evaluate.py 20.2 KB
Newer Older
Manuel Günther's avatar
Manuel Günther committed
1
2
3
4
#!/usr/bin/env python
# vim: set fileencoding=utf-8 :

"""This script evaluates the given score files and computes EER, HTER.
5
6
7
It also is able to plot CMC and ROC curves.
You can set the environment variable BOB_NO_STYLE_CHANGES to any value to avoid
this script from changing the matplotlib style values. """
Manuel Günther's avatar
Manuel Günther committed
8

9
from __future__ import print_function
Manuel Günther's avatar
Manuel Günther committed
10
11
12
import bob.measure

import argparse
13
14
import numpy
import math
Manuel Günther's avatar
Manuel Günther committed
15
16
17
import os

# matplotlib stuff
18
19
import matplotlib
matplotlib.use('pdf')  # avoids TkInter threaded start
Manuel Günther's avatar
Manuel Günther committed
20
21
22
from matplotlib import pyplot
from matplotlib.backends.backend_pdf import PdfPages

23
if not os.environ.get('BOB_NO_STYLE_CHANGES'):
24
25
  # make the fig size smaller so that everything becomes bigger
  matplotlib.rc('figure', figsize=(4, 3))
26
27


Manuel Günther's avatar
Manuel Günther committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import bob.core
logger = bob.core.log.setup("bob.bio.base")


def command_line_arguments(command_line_parameters):
  """Parse the program options"""

  # set up command line parser
  parser = argparse.ArgumentParser(description=__doc__,
      formatter_class=argparse.ArgumentDefaultsHelpFormatter)

  parser.add_argument('-d', '--dev-files', required=True, nargs='+', help = "A list of score files of the development set.")
  parser.add_argument('-e', '--eval-files', nargs='+', help = "A list of score files of the evaluation set; if given it must be the same number of files as the --dev-files.")

  parser.add_argument('-s', '--directory', default = '.', help = "A directory, where to find the --dev-files and the --eval-files")

Manuel Günther's avatar
Manuel Günther committed
44
  parser.add_argument('-c', '--criterion', choices = ('EER', 'HTER', 'FAR'), help = "If given, the threshold of the development set will be computed with this criterion.")
45
  parser.add_argument('-f', '--far-value', type=float, default=0.001, help = "The FAR value for which to evaluate (only for --criterion FAR)")
Manuel Günther's avatar
Manuel Günther committed
46
47
48
49
  parser.add_argument('-x', '--cllr', action = 'store_true', help = "If given, Cllr and minCllr will be computed.")
  parser.add_argument('-m', '--mindcf', action = 'store_true', help = "If given, minDCF will be computed.")
  parser.add_argument('--cost', default=0.99,  help='Cost for FAR in minDCF')
  parser.add_argument('-r', '--rr', action = 'store_true', help = "If given, the Recognition Rate will be computed.")
50
  parser.add_argument('-t', '--thresholds', type=float, nargs='+', help = "If given, the Recognition Rate will incorporate an Open Set handling, rejecting all scores that are below the given threshold; when multiple thresholds are given, they are applied in the same order as the --dev-files.")
Manuel Günther's avatar
Manuel Günther committed
51
  parser.add_argument('-l', '--legends', nargs='+', help = "A list of legend strings used for ROC, CMC and DET plots; if given, must be the same number than --dev-files.")
52
  parser.add_argument('-F', '--legend-font-size', type=int, default=10, help = "Set the font size of the legends.")
Manuel Günther's avatar
Manuel Günther committed
53
  parser.add_argument('-P', '--legend-position', type=int, help = "Set the font size of the legends.")
Manuel Günther's avatar
Manuel Günther committed
54
  parser.add_argument('-T', '--title', nargs = '+', help = "Overwrite the default title of the plot for development (and evaluation) set")
Manuel Günther's avatar
Manuel Günther committed
55
56
57
  parser.add_argument('-R', '--roc', help = "If given, ROC curves will be plotted into the given pdf file.")
  parser.add_argument('-D', '--det', help = "If given, DET curves will be plotted into the given pdf file.")
  parser.add_argument('-C', '--cmc', help = "If given, CMC curves will be plotted into the given pdf file.")
André Anjos's avatar
André Anjos committed
58
  parser.add_argument('-E', '--epc', help = "If given, EPC curves will be plotted into the given pdf file. For this plot --eval-files is mandatory.")
59
  parser.add_argument('-M', '--min-far-value', type=float, default=1e-4, help = "Select the minimum FAR value used in ROC plots; should be a power of 10.")
60
  parser.add_argument('-L', '--far-line-at', type=float, help = "If given, draw a veritcal line at this FAR value in the ROC plots.")
61
  parser.add_argument('--parser', default = '4column', choices = ('4column', '5column'), help="The style of the resulting score files. The default fits to the usual output of score files.")
Manuel Günther's avatar
Manuel Günther committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

