    # First, read the score files
    logger.info("Loading %d score files of the development set", len(args.dev_files))
240
    scores_dev = [bob.measure.load.split(os.path.join(args.directory, f)) for f in args.dev_files]
241
242
    # remove nans
    scores_dev = [get_fta(s) for s in scores_dev]
Manuel Günther's avatar
Manuel Günther committed
243
244
245

    if args.eval_files:
      logger.info("Loading %d score files of the evaluation set", len(args.eval_files))
246
      scores_eval = [bob.measure.load.split(os.path.join(args.directory, f)) for f in args.eval_files]
247
248
      # remove nans
      scores_eval = [get_fta(s) for s in scores_eval]
Manuel Günther's avatar
Manuel Günther committed
249
250
251
252
253
254


    if args.criterion:
      logger.info("Computing %s on the development " % args.criterion + ("and HTER on the evaluation set" if args.eval_files else "set"))
      for i in range(len(scores_dev)):
        # compute threshold on development set
Manuel Günther's avatar
Manuel Günther committed
255
256
257
258
        if args.criterion == 'FAR':
          threshold = bob.measure.far_threshold(scores_dev[i][0], scores_dev[i][1], args.far_value/100.)
        else:
          threshold = {'EER': bob.measure.eer_threshold, 'HTER' : bob.measure.min_hter_threshold} [args.criterion](scores_dev[i][0], scores_dev[i][1])
Manuel Günther's avatar
Manuel Günther committed
259
260
        # apply threshold to development set
        far, frr = bob.measure.farfrr(scores_dev[i][0], scores_dev[i][1], threshold)
Manuel Günther's avatar
Manuel Günther committed
261
        if args.criterion == 'FAR':
André Anjos's avatar
André Anjos committed
262
263
          print("The FRR at FAR=%2.3f%% of the development set of '%s' is %2.3f%% (CAR: %2.3f%%)" % (args.far_value, args.legends[i], frr * 100., 100.*(1-frr)))
        else:
Manuel Günther's avatar
Manuel Günther committed
264
          print("The %s of the development set of '%s' is %2.3f%%" % (args.criterion, args.legends[i], (far + frr) * 50.)) # / 2 * 100%
Manuel Günther's avatar
Manuel Günther committed
265
266
267
        if args.eval_files:
          # apply threshold to evaluation set
          far, frr = bob.measure.farfrr(scores_eval[i][0], scores_eval[i][1], threshold)
Manuel Günther's avatar
Manuel Günther committed
268
269
          if args.criterion == 'FAR':
            print("The FRR of the evaluation set of '%s' is %2.3f%% (CAR: %2.3f%%)" % (args.legends[i], frr * 100., 100.*(1-frr))) # / 2 * 100%
André Anjos's avatar
André Anjos committed
270
          else:
Manuel Günther's avatar
Manuel Günther committed
271
            print("The HTER of the evaluation set of '%s' is %2.3f%%" % (args.legends[i], (far + frr) * 50.)) # / 2 * 100%
Manuel Günther's avatar
Manuel Günther committed
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303


    if args.mindcf:
      logger.info("Computing minDCF on the development " + ("and on the evaluation set" if args.eval_files else "set"))
      for i in range(len(scores_dev)):
        # compute threshold on development set
        threshold = bob.measure.min_weighted_error_rate_threshold(scores_dev[i][0], scores_dev[i][1], args.cost)
        # apply threshold to development set
        far, frr = bob.measure.farfrr(scores_dev[i][0], scores_dev[i][1], threshold)
        print("The minDCF of the development set of '%s' is %2.3f%%" % (args.legends[i], (args.cost * far + (1-args.cost) * frr) * 100. ))
        if args.eval_files:
          # compute threshold on evaluation set
          threshold = bob.measure.min_weighted_error_rate_threshold(scores_eval[i][0], scores_eval[i][1], args.cost)
          # apply threshold to evaluation set
          far, frr = bob.measure.farfrr(scores_eval[i][0], scores_eval[i][1], threshold)
          print("The minDCF of the evaluation set of '%s' is %2.3f%%" % (args.legends[i], (args.cost * far + (1-args.cost) * frr) * 100. ))