  # add verbose option
  bob.core.log.add_command_line_option(parser)

  # parse arguments
  args = parser.parse_args(command_line_parameters)

  # set verbosity level
  bob.core.log.set_verbosity_level(logger, args.verbose)


  # some sanity checks:
  if args.eval_files is not None and len(args.dev_files) != len(args.eval_files):
    logger.error("The number of --dev-files (%d) and --eval-files (%d) are not identical", len(args.dev_files), len(args.eval_files))

  # update legends when they are not specified on command line
  if args.legends is None:
    args.legends = [f.replace('_', '-') for f in args.dev_files]
    logger.warn("Legends are not specified; using legends estimated from --dev-files: %s", args.legends)

  # check that the legends have the same length as the dev-files
  if len(args.dev_files) != len(args.legends):
    logger.error("The number of --dev-files (%d) and --legends (%d) are not identical", len(args.dev_files), len(args.legends))

86
87
88
89
90
91
92
93
  if args.thresholds is not None:
    if len(args.thresholds) == 1:
      args.thresholds = args.thresholds * len(args.dev_files)
    elif len(args.thresholds) != len(args.dev_files):
      logger.error("If given, the number of --thresholds imust be either 1, or the same as --dev-files (%d), but it is %d", len(args.dev_files), len(args.thresholds))
  else:
    args.thresholds = [None] * len(args.dev_files)

Manuel Günther's avatar
Manuel Günther committed
94
95
96
97
98
99
  if args.title is not None:
    if args.eval_files is None and len(args.title) != 1:
      logger.warning("Ignoring the title for the evaluation set, as no evaluation set is given")
    if args.eval_files is not None and len(args.title) < 2:
      logger.error("The title for the evaluation set is not specified")

Manuel Günther's avatar
Manuel Günther committed
100
101
102
  return args


103
def _plot_roc(frrs, colors, labels, title, fontsize=10, position=None, farfrrs=None):
Amir MOHAMMADI's avatar
Amir MOHAMMADI committed
104
  if position is None: position = 'lower right'
Manuel Günther's avatar
Manuel Günther committed
105
  figure = pyplot.figure()
106

Manuel Günther's avatar
Manuel Günther committed
107
108
  # plot FAR and CAR for each algorithm
  for i in range(len(frrs)):
109
    pyplot.semilogx([f for f in frrs[i][0]], [1. - f for f in frrs[i][1]], color=colors[i], label=labels[i])
110
    if isinstance(farfrrs, list):
111
      pyplot.plot(farfrrs[i][0], (1.-farfrrs[i][1]), 'o', color=colors[i], markeredgecolor=colors[i])
112

113
  # plot vertical bar, if desired
114
  if farfrrs is not None:
115
116
117
    if isinstance(farfrrs, float):
      pyplot.plot([farfrrs,farfrrs],[0.,1.], "--", color='black')
    else:
118
      pyplot.plot([x[0] for x in farfrrs], [(1.-x[1]) for x in farfrrs], '--', color='black')
Manuel Günther's avatar
Manuel Günther committed
119

120
  # compute and apply tick marks
121
122
  min_far = frrs[0][0][0]
  ticks = [min_far]
123
124
  while ticks[-1] < 1.: ticks.append(ticks[-1] * 10.)
  pyplot.axis([min_far,1.,0.,1.])
125
  pyplot.xticks(ticks)
126
127
128
129

  # set label, legend and title
  pyplot.xlabel('FMR')
  pyplot.ylabel('1 - FNMR')
Manuel Günther's avatar
Manuel Günther committed
130
131
132
133
134
135
136
  pyplot.grid(True, color=(0.6,0.6,0.6))
  pyplot.legend(loc=position, prop = {'size':fontsize})
  pyplot.title(title)

  return figure


137
def _plot_det(dets, colors, labels, title, fontsize=10, position=None):
138
  if position is None: position = 'upper right'
Manuel Günther's avatar
Manuel Günther committed
139
  # open new page for current plot
140
141
142
  figure = pyplot.figure(figsize=(matplotlib.rcParams['figure.figsize'][0],
                                  matplotlib.rcParams['figure.figsize'][0] * 0.975))
  pyplot.grid(True)
Manuel Günther's avatar
Manuel Günther committed
143
144
145

  # plot the DET curves
  for i in range(len(dets)):
146
    pyplot.plot(dets[i][0], dets[i][1], color=colors[i], label=labels[i])
Manuel Günther's avatar
Manuel Günther committed
147
148
149
150

  # change axes accordingly
  det_list = [0.0002, 0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 0.7, 0.9, 0.95]
  ticks = [bob.measure.ppndf(d) for d in det_list]
151
  labels = [("%.5f" % d).rstrip('0').rstrip('.') for d in det_list]
152
  pyplot.xticks(ticks, [l if i % 2 else "" for i,l in enumerate(labels)])
Manuel Günther's avatar
Manuel Günther committed
153
154
155
  pyplot.yticks(ticks, labels)
  pyplot.axis((ticks[0], ticks[-1], ticks[0], ticks[-1]))

156
157
  pyplot.xlabel('FMR')
  pyplot.ylabel('FNMR')
Manuel Günther's avatar
Manuel Günther committed
158
159
160
161
162
  pyplot.legend(loc=position, prop = {'size':fontsize})
  pyplot.title(title)

  return figure

163

164
def _plot_cmc(cmcs, colors, labels, title, fontsize=10, position=None):
165
  if position is None: position = 'lower right'
Manuel Günther's avatar
Manuel Günther committed
166
167
168
  # open new page for current plot
  figure = pyplot.figure()

169
170
  max_R = 0
  # plot the CMC curves
Manuel Günther's avatar
Manuel Günther committed
171
  for i in range(len(cmcs)):
172
173
    probs = bob.measure.cmc(cmcs[i])
    R = len(probs)
174
    pyplot.semilogx(range(1, R+1), probs, figure=figure, color=colors[i], label=labels[i])
175
    max_R = max(R, max_R)
Manuel Günther's avatar
Manuel Günther committed
176
177
178
179

  # change axes accordingly
  ticks = [int(t) for t in pyplot.xticks()[0]]
  pyplot.xlabel('Rank')
180
  pyplot.ylabel('Probability')
Manuel Günther's avatar
Manuel Günther committed
181
  pyplot.xticks(ticks, [str(t) for t in ticks])
182
  pyplot.axis([0, max_R, 0., 1.])
Manuel Günther's avatar
Manuel Günther committed
183
184
185
186
  pyplot.legend(loc=position, prop = {'size':fontsize})
  pyplot.title(title)

  return figure
André Anjos's avatar
André Anjos committed
187
188


189
def _plot_epc(scores_dev, scores_eval, colors, labels, title, fontsize=10, position=None):
190
  if position is None: position = 'upper center'
191
192
193
194
195
  # open new page for current plot
  figure = pyplot.figure()

  # plot the DET curves
  for i in range(len(scores_dev)):
196
    x,y = bob.measure.epc(scores_dev[i][0], scores_dev[i][1], scores_eval[i][0], scores_eval[i][1], 100)
197
    pyplot.plot(x, y, color=colors[i], label=labels[i])
198
199
200

  # change axes accordingly
  pyplot.xlabel('alpha')
201
  pyplot.ylabel('HTER')
202
203
204
205
  pyplot.title(title)
  pyplot.grid(True)
  pyplot.legend(loc=position, prop = {'size':fontsize})
  pyplot.title(title)
206
  pyplot.xlim([-0.01, 1.01])
207
  pyplot.ylim([0., 0.51])
208

André Anjos's avatar
André Anjos committed
209
  return figure
210

Manuel Günther's avatar
Manuel Günther committed
211

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
def remove_nan(scores):
    """removes the NaNs from the scores"""
    nans = numpy.isnan(scores)
    sum_nans = sum(nans)
    total = len(scores)
    return scores[numpy.where(~nans)], sum_nans, total


def get_fta(scores):
    """calculates the Failure To Acquire (FtA) rate"""
    fta_sum, fta_total = 0, 0
    neg, sum_nans, total = remove_nan(scores[0])
    fta_sum += sum_nans
    fta_total += total
    pos, sum_nans, total = remove_nan(scores[1])
    fta_sum += sum_nans
    fta_total += total
    return (neg, pos, fta_sum * 100 / float(fta_total))