    if args.cllr:
      logger.info("Computing Cllr and minCllr on the development " + ("and on the evaluation set" if args.eval_files else "set"))
      for i in range(len(scores_dev)):
        cllr = bob.measure.calibration.cllr(scores_dev[i][0], scores_dev[i][1])
        min_cllr = bob.measure.calibration.min_cllr(scores_dev[i][0], scores_dev[i][1])
        print("Calibration performance on development set of '%s' is Cllr %1.5f and minCllr %1.5f " % (args.legends[i], cllr, min_cllr))
        if args.eval_files:
          cllr = bob.measure.calibration.cllr(scores_eval[i][0], scores_eval[i][1])
          min_cllr = bob.measure.calibration.min_cllr(scores_eval[i][0], scores_eval[i][1])
          print("Calibration performance on evaluation set of '%s' is Cllr %1.5f and minCllr %1.5f" % (args.legends[i], cllr, min_cllr))


    if args.roc:
      logger.info("Computing CAR curves on the development " + ("and on the evaluation set" if args.eval_files else "set"))
304
      fars = [math.pow(10., i * 0.25) for i in range(-17,0)] + [1.]
Manuel Günther's avatar
Manuel Günther committed
305
306
307
308
309
310
311
312
313
      frrs_dev = [bob.measure.roc_for_far(scores[0], scores[1], fars) for scores in scores_dev]
      if args.eval_files:
        frrs_eval = [bob.measure.roc_for_far(scores[0], scores[1], fars) for scores in scores_eval]

      logger.info("Plotting ROC curves to file '%s'", args.roc)
      try:
        # create a multi-page PDF for the ROC curve
        pdf = PdfPages(args.roc)
        # create a separate figure for dev and eval
314
        pdf.savefig(_plot_roc(frrs_dev, colors, args.legends, args.title[0] if args.title is not None else "ROC for development set", args.legend_font_size, args.legend_position), bbox_inches='tight')
Manuel Günther's avatar
Manuel Günther committed
315
316
        del frrs_dev
        if args.eval_files:
317
318
319
320
321
          farfrrs = []
          for i, scores in enumerate(scores_eval):
            threshold = bob.measure.far_threshold(scores_dev[i][0], scores_dev[i][1], float(args.far_value) / 100)
            farfrrs.append(bob.measure.farfrr(scores_eval[i][0], scores_eval[i][1], threshold))
          pdf.savefig(_plot_roc(frrs_eval, colors, args.legends, args.title[1] if args.title is not None else "ROC for evaluation set", args.legend_font_size, args.legend_position, farfrrs), bbox_inches='tight')
Manuel Günther's avatar
Manuel Günther committed
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
          del frrs_eval
        pdf.close()
      except RuntimeError as e:
        raise RuntimeError("During plotting of ROC curves, the following exception occured:\n%s\nUsually this happens when the label contains characters that LaTeX cannot parse." % e)

    if args.det:
      logger.info("Computing DET curves on the development " + ("and on the evaluation set" if args.eval_files else "set"))
      dets_dev = [bob.measure.det(scores[0], scores[1], 1000) for scores in scores_dev]
      if args.eval_files:
        dets_eval = [bob.measure.det(scores[0], scores[1], 1000) for scores in scores_eval]