Manuel Günther's avatar
Manuel Günther committed
231
232
233
234
235
236
237

def main(command_line_parameters=None):
  """Reads score files, computes error measures and plots curves."""

  args = command_line_arguments(command_line_parameters)

  # get some colors for plotting
238
239
240
241
242
243
  if len(args.dev_files) > 10:
    cmap = pyplot.cm.get_cmap(name='magma')
    colors = [cmap(i) for i in numpy.linspace(0, 1.0, len(args.dev_files) + 1)]
  else:
    # matplotlib 2.0 default color cycler list: Vega category10 palette
    colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728',
244
245
              '#9467bd', '#8c564b', '#e377c2', '#7f7f7f',
              '#bcbd22', '#17becf']
Manuel Günther's avatar
Manuel Günther committed
246

Manuel Günther's avatar
Manuel Günther committed
247
  if args.criterion or args.roc or args.det or args.epc or args.cllr or args.mindcf:
Manuel Günther's avatar
Manuel Günther committed
248
249
250
251
252
    score_parser = {'4column' : bob.measure.load.split_four_column, '5column' : bob.measure.load.split_five_column}[args.parser]

    # First, read the score files
    logger.info("Loading %d score files of the development set", len(args.dev_files))
    scores_dev = [score_parser(os.path.join(args.directory, f)) for f in args.dev_files]
253
254
    # remove nans
    scores_dev = [get_fta(s) for s in scores_dev]
Manuel Günther's avatar
Manuel Günther committed
255
256
257
258

    if args.eval_files:
      logger.info("Loading %d score files of the evaluation set", len(args.eval_files))
      scores_eval = [score_parser(os.path.join(args.directory, f)) for f in args.eval_files]
259
260
      # remove nans
      scores_eval = [get_fta(s) for s in scores_eval]
Manuel Günther's avatar
Manuel Günther committed
261
262
263
264
265
266


    if args.criterion:
      logger.info("Computing %s on the development " % args.criterion + ("and HTER on the evaluation set" if args.eval_files else "set"))
      for i in range(len(scores_dev)):
        # compute threshold on development set
Manuel Günther's avatar
Manuel Günther committed
267
268
269
270
        if args.criterion == 'FAR':
          threshold = bob.measure.far_threshold(scores_dev[i][0], scores_dev[i][1], args.far_value/100.)
        else:
          threshold = {'EER': bob.measure.eer_threshold, 'HTER' : bob.measure.min_hter_threshold} [args.criterion](scores_dev[i][0], scores_dev[i][1])
Manuel Günther's avatar
Manuel Günther committed
271
272
        # apply threshold to development set
        far, frr = bob.measure.farfrr(scores_dev[i][0], scores_dev[i][1], threshold)
Manuel Günther's avatar
Manuel Günther committed
273
        if args.criterion == 'FAR':
André Anjos's avatar
André Anjos committed
274
275
          print("The FRR at FAR=%2.3f%% of the development set of '%s' is %2.3f%% (CAR: %2.3f%%)" % (args.far_value, args.legends[i], frr * 100., 100.*(1-frr)))
        else:
Manuel Günther's avatar
Manuel Günther committed
276
          print("The %s of the development set of '%s' is %2.3f%%" % (args.criterion, args.legends[i], (far + frr) * 50.)) # / 2 * 100%
Manuel Günther's avatar
Manuel Günther committed
277
278
279
        if args.eval_files:
          # apply threshold to evaluation set
          far, frr = bob.measure.farfrr(scores_eval[i][0], scores_eval[i][1], threshold)
Manuel Günther's avatar
Manuel Günther committed
280
281
          if args.criterion == 'FAR':
            print("The FRR of the evaluation set of '%s' is %2.3f%% (CAR: %2.3f%%)" % (args.legends[i], frr * 100., 100.*(1-frr))) # / 2 * 100%
André Anjos's avatar
André Anjos committed
282
          else:
Manuel Günther's avatar
Manuel Günther committed
283
            print("The HTER of the evaluation set of '%s' is %2.3f%%" % (args.legends[i], (far + frr) * 50.)) # / 2 * 100%
Manuel Günther's avatar
Manuel Günther committed
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315


    if args.mindcf:
      logger.info("Computing minDCF on the development " + ("and on the evaluation set" if args.eval_files else "set"))
      for i in range(len(scores_dev)):
        # compute threshold on development set
        threshold = bob.measure.min_weighted_error_rate_threshold(scores_dev[i][0], scores_dev[i][1], args.cost)
        # apply threshold to development set
        far, frr = bob.measure.farfrr(scores_dev[i][0], scores_dev[i][1], threshold)
        print("The minDCF of the development set of '%s' is %2.3f%%" % (args.legends[i], (args.cost * far + (1-args.cost) * frr) * 100. ))
        if args.eval_files:
          # compute threshold on evaluation set
          threshold = bob.measure.min_weighted_error_rate_threshold(scores_eval[i][0], scores_eval[i][1], args.cost)
          # apply threshold to evaluation set
          far, frr = bob.measure.farfrr(scores_eval[i][0], scores_eval[i][1], threshold)
          print("The minDCF of the evaluation set of '%s' is %2.3f%%" % (args.legends[i], (args.cost * far + (1-args.cost) * frr) * 100. ))


    if args.cllr:
      logger.info("Computing Cllr and minCllr on the development " + ("and on the evaluation set" if args.eval_files else "set"))
      for i in range(len(scores_dev)):
        cllr = bob.measure.calibration.cllr(scores_dev[i][0], scores_dev[i][1])
        min_cllr = bob.measure.calibration.min_cllr(scores_dev[i][0], scores_dev[i][1])
        print("Calibration performance on development set of '%s' is Cllr %1.5f and minCllr %1.5f " % (args.legends[i], cllr, min_cllr))
        if args.eval_files:
          cllr = bob.measure.calibration.cllr(scores_eval[i][0], scores_eval[i][1])
          min_cllr = bob.measure.calibration.min_cllr(scores_eval[i][0], scores_eval[i][1])
          print("Calibration performance on evaluation set of '%s' is Cllr %1.5f and minCllr %1.5f" % (args.legends[i], cllr, min_cllr))


    if args.roc:
      logger.info("Computing CAR curves on the development " + ("and on the evaluation set" if args.eval_files else "set"))
316
      min_far = int(math.floor(math.log(args.min_far_value, 10)))
317
      fars = [math.pow(10., i * 0.25) for i in range(min_far * 4, 0)] + [1.]
Manuel Günther's avatar
Manuel Günther committed
318
319
320
321
322
323
324
325
326
      frrs_dev = [bob.measure.roc_for_far(scores[0], scores[1], fars) for scores in scores_dev]
      if args.eval_files:
        frrs_eval = [bob.measure.roc_for_far(scores[0], scores[1], fars) for scores in scores_eval]

      logger.info("Plotting ROC curves to file '%s'", args.roc)
      try:
        # create a multi-page PDF for the ROC curve
        pdf = PdfPages(args.roc)
        # create a separate figure for dev and eval
327
        pdf.savefig(_plot_roc(frrs_dev, colors, args.legends, args.title[0] if args.title is not None else "ROC for development set", args.legend_font_size, args.legend_position, args.far_line_at), bbox_inches='tight')
Manuel Günther's avatar
Manuel Günther committed
328
329
        del frrs_dev
        if args.eval_files:
330
331
332
333
334
335
336
          if args.far_line_at is not None:
            farfrrs = []
            for i in range(len(scores_dev)):
              threshold = bob.measure.far_threshold(scores_dev[i][0], scores_dev[i][1], args.far_line_at)
              farfrrs.append(bob.measure.farfrr(scores_eval[i][0], scores_eval[i][1], threshold))
          else:
            farfrrs = None
337
          pdf.savefig(_plot_roc(frrs_eval, colors, args.legends, args.title[1] if args.title is not None else "ROC for evaluation set", args.legend_font_size, args.legend_position, farfrrs), bbox_inches='tight')
Manuel Günther's avatar
Manuel Günther committed
338
339
340
          del frrs_eval
        pdf.close()
      except RuntimeError as e:
341
        raise RuntimeError("During plotting of ROC curves, the following exception occured:\n%s" % e)
Manuel Günther's avatar
Manuel Günther committed
342
343
344
345
346
347
348
349
350

    if args.det:
      logger.info("Computing DET curves on the development " + ("and on the evaluation set" if args.eval_files else "set"))
      dets_dev = [bob.measure.det(scores[0], scores[1], 1000) for scores in scores_dev]
      if args.eval_files:
        dets_eval = [bob.measure.det(scores[0], scores[1], 1000) for scores in scores_eval]