      logger.info("Plotting DET curves to file '%s'", args.det)
      try:
        # create a multi-page PDF for the ROC curve
        pdf = PdfPages(args.det)
        # create a separate figure for dev and eval
338
        pdf.savefig(_plot_det(dets_dev, colors, args.legends, args.title[0] if args.title is not None else "DET for development set", args.legend_font_size, args.legend_position), bbox_inches='tight')
Manuel Günther's avatar
Manuel Günther committed
339
340
        del dets_dev
        if args.eval_files:
341
          pdf.savefig(_plot_det(dets_eval, colors, args.legends, args.title[1] if args.title is not None else "DET for evaluation set", args.legend_font_size, args.legend_position), bbox_inches='tight')
Manuel Günther's avatar
Manuel Günther committed
342
343
344
345
346
347
          del dets_eval
        pdf.close()
      except RuntimeError as e:
        raise RuntimeError("During plotting of ROC curves, the following exception occured:\n%s\nUsually this happens when the label contains characters that LaTeX cannot parse." % e)


348
    if args.epc:
Manuel Günther's avatar
Manuel Günther committed
349
      logger.info("Plotting EPC curves to file '%s'", args.epc)
André Anjos's avatar
André Anjos committed
350

351
352
      if not args.eval_files:
        raise ValueError("To plot the EPC curve the evaluation scores are necessary. Please, set it with the --eval-files option.")
André Anjos's avatar
André Anjos committed
353

354
355
356
      try:
        # create a multi-page PDF for the ROC curve
        pdf = PdfPages(args.epc)
357
        pdf.savefig(_plot_epc(scores_dev, scores_eval, colors, args.legends, args.title if args.title is not None else "" , args.legend_font_size, args.legend_position), bbox_inches='tight')
358
359
360
361
362
363
364
        pdf.close()
      except RuntimeError as e:
        raise RuntimeError("During plotting of EPC curves, the following exception occured:\n%s\nUsually this happens when the label contains characters that LaTeX cannot parse." % e)




Manuel Günther's avatar
Manuel Günther committed
365
366
  if args.cmc or args.rr:
    logger.info("Loading CMC data on the development " + ("and on the evaluation set" if args.eval_files else "set"))
367
    cmcs_dev = [bob.measure.load.cmc(os.path.join(args.directory, f)) for f in args.dev_files]
Manuel Günther's avatar
Manuel Günther committed
368
    if args.eval_files:
369
      cmcs_eval = [bob.measure.load.cmc(os.path.join(args.directory, f)) for f in args.eval_files]
Manuel Günther's avatar
Manuel Günther committed
370

371
372
373
374
375
376
    if args.cmc:
      logger.info("Plotting CMC curves to file '%s'", args.cmc)
      try:
        # create a multi-page PDF for the ROC curve
        pdf = PdfPages(args.cmc)
        # create a separate figure for dev and eval
Manuel Günther's avatar
Manuel Günther committed
377
        pdf.savefig(_plot_cmc(cmcs_dev, colors, args.legends, args.title[0] if args.title is not None else "CMC curve for development set", args.legend_font_size, args.legend_position))
378
        if args.eval_files:
Manuel Günther's avatar
Manuel Günther committed
379
          pdf.savefig(_plot_cmc(cmcs_eval, colors, args.legends, args.title[1] if args.title is not None else "CMC curve for evaluation set", args.legend_font_size, args.legend_position))
380
381
382
383
384
385
386
387
        pdf.close()
      except RuntimeError as e:
        raise RuntimeError("During plotting of ROC curves, the following exception occured:\n%s\nUsually this happens when the label contains characters that LaTeX cannot parse." % e)

    if args.rr:
      logger.info("Computing recognition rate on the development " + ("and on the evaluation set" if args.eval_files else "set"))
      for i in range(len(cmcs_dev)):
        rr = bob.measure.recognition_rate(cmcs_dev[i], args.thresholds[i])
Manuel Günther's avatar
Manuel Günther committed
388
        print("The Recognition Rate of the development set of '%s' is %2.3f%%" % (args.legends[i], rr * 100.))
389
390
391
        if args.eval_files:
          rr = bob.measure.recognition_rate(cmcs_eval[i], args.thresholds[i])
          print("The Recognition Rate of the development set of '%s' is %2.3f%%" % (args.legends[i], rr * 100.))