      logger.info("Plotting DET curves to file '%s'", args.det)
      try:
351
        # create a multi-page PDF for the DET curve
Manuel Günther's avatar
Manuel Günther committed
352
353
        pdf = PdfPages(args.det)
        # create a separate figure for dev and eval
354
        pdf.savefig(_plot_det(dets_dev, colors, args.legends, args.title[0] if args.title is not None else "DET for development set", args.legend_font_size, args.legend_position), bbox_inches='tight')
Manuel Günther's avatar
Manuel Günther committed
355
356
        del dets_dev
        if args.eval_files:
357
          pdf.savefig(_plot_det(dets_eval, colors, args.legends, args.title[1] if args.title is not None else "DET for evaluation set", args.legend_font_size, args.legend_position), bbox_inches='tight')
Manuel Günther's avatar
Manuel Günther committed
358
359
360
          del dets_eval
        pdf.close()
      except RuntimeError as e:
361
        raise RuntimeError("During plotting of DET curves, the following exception occured:\n%s" % e)
Manuel Günther's avatar
Manuel Günther committed
362
363


364
    if args.epc:
Manuel Günther's avatar
Manuel Günther committed
365
      logger.info("Plotting EPC curves to file '%s'", args.epc)
André Anjos's avatar
André Anjos committed
366

367
368
      if not args.eval_files:
        raise ValueError("To plot the EPC curve the evaluation scores are necessary. Please, set it with the --eval-files option.")
André Anjos's avatar
André Anjos committed
369

370
      try:
371
        # create a multi-page PDF for the EPC curve
372
        pdf = PdfPages(args.epc)
373
        pdf.savefig(_plot_epc(scores_dev, scores_eval, colors, args.legends, args.title if args.title is not None else "" , args.legend_font_size, args.legend_position), bbox_inches='tight')
374
375
        pdf.close()
      except RuntimeError as e:
376
        raise RuntimeError("During plotting of EPC curves, the following exception occured:\n%s" % e)
377
378
379
380




Manuel Günther's avatar
Manuel Günther committed
381
382
383
384
385
386
387
  if args.cmc or args.rr:
    logger.info("Loading CMC data on the development " + ("and on the evaluation set" if args.eval_files else "set"))
    cmc_parser = {'4column' : bob.measure.load.cmc_four_column, '5column' : bob.measure.load.cmc_five_column}[args.parser]
    cmcs_dev = [cmc_parser(os.path.join(args.directory, f)) for f in args.dev_files]
    if args.eval_files:
      cmcs_eval = [cmc_parser(os.path.join(args.directory, f)) for f in args.eval_files]

388
389
390
391
392
393
    if args.cmc:
      logger.info("Plotting CMC curves to file '%s'", args.cmc)
      try:
        # create a multi-page PDF for the ROC curve
        pdf = PdfPages(args.cmc)
        # create a separate figure for dev and eval
394
        pdf.savefig(_plot_cmc(cmcs_dev, colors, args.legends, args.title[0] if args.title is not None else "CMC curve for development set", args.legend_font_size, args.legend_position), bbox_inches='tight')
395
        if args.eval_files:
396
          pdf.savefig(_plot_cmc(cmcs_eval, colors, args.legends, args.title[1] if args.title is not None else "CMC curve for evaluation set", args.legend_font_size, args.legend_position), bbox_inches='tight')
397
398
399
400
401
402
403
404
        pdf.close()
      except RuntimeError as e:
        raise RuntimeError("During plotting of ROC curves, the following exception occured:\n%s\nUsually this happens when the label contains characters that LaTeX cannot parse." % e)

    if args.rr:
      logger.info("Computing recognition rate on the development " + ("and on the evaluation set" if args.eval_files else "set"))
      for i in range(len(cmcs_dev)):
        rr = bob.measure.recognition_rate(cmcs_dev[i], args.thresholds[i])
Manuel Günther's avatar
Manuel Günther committed
405
        print("The Recognition Rate of the development set of '%s' is %2.3f%%" % (args.legends[i], rr * 100.))
406
407
408
        if args.eval_files:
          rr = bob.measure.recognition_rate(cmcs_eval[i], args.thresholds[i])
          print("The Recognition Rate of the development set of '%s' is %2.3f%%" % (args.legends[i], rr * 100.))